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The computational study of motor control is fundamentally con-
cerned with the relationship between sensory signals and motor
commands. The transformation from motor commands to their
sensory consequences is governed by the physics of the environ-
ment, the musculoskeletal system and sensory receptors. The
transformation from sensory signals to motor commands is
determined by processes within the central nervous system
(CNS). Much of the complexity of our behavior arises as a simple
coupling of these two transformations.

Although the CNS is not required to represent the motor-to-
sensory transformation, as this is implemented by the physical
world, exciting computational and experimental developments
are arising from the realization that the CNS internally repre-
sents this transformation. Systems that model aspects of this
transformation are known as ‘forward internal models’ because
they model the causal relationship between actions and their con-
sequences. The primary role of these models is to predict the
behavior of the body and world, so we use the terms ‘predictors’
and ‘forward models’ synonymously. Systems that implement
the opposite transformations, from desired consequences to
actions, are known as ‘inverse internal models’. We use the term
‘internal model’ to emphasize that the CNS is modeling the sen-
sorimotor system, and that these are not models of the CNS.

Bellman1 pointed out that when representing such transfor-
mations, the storage and number of calculations required 
increases exponentially with the dimension of the sensory and
motor arrays, a problem he termed “the curse of dimensionality”.
This is vividly illustrated if we consider the 600 or so muscles in
the human body as being, for extreme simplicity, either con-
tracted or relaxed. This leads to 2600 possible motor activations,
more than the number of atoms in the universe. This clearly pro-
hibits a simple look-up table from motor activations to sensory
feedback and vice versa. Fortunately for control, a compact rep-
resentation with far lower dimensionality than the full sensor
and motor array can generally be extracted, known as the ‘state’
of the system. When taken together with fixed parameters of the
system and the equations governing the physics, the state con-
tains all the relevant time-varying information needed to predict
or control the future of the system. For example, knowing the
current position, velocity and spin of a thrown ball, that is the
ball’s state, allows predictions of its future path without the need
to know the configurations of all the atoms in the ball.

In general, the state, for example the set of activations of
groups of muscles (synergies) or the position and velocity of the
hand, changes rapidly and continuously within a movement.
However, other key parameters change discretely, like the identity
of a manipulated object, or on a slower time-scale, like the mass
of the limb. We refer to such discrete or slowly changing para-
meters as the ‘context’ of the movement. Our ability to generate
accurate and appropriate motor behavior relies on tailoring our
motor commands to the prevailing movement context.

The sensorimotor loop (Fig. 1) can be divided into three
stages, which govern the overall behavior of the sensorimotor
system. The first stage specifies the motor command generated
by the CNS given the state and a particular task (Fig. 1, top). The
second stage determines how the state changes given the motor
command (Fig. 1, right). The third closes the loop by specifying
the sensory feedback given this new state (Fig. 1, left). These three
stages are represented in the CNS as internal models, being the
inverse model, forward dynamic model and forward sensory
model respectively.

We will show how all the main themes of computational
motor control, such as planning, control and learning, arise from
considering how tasks determine behavior, motor commands are
generated, states and contexts are estimated and predicted, and
internal models are represented and learned. With the advent of
virtual reality technologies and novel robotic interfaces, it has
become possible, for the first time, to create sophisticated com-
puter-controlled environments. Having such control over the
physics of the world with which subjects interact has allowed
detailed tests of computational models of planning, control and
learning (for example, refs. 2–6).

