KRIGOLSON TEACHING
  • NEUROSCIENCE
    • NEUROSCIENCE 100 >
      • NEURO 100 INTRODUCTION
      • NEURO 101 ADVANCED
      • NEURO 102 AGING
      • NEURO 103 MEMORY
      • NEURO 104 DECISION MAKING
      • NEURO 105 LEARNING
      • Research Statistics
    • NRSC 500B / MEDS 470
  • Kinesiology
    • EPHE 245 >
      • LABORATORY
      • PRACTICUM
    • EPHE 357
  • STATISTICS
    • LECTURE >
      • INTRODUCTION TO R
      • DESCRIPTIVE STATISTICS
      • VISUALIZING DATA
      • Correlation and Regression
      • MULTIPLE REGRESSION
      • LOGIC OF NHST
      • T TESTS
      • ANOVA
      • POST HOC ANALYSIS
      • NON PARAMETRIC STATISTICS
      • FACTORIAL ANOVA
      • Repeated Measures ANOVA
      • Mixed ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • Bayesian Methods
    • ASSIGNMENTS >
      • Introduction to R >
        • INTRODUCTION TO R
        • LOADING DATA
        • DATA TABLES
      • Descriptive Statistics >
        • Mean, Median, and Mode
        • VARIANCE
        • CONFIDENCE INTERVALS
        • SHORTCUTS
      • Visualizing Data >
        • PLOTTING BASICS
        • BAR GRAPHS
        • BOXPLOTS
        • HISTOGRAMS
        • USING GGPLOT I
        • USING GGPLOT II
        • USING GGPLOT III
      • Correlation and Regression >
        • CORRELATION
        • REGRESSION
      • MULTIPLE REGRESSION >
        • MULTIPLE REGRESSION
      • Logic of NHST >
        • Sample Size and Variance
        • DISTRIBUTIONS
        • TESTING DISTRIBUTIONS
      • T-Tests >
        • Single Sample TTests
        • Paired Sample TTests
        • Independent Sample TTests
      • ANOVA >
        • ANOVA ASSUMPTIONS
        • ANOVA
      • POST HOC ANALYSIS >
        • POSTHOC ANALYSIS
      • NON PARAMETRIC STATISTICS >
        • WILCOXON TEST
        • WILCOXON SIGNED TEST
        • MULTIPLE GROUPS
      • FACTORIAL ANOVA
      • REPEATED MEASURES ANOVA >
        • RM ANOVA
        • TREND ANALYSIS
      • MIXED ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • BAYESIAN TTESTS
    • RESOURCES
    • R TIPS
  • Directed Studies
    • Advanced Topics in Motor Control A
    • Advanced Topics in Motor Control B
    • An Introduction to EEG
    • Advanced EEG and ERP Methods
    • Neural Correlates of Human Reward Processing
    • Independent Research Project
  • MATLAB
    • THE BASICS >
      • Hello World
      • BASIC MATHEMATICS
      • VARIABLES
      • Matrices
      • Writing Scripts
      • PATHS AND DIRECTORIES
      • USER INPUT
      • FOR LOOPS
      • WHILE LOOPS
      • IF STATEMENTS
      • RANDOM NUMBERS
    • STATISTICS >
      • LOADING DATA
      • DESCRIPTIVE STATISTICS
      • MAKING FUNCTIONS
      • BAR GRAPHS
      • LINE GRAPHS
      • TTESTS
    • EXPERIMENTS: THE BASICS >
      • DRAWING A CIRCLE
      • DRAWING MULTIPLE OBJECTS
      • DRAWING TEXT
      • DRAWING AN IMAGE
      • PLAYING A TONE
      • KEYBOARD INPUT
      • BUILDING A TRIAL
      • BUILDING TRIALS
      • NESTED LOOPS
      • RIGHT OR WRONG
      • SAVING DATA
    • EXPERIMENTS: ADVANCED >
      • STROOP
      • N BACK
      • Oddball
      • Animation
      • VIDEO
    • EEG and ERP Analysis >
      • ERP Analysis
  • RESOURCES
    • EXCEL
    • HOW TO READ A RESEARCH PAPER
    • HOW TO WRITE A RESEARCH PAPER
  • Workshops
    • Iowa State EEG Workshop 2018
  • Python
    • The Basics >
      • Setting Up Python
      • Hello, world!
      • Basic Math & Using Import
      • Variables
      • Matrices
      • Scripts
      • User Input
      • For Loops

LINE GRAPHS

As with bar graphs, line graphs are easy to make in MATLAB. Let's start this tutorial by loading some data to play with. The file you need is HERE. Download it now and place it in your MATLAB/Tutorial directory.

Let's clear everything we have so far.

clc;
clear all;
close all;


Now, load the data.

load('sampleLineData');

This command will load the file and you will see a variable called lineData in your Workspace. The data has three rows. The first just identifies 7 measurement points. The second reflect incomes at these measurement points. The last row reflects the variability in the measurement at each point (the error).

Plotting this is easy:

plot(lineData(1,:),lineData(2,:));

You will see a simple line graph that is easily customizable like the previous bar plot. For instance, try this command now.

plot(lineData(1,:),lineData(2,:),'b--o','LineWidth',2,'MarkerSize',10);

As I stated before, there are a myriad of ways to customize plots in MATLAB.

