KRIGOLSON TEACHING
  • NEUROSCIENCE
    • NEUROSCIENCE 100 >
      • NEURO 100 INTRODUCTION
      • NEURO 101 ADVANCED
      • NEURO 102 AGING
      • NEURO 103 MEMORY
      • NEURO 104 DECISION MAKING
      • NEURO 105 LEARNING
      • Research Statistics
    • NRSC 500B / MEDS 470
  • Kinesiology
    • EPHE 245 >
      • LABORATORY
      • PRACTICUM
    • EPHE 357
  • STATISTICS
    • LECTURE >
      • INTRODUCTION TO R
      • DESCRIPTIVE STATISTICS
      • VISUALIZING DATA
      • Correlation and Regression
      • MULTIPLE REGRESSION
      • LOGIC OF NHST
      • T TESTS
      • ANOVA
      • POST HOC ANALYSIS
      • NON PARAMETRIC STATISTICS
      • FACTORIAL ANOVA
      • Repeated Measures ANOVA
      • Mixed ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • Bayesian Methods
    • ASSIGNMENTS >
      • Introduction to R >
        • INTRODUCTION TO R
        • LOADING DATA
        • DATA TABLES
      • Descriptive Statistics >
        • Mean, Median, and Mode
        • VARIANCE
        • CONFIDENCE INTERVALS
        • SHORTCUTS
      • Visualizing Data >
        • PLOTTING BASICS
        • BAR GRAPHS
        • BOXPLOTS
        • HISTOGRAMS
        • USING GGPLOT I
        • USING GGPLOT II
        • USING GGPLOT III
      • Correlation and Regression >
        • CORRELATION
        • REGRESSION
      • MULTIPLE REGRESSION >
        • MULTIPLE REGRESSION
      • Logic of NHST >
        • Sample Size and Variance
        • DISTRIBUTIONS
        • TESTING DISTRIBUTIONS
      • T-Tests >
        • Single Sample TTests
        • Paired Sample TTests
        • Independent Sample TTests
      • ANOVA >
        • ANOVA ASSUMPTIONS
        • ANOVA
      • POST HOC ANALYSIS >
        • POSTHOC ANALYSIS
      • NON PARAMETRIC STATISTICS >
        • WILCOXON TEST
        • WILCOXON SIGNED TEST
        • MULTIPLE GROUPS
      • FACTORIAL ANOVA
      • REPEATED MEASURES ANOVA >
        • RM ANOVA
        • TREND ANALYSIS
      • MIXED ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • BAYESIAN TTESTS
    • RESOURCES
    • R TIPS
  • Directed Studies
    • Advanced Topics in Motor Control A
    • Advanced Topics in Motor Control B
    • An Introduction to EEG
    • Advanced EEG and ERP Methods
    • Neural Correlates of Human Reward Processing
    • Independent Research Project
  • MATLAB
    • THE BASICS >
      • Hello World
      • BASIC MATHEMATICS
      • VARIABLES
      • Matrices
      • Writing Scripts
      • PATHS AND DIRECTORIES
      • USER INPUT
      • FOR LOOPS
      • WHILE LOOPS
      • IF STATEMENTS
      • RANDOM NUMBERS
    • STATISTICS >
      • LOADING DATA
      • DESCRIPTIVE STATISTICS
      • MAKING FUNCTIONS
      • BAR GRAPHS
      • LINE GRAPHS
      • TTESTS
    • EXPERIMENTS: THE BASICS >
      • DRAWING A CIRCLE
      • DRAWING MULTIPLE OBJECTS
      • DRAWING TEXT
      • DRAWING AN IMAGE
      • PLAYING A TONE
      • KEYBOARD INPUT
      • BUILDING A TRIAL
      • BUILDING TRIALS
      • NESTED LOOPS
      • RIGHT OR WRONG
      • SAVING DATA
    • EXPERIMENTS: ADVANCED >
      • STROOP
      • N BACK
      • Oddball
      • Animation
      • VIDEO
    • EEG and ERP Analysis >
      • ERP Analysis
  • RESOURCES
    • EXCEL
    • HOW TO READ A RESEARCH PAPER
    • HOW TO WRITE A RESEARCH PAPER
  • Workshops
    • Iowa State EEG Workshop 2018
  • Python
    • The Basics >
      • Setting Up Python
      • Hello, world!
      • Basic Math & Using Import
      • Variables
      • Matrices
      • Scripts
      • User Input
      • For Loops

BUILDING TRIALS

We now need to start making multiple trials. For this, and all subsequent assignments the code will not appear here in the window unless it is a new command. But in terms of an overview, a loop for trials is simply:

for trial_counter = 1:number_of_trials
    our trial code
end


​So, HERE is come code that takes our previous trial and puts it into a loop to simulate a series of trials. Things to look for:

1. The for loop. See how it works. What is in the for loop? What is not in the for loop. Think about why.
2. We are going to store the reaction time data in a variable called subject_data. Make sure you look at that when you are done reading and playing with the code.