Task: motor planning
Everyday tasks are generally specified at a high, often symbolic
level, such as taking a drink of water from a glass. However, the
motor system must eventually work at a detailed level, specify-
ing muscle activations leading to joint rotations and the path of
the hand in space. There is clearly a gap between the high-level
task and low-level control. Indeed, almost any task can in prin-
ciple be achieved in infinitely many different ways. Consider, for
example, the number of ways, some sensible and some silly, in
which you can bring a glass of water to your lips. Given all these
possibilities, it is surprising that almost every study of how the
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motor system solves a given task shows
highly stereotyped movement patterns,
both between repetitions of a task and
between individuals on the same task. In
the same way that being able to rank dif-
ferent routes from New York to London
allows us to select from those available,
having a criterion with which to evaluate
possible movements for a task would allow
the CNS to select the best. Optimal control
is an elegant framework for dealing with
just such a selection problem and can,
therefore, translate from high-level tasks
into detailed motor programs. Specifical-
ly, a cost is specified as some function of
the movement and task, and the movement
with the lowest cost is executed. The chal-
lenge has been to try to reverse-engineer the cost function, that
is, what is being optimized, from observed movement patterns
and perturbation studies.

Optimal control models of movement have been proposed
based on maximizing smoothness of the hand trajectory7 and of
the torque commands8. Although these models successfully repro-
duce a range of empirical data, it is unclear why smoothness is
important, and how it is measured by the CNS. Moreover, these
models are limited to a single motor system such as the arm.
Recently, a model has been proposed which provides a unifying
cost for goal-directed eye and arm movements9. This model
assumes that there is noise in the motor command and that the
amount of noise scales with the motor command’s magnitude. In
the presence of such noise, the same sequence of intended motor
commands if repeated many times will lead to a probability dis-
tribution over movements. Aspects of this distribution, such as
the spread of positions or velocities of the hand at the end of the
movement, can be controlled by modifying the sequence of motor
commands. In this model, the task specifies how aspects of the
distribution are penalized, and this forms the cost. For example, in
a simple aiming movement, the task is to minimize the final error,
as measured by the variance about the target. Figure 2 shows the
consequences of two possible sequences of motor commands, one
of which leads to higher endpoint variability (blue ellipsoid) than
the other. The aim of the optimal control strategy is to minimize
the volume of the ellipsoid, thereby being as accurate as possible.
This model accurately predicts the trajectories of both saccadic
eye movements and arm movements. Non-smooth movements
require large motor commands, which generate increased noise;
smoothness thereby leads to accuracy but is not a goal in its own
right. The cost, movement error, is behaviorally relevant and sim-
ple for the CNS to measure. Climbing fibers, which may act as a
training signal to the cerebellum, code for such reaching errors at
the end of a movement10. Although the cost function specifies the
optimal movement, how we approach this optimum for novel,
unrehearsed movements is an open question.

Motor command: control
Several models of how motor commands are generated have been
proposed. One of the first proposals was that the CNS specifies

spatial parameters and relies on the spring-like properties of mus-
cles and reflex loops to move the limb11–13. For example, in one
form of this model, a set of muscle activations defines a stable
equilibrium position of the hand in space. Movement is achieved
via a succession of such equilibrium positions along a desired
trajectory14. This model uses muscle and spinal cord properties
as a feedback controller to pull the hand along the desired tra-
jectory. Because of the system dynamics, the actual positions will
not follow exactly the desired trajectory unless the stiffness (the
force generated per unit displacement from equilibrium) of the
muscle and reflex loops is high. An alternative proposal is that
an inverse model is constructed to map the desired state at each
point along the trajectory into motor commands15. These two
approaches can be contrasted by considering the problem of
moving a ball around a circular path by specifying the forces act-
ing on it. For inverse model control, the equations of motion are
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Fig. 1. The sensorimotor loop, showing motor
command generation (top), state transition
(right) and sensory feedback generation (left).
Center, internal representation of these stages
within the CNS.
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Fig. 2. Task optimization in the presence of signal-dependent noise
(TOPS) model of Harris and Wolpert9. Average paths and expected final
position distributions for two different motor sequences. Although the
sequences bring the hand on average to the same final position, they
have different final distributions because of noise in the motor com-
mands. Movement A has smaller spread than B and therefore has lower
cost than B. In general, the task determines the desired statistics of the
movement, and the trajectory that optimizes the statistics is selected.
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solved and the forces on the ball applied to generate the desired
acceleration. For equilibrium point control, the ball is attached
by a spring to a control point, which is simply moved around the
circular path, with the ball following along behind. For the ball to
travel along the circle, the stiffness of the spring, representing the
muscles and reflex loops, must be high. If the stiffness is low, for
example if a slinky were used, the path of the controlled point
and ball would be very different. In contrast, with an inverse
model, the arm can be controlled with low stiffness. Currently
there is debate as to the gain (as measured by stiffness of the limb
during movement), with one study5 suggesting that the stiffness
is low. With low stiffness, equilibrium point control would require
a complex equilibrium trajectory to achieve the simple move-
ments observed, thereby making it a less attractive computational
solution.

