KRIGOLSON TEACHING
  • NEUROSCIENCE
    • NEUROSCIENCE 100 >
      • NEURO 100 INTRODUCTION
      • NEURO 101 ADVANCED
      • NEURO 102 AGING
      • NEURO 103 MEMORY
      • NEURO 104 DECISION MAKING
      • NEURO 105 LEARNING
      • Research Statistics
    • NRSC 500B / MEDS 470
  • Kinesiology
    • EPHE 245
    • EPHE 357
  • STATISTICS
    • BIOMEDICAL STATISTICS
    • MULTIVARIATE STATISTICS >
      • MULTIPLE REGRESSION
    • RESOURCES
    • R TIPS
  • MATLAB
    • THE BASICS >
      • Hello World
      • BASIC MATHEMATICS
      • VARIABLES
      • Matrices
      • Writing Scripts
      • PATHS AND DIRECTORIES
      • USER INPUT
      • FOR LOOPS
      • WHILE LOOPS
      • IF STATEMENTS
      • RANDOM NUMBERS
    • STATISTICS >
      • LOADING DATA
      • DESCRIPTIVE STATISTICS
      • MAKING FUNCTIONS
      • BAR GRAPHS
      • LINE GRAPHS
      • TTESTS
    • EXPERIMENTS: THE BASICS >
      • DRAWING A CIRCLE
      • DRAWING MULTIPLE OBJECTS
      • DRAWING TEXT
      • DRAWING AN IMAGE
      • PLAYING A TONE
      • KEYBOARD INPUT
      • BUILDING A TRIAL
      • BUILDING TRIALS
      • NESTED LOOPS
      • RIGHT OR WRONG
      • SAVING DATA
    • EXPERIMENTS: ADVANCED >
      • STROOP
      • N BACK
      • Oddball
      • Animation
      • VIDEO
    • EEG and ERP Analysis >
      • ERP Analysis
      • FFT Analysis
      • Wavelet Analysis
  • Directed Studies
    • Advanced Topics in Motor Control A
    • Advanced Topics in Motor Control B
    • An Introduction to EEG
    • Advanced EEG and ERP Methods
    • Neural Correlates of Human Reward Processing
    • Independent Research Project
  • RESOURCES
    • EXCEL
    • HOW TO READ A RESEARCH PAPER
    • HOW TO WRITE A RESEARCH PAPER
  • Workshops
    • Iowa State EEG Workshop 2018
  • Python
    • The Basics >
      • Setting Up Python
      • Hello, world!
      • Basic Math & Using Import
      • Variables
      • Matrices
      • Scripts
      • User Input
      • For Loops

Scripts

If we want to start doing more complicated and repetitive tasks, we probably don't want to type all the commands into the command line every time. Instead, we can create and use scripts. A script is a python file that executes its code whenever you run it. This is perfect if you have something repetitive and involved to do!

Let's write our first script in Spyder. The script will output a computed angle to the command window. Click the New File button (top left). In the new file window, write:

import math

All scripts should start with importing any modules that the script depends on. In this case, we will be using atan() from math. Even if you have imported math into your command window, it's good practice to include this line in your script, so you don't run into errors for missing modules in the future.

Next, write:
angle = math.atan(6 / 4)
hypotenuse = 6 / math.sin(angle)


All trigonometry in math uses angles measured in radians. This means that atan() returns radians, and sin() takes radians as input. The degrees() function in math converts an angle in radians to degrees. A radians() function is available in math to do the inverse.

Add one more line:

print('The angle is: ', math.degrees(angle))

Let's pause for a second and look at the print() function a little bit more. print() will print the parameters provided to it in order. So, by saying 'The angle is: ' followed by math.degrees(angle) will print that first string followed by the number. You can call print() with any number of objects to print! This allows for some clever formatting.

Save the script with CTRL-S or the save button. Take note of where it was saved, because you will need to remember that to open it in the future!
​Notice that it is saved as a .py file. This is the Python file extension, and it tells the computer that Python code is inside. Then, we can run it by pressing the green triangle button. Check the command window, and you should see something like this:
Picture
Congratulations! You have written your first Python script!
  • NEUROSCIENCE
    • NEUROSCIENCE 100 >
      • NEURO 100 INTRODUCTION
      • NEURO 101 ADVANCED
      • NEURO 102 AGING
      • NEURO 103 MEMORY
      • NEURO 104 DECISION MAKING
      • NEURO 105 LEARNING
      • Research Statistics
    • NRSC 500B / MEDS 470
  • Kinesiology
    • EPHE 245
    • EPHE 357
  • STATISTICS
    • BIOMEDICAL STATISTICS
    • MULTIVARIATE STATISTICS >
      • MULTIPLE REGRESSION
    • RESOURCES
    • R TIPS
  • MATLAB
    • THE BASICS >
      • Hello World
      • BASIC MATHEMATICS
      • VARIABLES
      • Matrices
      • Writing Scripts
      • PATHS AND DIRECTORIES
      • USER INPUT
      • FOR LOOPS
      • WHILE LOOPS
      • IF STATEMENTS
      • RANDOM NUMBERS
    • STATISTICS >
      • LOADING DATA
      • DESCRIPTIVE STATISTICS
      • MAKING FUNCTIONS
      • BAR GRAPHS
      • LINE GRAPHS
      • TTESTS
    • EXPERIMENTS: THE BASICS >
      • DRAWING A CIRCLE
      • DRAWING MULTIPLE OBJECTS
      • DRAWING TEXT
      • DRAWING AN IMAGE
      • PLAYING A TONE
      • KEYBOARD INPUT
      • BUILDING A TRIAL
      • BUILDING TRIALS
      • NESTED LOOPS
      • RIGHT OR WRONG
      • SAVING DATA
    • EXPERIMENTS: ADVANCED >
      • STROOP
      • N BACK
      • Oddball
      • Animation
      • VIDEO
    • EEG and ERP Analysis >
      • ERP Analysis
      • FFT Analysis
      • Wavelet Analysis
  • Directed Studies
    • Advanced Topics in Motor Control A
    • Advanced Topics in Motor Control B
    • An Introduction to EEG
    • Advanced EEG and ERP Methods
    • Neural Correlates of Human Reward Processing
    • Independent Research Project
  • RESOURCES
    • EXCEL
    • HOW TO READ A RESEARCH PAPER
    • HOW TO WRITE A RESEARCH PAPER
  • Workshops
    • Iowa State EEG Workshop 2018
  • Python
    • The Basics >
      • Setting Up Python
      • Hello, world!
      • Basic Math & Using Import
      • Variables
      • Matrices
      • Scripts
      • User Input
      • For Loops