So now, read through the code line by line. See what is the same as the previous tutorial and what is different. Play the code a few times. Then, try the challenges below.

Challenges

1. Change this so it is a response to a beep.
2. Add more stimuli and more response keys.
3. Do some analysis with student data. Try and plot the mean reaction time for left versus right responses.

The purpose of these assignments are to really read the code and see what it is doing. Make sure you have done that before you move on!


  • NEUROSCIENCE
    • NEUROSCIENCE 100 >
      • NEURO 100 INTRODUCTION
      • NEURO 101 ADVANCED
      • NEURO 102 AGING
      • NEURO 103 MEMORY
      • NEURO 104 DECISION MAKING
      • NEURO 105 LEARNING
      • Research Statistics
    • NRSC 500B / MEDS 470
  • Kinesiology
    • EPHE 245 >
      • LABORATORY
      • PRACTICUM
    • EPHE 357
  • STATISTICS
    • LECTURE >
      • INTRODUCTION TO R
      • DESCRIPTIVE STATISTICS
      • VISUALIZING DATA
      • Correlation and Regression
      • MULTIPLE REGRESSION
      • LOGIC OF NHST
      • T TESTS
      • ANOVA
      • POST HOC ANALYSIS
      • NON PARAMETRIC STATISTICS
      • FACTORIAL ANOVA
      • Repeated Measures ANOVA
      • Mixed ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • Bayesian Methods
    • ASSIGNMENTS >
      • Introduction to R >
        • INTRODUCTION TO R
        • LOADING DATA
        • DATA TABLES
      • Descriptive Statistics >
        • Mean, Median, and Mode
        • VARIANCE
        • CONFIDENCE INTERVALS
        • SHORTCUTS
      • Visualizing Data >
        • PLOTTING BASICS
        • BAR GRAPHS
        • BOXPLOTS
        • HISTOGRAMS
        • USING GGPLOT I
        • USING GGPLOT II
        • USING GGPLOT III
      • Correlation and Regression >
        • CORRELATION
        • REGRESSION
      • MULTIPLE REGRESSION >
        • MULTIPLE REGRESSION
      • Logic of NHST >
        • Sample Size and Variance
        • DISTRIBUTIONS
        • TESTING DISTRIBUTIONS
      • T-Tests >
        • Single Sample TTests
        • Paired Sample TTests
        • Independent Sample TTests
      • ANOVA >
        • ANOVA ASSUMPTIONS
        • ANOVA
      • POST HOC ANALYSIS >
        • POSTHOC ANALYSIS
      • NON PARAMETRIC STATISTICS >
        • WILCOXON TEST
        • WILCOXON SIGNED TEST
        • MULTIPLE GROUPS
      • FACTORIAL ANOVA
      • REPEATED MEASURES ANOVA >
        • RM ANOVA
        • TREND ANALYSIS
      • MIXED ANOVA
      • MULTIVARIATE ANOVA
      • THE NEW STATISTICS
      • BAYESIAN TTESTS
    • RESOURCES
    • R TIPS
  • Directed Studies
    • Advanced Topics in Motor Control A
    • Advanced Topics in Motor Control B
    • An Introduction to EEG
    • Advanced EEG and ERP Methods
    • Neural Correlates of Human Reward Processing
    • Independent Research Project
  • MATLAB
    • THE BASICS >
      • Hello World
      • BASIC MATHEMATICS
      • VARIABLES
      • Matrices
      • Writing Scripts
      • PATHS AND DIRECTORIES
      • USER INPUT
      • FOR LOOPS
      • WHILE LOOPS
      • IF STATEMENTS
      • RANDOM NUMBERS
    • STATISTICS >
      • LOADING DATA
      • DESCRIPTIVE STATISTICS
      • MAKING FUNCTIONS
      • BAR GRAPHS
      • LINE GRAPHS
      • TTESTS
    • EXPERIMENTS: THE BASICS >
      • DRAWING A CIRCLE
      • DRAWING MULTIPLE OBJECTS
      • DRAWING TEXT
      • DRAWING AN IMAGE
      • PLAYING A TONE
      • KEYBOARD INPUT
      • BUILDING A TRIAL
      • BUILDING TRIALS
      • NESTED LOOPS
      • RIGHT OR WRONG
      • SAVING DATA
    • EXPERIMENTS: ADVANCED >
      • STROOP
      • N BACK
      • Oddball
      • Animation
      • VIDEO
    • EEG and ERP Analysis >
      • ERP Analysis
  • RESOURCES
    • EXCEL
    • HOW TO READ A RESEARCH PAPER
    • HOW TO WRITE A RESEARCH PAPER
  • Workshops
    • Iowa State EEG Workshop 2018
  • Python
    • The Basics >
      • Setting Up Python
      • Hello, world!
      • Basic Math & Using Import
      • Variables
      • Matrices
      • Scripts
      • User Input
      • For Loops