The final common pathway of the motor command is formed
by about 200,000 alpha motor neurons. The question arises as to
what the the coding of this motor output is and how high-level
objectives are represented in the motor command. In spinal cord,
experiments support the computationally attractive idea that
control is achieved by activating a few motor primitives or basis
functions16. The idea is to simplify control by combining a small
number of primitives, such as patterns of muscle activations, in
different proportions rather than individually controlling each
muscle. Such control reduces the effective dimensionality of the
motor output. Spinal stimulation studies in frog suggest that the
spinal cord may control movement through primitives that cor-
respond to force fields in extrinsic space and can be combined
to provide a ‘grammar’ with which to construct complex move-
ments17,18. Each force field primitive can be thought of as a dif-
ferently shaped valley. Just as water flows down along some path

to the lowest point in the landscape, the arm
will move in the force field to an equilibri-
um point. By summing valleys together,
new landscapes, that is behaviors, can be
constructed.

At a higher level, in motor cortex, there
has been considerable debate about what is
coded within individual neurons and pop-

ulations19–23. Proposals include the direction of movement, veloc-
ity, acceleration, posture and joint torques. A recent model24

proposes that the cortex activates muscle groups and that many
of these conflicting views can be resolved by considering the rela-
tionship among cortical activity, muscle filtering properties and
movement kinematics. Given the kinematics of observed move-
ments, the model shows that motor cortical neurons would be
expected to encode all of the above movement properties.

State: estimation and prediction
To model any of the three stages of the sensorimotor loop (Fig. 1),
the CNS needs to know the current state, but it faces two prob-
lems. First, the transduction and transport of sensory signals to
the CNS involve considerable delays. Second, the CNS must esti-
mate the system’s state from sensory signals that may be conta-
minated by noise and may only provide partial information about
the state. For example, consider a tennis ball we have just hit. If we
simply used the ball’s retinal location to estimate its position, our
estimate would be delayed by around 100 ms. A better estimate
can be made by predicting where the ball actually is now using a
forward model. Second, the ball’s spin cannot be directly
observed, but it can be estimated using sensory information inte-
grated over time, that is the ball’s seen path. This estimate can be
improved by knowing how the ball was hit, that is the motor
command, in conjunction with an internal forward model of the
ball’s dynamics. This combination, using sensory feedback and
forward models to estimate the current state, is known as an
‘observer’, an example of which is the Kalman filter25 (Fig. 3).
The major objectives of the observer are to compensate for sen-
sorimotor delays and to reduce the uncertainty in the state esti-
mate that arises because of noise inherent in both sensory and
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Fig. 3. A schematic of one step of a Kalman filter
model recursively estimating the finger’s location
during a movement. The current state is con-
structed from the previous state estimate (top
left), which represents the distribution of possi-
ble finger positions, shown as a cloud of uncer-
tainty (blue). A copy of the motor command,
that is, an efference copy, and a model of the
dynamics allow the current state distribution to
be predicted from this previous state. In general,
the uncertainty is increased (yellow cloud). This
new estimate is then refined by using it to predict
the current sensory feedback. The error
between this prediction and the actual sensory
feedback is used to correct the current estimate.
The Kalman gain changes this sensory error into
state errors and also determines the relative
reliance placed on the efference copy and sen-
sory feedback. The final state estimate (top right)
now has a reduced uncertainty (blue cloud).
Sensory signals, red arrows; motor commands,
yellow arrows; state signals, blue arrows.
Although delays in sensory feedback must be
compensated, they have been omitted from the
diagram for clarity.
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motor signals. For a linear system, the Kalman filter
is the optimal observer in that it estimates the state
with the least squared error. Such a model has been
supported by empirical studies examining estimation
of hand position3,26, posture27 and head orientation28.
Damage to parietal cortex can lead to an inability to maintain
such state estimates29.

