KRIGOLSON TEACHING
  • NEUROSCIENCE
    • NEUROSCIENCE 100 >
      • NEURO 100 INTRODUCTION
      • NEURO 101 ADVANCED
      • NEURO 102 AGING
      • NEURO 103 MEMORY
      • NEURO 104 DECISION MAKING
      • NEURO 105 LEARNING
      • Research Statistics
    • NRSC 500B / MEDS 470
  • Kinesiology
    • EPHE 245 >
      • LABORATORY
      • PRACTICUM
    • EPHE 357
  • STATISTICS
    • LECTURE >
      • INTRODUCTION TO R
      • DESCRIPTIVE STATISTICS
      • VISUALIZING DATA
      • Correlation and Regression
      • MULTIPLE REGRESSION
      • LOGIC OF NHST
      • T TESTS
      • ANOVA
      • POST HOC ANALYSIS
      • NON PARAMETRIC STATISTICS
      • FACTORIAL ANOVA
      • Repeated Measures ANOVA
      • Mixed ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • Bayesian Methods
    • ASSIGNMENTS >
      • Introduction to R >
        • INTRODUCTION TO R
        • LOADING DATA
        • DATA TABLES
      • Descriptive Statistics >
        • Mean, Median, and Mode
        • VARIANCE
        • CONFIDENCE INTERVALS
        • SHORTCUTS
      • Visualizing Data >
        • PLOTTING BASICS
        • BAR GRAPHS
        • BOXPLOTS
        • HISTOGRAMS
        • USING GGPLOT I
        • USING GGPLOT II
        • USING GGPLOT III
      • Correlation and Regression >
        • CORRELATION
        • REGRESSION
      • MULTIPLE REGRESSION >
        • MULTIPLE REGRESSION
      • Logic of NHST >
        • Sample Size and Variance
        • DISTRIBUTIONS
        • TESTING DISTRIBUTIONS
      • T-Tests >
        • Single Sample TTests
        • Paired Sample TTests
        • Independent Sample TTests
      • ANOVA >
        • ANOVA ASSUMPTIONS
        • ANOVA
      • POST HOC ANALYSIS >
        • POSTHOC ANALYSIS
      • NON PARAMETRIC STATISTICS >
        • WILCOXON TEST
        • WILCOXON SIGNED TEST
        • MULTIPLE GROUPS
      • FACTORIAL ANOVA
      • REPEATED MEASURES ANOVA >
        • RM ANOVA
        • TREND ANALYSIS
      • MIXED ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • BAYESIAN TTESTS
    • RESOURCES
    • R TIPS
  • Directed Studies
    • Advanced Topics in Motor Control A
    • Advanced Topics in Motor Control B
    • An Introduction to EEG
    • Advanced EEG and ERP Methods
    • Neural Correlates of Human Reward Processing
    • Independent Research Project
  • MATLAB
    • THE BASICS >
      • Hello World
      • BASIC MATHEMATICS
      • VARIABLES
      • Matrices
      • Writing Scripts
      • PATHS AND DIRECTORIES
      • USER INPUT
      • FOR LOOPS
      • WHILE LOOPS
      • IF STATEMENTS
      • RANDOM NUMBERS
    • STATISTICS >
      • LOADING DATA
      • DESCRIPTIVE STATISTICS
      • MAKING FUNCTIONS
      • BAR GRAPHS
      • LINE GRAPHS
      • TTESTS
    • EXPERIMENTS: THE BASICS >
      • DRAWING A CIRCLE
      • DRAWING MULTIPLE OBJECTS
      • DRAWING TEXT
      • DRAWING AN IMAGE
      • PLAYING A TONE
      • KEYBOARD INPUT
      • BUILDING A TRIAL
      • BUILDING TRIALS
      • NESTED LOOPS
      • RIGHT OR WRONG
      • SAVING DATA
    • EXPERIMENTS: ADVANCED >
      • STROOP
      • N BACK
      • Oddball
      • Animation
      • VIDEO
    • EEG and ERP Analysis >
      • ERP Analysis
  • RESOURCES
    • EXCEL
    • HOW TO READ A RESEARCH PAPER
    • HOW TO WRITE A RESEARCH PAPER
  • Workshops
    • Iowa State EEG Workshop 2018
  • Python
    • The Basics >
      • Setting Up Python
      • Hello, world!
      • Basic Math & Using Import
      • Variables
      • Matrices
      • Scripts
      • User Input
      • For Loops

Setting Up Your Python Environment

Before we jump into how to use Python, you need to have Python. This tutorial will get you set up with a Python development environment that will make MATLAB users feel right at home.

Python is a programming language with a broad scope that can be applied to nearly any programming situation. While MATLAB is owned and maintained by one entity, Python supports add-ons created by the community. Whatever you need to do in your project, there is a Python library for it. This makes Python versatile, but also quite intimidating to get started with. These tutorials will get you to grips with the basics of programming in Python for data analysis, using an environment that will be familiar to MATLAB users.

Installing Anaconda

Anaconda is a free distribution of Python (and R) which focusses on scientific computing (data analysis, machine learning, and statistical analysis). It comes with Spyder, which is a development environment that provides similar functionality to MATLAB. Click the link below, and select the Python 3.x* version for your operating system.
Anaconda Link
Follow the instructions for installing Anaconda. Note the installation location, this is where your entire Python environment will be based! Once installed, open up Anaconda-Navigator. You should see something like this:
Picture
This is the "dashboard" for Anaconda. As you can see, Anaconda comes with several options for Python development. Note the "Documentation" button on the left. Launch Spyder (Scientific Python Development Environment). 
Picture
Welcome to Spyder. The three coloured boxes show different "panes" in the window. If you don't like the way it is laid out, you can move panes freely by clicking the windowing button (next to the 'x' on each pane) and dragging to where you see fit. If you are missing a pane, or want to hide one, select View -> Panes and select the pane you want to see.