Error Bars

If you want error bars, it is actually very easy for a line plot at this is the default setting for errorbar. Try this:

errorbar(lineData(1,:),lineData(2,:),lineData(3,:));

You see? Anything can be done. Speaking of which...

The MATLAB Central File Exchange

One of the advantages to MATLAB is that there is a huge file repository of projects people have posted online that you can download for free. The repository is HERE, but you need to create an account to join (it's free!), but in the interests of time download this FILE and put in in your MATLAB path. It is a file I have downloaded for you from the file repository. Then, try this:

shadedbar(lineData(1,:),lineData(2,:),lineData(3,:));

You should see a line graph with a shaded error bar interval. Again, anything can be done!

Things To Do
1. Again, try customizing these plots. Think of something you want to change, and try and change it. For example. on the last plot label the title, axes, etc. Change colours, be creative!

Then, on to the next tutorial!
  • NEUROSCIENCE
    • NEUROSCIENCE 100 >
      • NEURO 100 INTRODUCTION
      • NEURO 101 ADVANCED
      • NEURO 102 AGING
      • NEURO 103 MEMORY
      • NEURO 104 DECISION MAKING
      • NEURO 105 LEARNING
      • Research Statistics
    • NRSC 500B / MEDS 470
  • Kinesiology
    • EPHE 245 >
      • LABORATORY
      • PRACTICUM
    • EPHE 357
  • STATISTICS
    • LECTURE >
      • INTRODUCTION TO R
      • DESCRIPTIVE STATISTICS
      • VISUALIZING DATA
      • Correlation and Regression
      • MULTIPLE REGRESSION
      • LOGIC OF NHST
      • T TESTS
      • ANOVA
      • POST HOC ANALYSIS
      • NON PARAMETRIC STATISTICS
      • FACTORIAL ANOVA
      • Repeated Measures ANOVA
      • Mixed ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • Bayesian Methods
    • ASSIGNMENTS >
      • Introduction to R >
        • INTRODUCTION TO R
        • LOADING DATA
        • DATA TABLES
      • Descriptive Statistics >
        • Mean, Median, and Mode
        • VARIANCE
        • CONFIDENCE INTERVALS
        • SHORTCUTS
      • Visualizing Data >
        • PLOTTING BASICS
        • BAR GRAPHS
        • BOXPLOTS
        • HISTOGRAMS
        • USING GGPLOT I
        • USING GGPLOT II
        • USING GGPLOT III
      • Correlation and Regression >
        • CORRELATION
        • REGRESSION
      • MULTIPLE REGRESSION >
        • MULTIPLE REGRESSION
      • Logic of NHST >
        • Sample Size and Variance
        • DISTRIBUTIONS
        • TESTING DISTRIBUTIONS
      • T-Tests >
        • Single Sample TTests
        • Paired Sample TTests
        • Independent Sample TTests
      • ANOVA >
        • ANOVA ASSUMPTIONS
        • ANOVA
      • POST HOC ANALYSIS >
        • POSTHOC ANALYSIS
      • NON PARAMETRIC STATISTICS >
        • WILCOXON TEST
        • WILCOXON SIGNED TEST
        • MULTIPLE GROUPS
      • FACTORIAL ANOVA
      • REPEATED MEASURES ANOVA >
        • RM ANOVA
        • TREND ANALYSIS
      • MIXED ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • BAYESIAN TTESTS
    • RESOURCES
    • R TIPS
  • Directed Studies
    • Advanced Topics in Motor Control A
    • Advanced Topics in Motor Control B
    • An Introduction to EEG
    • Advanced EEG and ERP Methods
    • Neural Correlates of Human Reward Processing
    • Independent Research Project
  • MATLAB
    • THE BASICS >
      • Hello World
      • BASIC MATHEMATICS
      • VARIABLES
      • Matrices
      • Writing Scripts
      • PATHS AND DIRECTORIES
      • USER INPUT
      • FOR LOOPS
      • WHILE LOOPS
      • IF STATEMENTS
      • RANDOM NUMBERS
    • STATISTICS >
      • LOADING DATA
      • DESCRIPTIVE STATISTICS
      • MAKING FUNCTIONS
      • BAR GRAPHS
      • LINE GRAPHS
      • TTESTS
    • EXPERIMENTS: THE BASICS >
      • DRAWING A CIRCLE
      • DRAWING MULTIPLE OBJECTS
      • DRAWING TEXT
      • DRAWING AN IMAGE
      • PLAYING A TONE
      • KEYBOARD INPUT
      • BUILDING A TRIAL
      • BUILDING TRIALS
      • NESTED LOOPS
      • RIGHT OR WRONG
      • SAVING DATA
    • EXPERIMENTS: ADVANCED >
      • STROOP
      • N BACK
      • Oddball
      • Animation
      • VIDEO
    • EEG and ERP Analysis >
      • ERP Analysis
  • RESOURCES
    • EXCEL
    • HOW TO READ A RESEARCH PAPER
    • HOW TO WRITE A RESEARCH PAPER
  • Workshops
    • Iowa State EEG Workshop 2018
  • Python
    • The Basics >
      • Setting Up Python
      • Hello, world!
      • Basic Math & Using Import
      • Variables
      • Matrices
      • Scripts
      • User Input
      • For Loops