In this screenshot, we have three panes:
  1. Blue - Python console. This is the Python interpreter, which runs any code that you write. Program output and error messages are displayed here. The interpreter can be used to run code line-by-line, like the MATLAB command window.
  2. Yellow - Editor. The editor pane lets you view and edit files in your project.
  3. Red - Variable Explorer. This shows the contents of any variables currently in your workspace. It is analogous to "Workspace" in MATLAB. 
Now that our environment is ready to go, head over to the "Hello, world!" tutorial to start writing code!

If you are having difficulties with the Anaconda or Python setup, the Anaconda documentation is very helpful for resolving issues.
* Python 2.x is the old version of the language which is slowly going out of vogue. Beginners will be better off learning 3.x from the start
  • NEUROSCIENCE
    • NEUROSCIENCE 100 >
      • NEURO 100 INTRODUCTION
      • NEURO 101 ADVANCED
      • NEURO 102 AGING
      • NEURO 103 MEMORY
      • NEURO 104 DECISION MAKING
      • NEURO 105 LEARNING
      • Research Statistics
    • NRSC 500B / MEDS 470
  • Kinesiology
    • EPHE 245 >
      • LABORATORY
      • PRACTICUM
    • EPHE 357
  • STATISTICS
    • LECTURE >
      • INTRODUCTION TO R
      • DESCRIPTIVE STATISTICS
      • VISUALIZING DATA
      • Correlation and Regression
      • MULTIPLE REGRESSION
      • LOGIC OF NHST
      • T TESTS
      • ANOVA
      • POST HOC ANALYSIS
      • NON PARAMETRIC STATISTICS
      • FACTORIAL ANOVA
      • Repeated Measures ANOVA
      • Mixed ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • Bayesian Methods
    • ASSIGNMENTS >
      • Introduction to R >
        • INTRODUCTION TO R
        • LOADING DATA
        • DATA TABLES
      • Descriptive Statistics >
        • Mean, Median, and Mode
        • VARIANCE
        • CONFIDENCE INTERVALS
        • SHORTCUTS
      • Visualizing Data >
        • PLOTTING BASICS
        • BAR GRAPHS
        • BOXPLOTS
        • HISTOGRAMS
        • USING GGPLOT I
        • USING GGPLOT II
        • USING GGPLOT III
      • Correlation and Regression >
        • CORRELATION
        • REGRESSION
      • MULTIPLE REGRESSION >
        • MULTIPLE REGRESSION
      • Logic of NHST >
        • Sample Size and Variance
        • DISTRIBUTIONS
        • TESTING DISTRIBUTIONS
      • T-Tests >
        • Single Sample TTests
        • Paired Sample TTests
        • Independent Sample TTests
      • ANOVA >
        • ANOVA ASSUMPTIONS
        • ANOVA
      • POST HOC ANALYSIS >
        • POSTHOC ANALYSIS
      • NON PARAMETRIC STATISTICS >
        • WILCOXON TEST
        • WILCOXON SIGNED TEST
        • MULTIPLE GROUPS
      • FACTORIAL ANOVA
      • REPEATED MEASURES ANOVA >
        • RM ANOVA
        • TREND ANALYSIS
      • MIXED ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • BAYESIAN TTESTS
    • RESOURCES
    • R TIPS
  • Directed Studies
    • Advanced Topics in Motor Control A
    • Advanced Topics in Motor Control B
    • An Introduction to EEG
    • Advanced EEG and ERP Methods
    • Neural Correlates of Human Reward Processing
    • Independent Research Project
  • MATLAB
    • THE BASICS >
      • Hello World
      • BASIC MATHEMATICS
      • VARIABLES
      • Matrices
      • Writing Scripts
      • PATHS AND DIRECTORIES
      • USER INPUT
      • FOR LOOPS
      • WHILE LOOPS
      • IF STATEMENTS
      • RANDOM NUMBERS
    • STATISTICS >
      • LOADING DATA
      • DESCRIPTIVE STATISTICS
      • MAKING FUNCTIONS
      • BAR GRAPHS
      • LINE GRAPHS
      • TTESTS
    • EXPERIMENTS: THE BASICS >
      • DRAWING A CIRCLE
      • DRAWING MULTIPLE OBJECTS
      • DRAWING TEXT
      • DRAWING AN IMAGE
      • PLAYING A TONE
      • KEYBOARD INPUT
      • BUILDING A TRIAL
      • BUILDING TRIALS
      • NESTED LOOPS
      • RIGHT OR WRONG
      • SAVING DATA
    • EXPERIMENTS: ADVANCED >
      • STROOP
      • N BACK
      • Oddball
      • Animation
      • VIDEO
    • EEG and ERP Analysis >
      • ERP Analysis
  • RESOURCES
    • EXCEL
    • HOW TO READ A RESEARCH PAPER
    • HOW TO WRITE A RESEARCH PAPER
  • Workshops
    • Iowa State EEG Workshop 2018
  • Python
    • The Basics >
      • Setting Up Python
      • Hello, world!
      • Basic Math & Using Import
      • Variables
      • Matrices
      • Scripts
      • User Input
      • For Loops