Using the observer framework, it is a simple computational
step from estimating the current state to predicting future states
and sensory feedback. Such predictions have many potential ben-
efits30. State prediction, by estimating the outcome of an action
before sensory feedback is available, can reduce the effect of feed-
back delays in sensorimotor loops. Such a system is thought to
underlie skilled manipulation. For example, when an object held
in the hand is accelerated, the fingers tighten their grip in antic-
ipation to prevent the object slipping, a process that relies on pre-
diction (for review, see ref. 31). State prediction can also be used
in mental simulation of intended movements. Damage to pari-
etal cortex can lead to an inability to mentally simulate move-
ments with the affected hand32.

Sensory prediction can be derived from the state prediction
and used to cancel the sensory effects of movement, that is, reaf-
ference. By using such a system, it is possible to cancel out the
effects of sensory changes induced by self-motion, thereby enhanc-
ing more relevant sensory information. Such a mechanism has
been extensively studied in the electric fish, where it relies on a
cerebellum-like structure (for example, ref. 33). In primates, neu-
rophysiological studies34 show predictive updating in parietal cor-
tex, anticipating the retinal consequences of an eye movement. In
man, predictive mechanisms are believed to underlie the obser-
vation that the same tactile stimulus, such as a tickle, is felt less
intensely when it is self-applied. The reduced intensity of self-
applied tactile stimuli critically depends upon on the precise spa-
tiotemporal alignment between the predicted and actual sensory
consequences of the movement35. Similarly, sensory predictions
provide a mechanism to determine whether a movement is self-
produced, and hence predictable, or produced externally. A failure
in this mechanism is proposed to underlie delusions of control,
in which it appears to patients that their bodies are being moved
by forces other than their own36. Interestingly, damage to the left
parietal cortex can lead to a relative inability to determine whether
viewed movements are one’s own or not37.

Context: estimation
When we interact with objects with different physical character-
istics, the context of our movement changes in a discrete 

manner. Just as it is essential for the motor system to estimate
the state, it must also estimate the changing context. One pow-
erful formalism is the Bayesian approach, which can be used to
estimate the probability of each context. The probability can be
factored into two terms, the likelihood and the prior. The likeli-
hood of a particular context is the probability of the current sen-
sory feedback given that context. To estimate this likelihood, a
sensory forward model of that context is used to predict the sen-
sory feedback from the movement. The discrepancy between the
predicted and actual sensory feedback is inversely related to the
likelihood: the smaller the prediction error, the more likely the
context. These computations can be carried out by a modular
neural architecture in which multiple predictive models operate
in parallel 38. Each is tuned to one context and estimates the rel-
ative likelihood of its context. This array of models therefore act
as a set of hypothesis testers. The prior contains information
about the structured way contexts change over time and how like-
ly a context is before a movement. The likelihood and the prior
can be optimally combined using Bayes’ rule, which takes the
product of these two probabilities and normalizes over all pos-
sible contexts, to generate a probability for each context. Figure 4
shows an example of picking up what appears to be a full milk
carton, which is in reality empty. The predictive models correct
on-line for erroneous priors that initially weighted the output of
the controller for a full carton more than that for an empty car-
ton. Bayes’ rule allows a quick correction to the appropriate con-
trol even though the initial strategy was incorrect. This example
has two modules representing two contexts. However, the 
modular architecture can, in principle, scale to thousands of
modules, that is contexts. Although separate architectures have
been proposed for state and context estimation (Figs. 3 and 4),
they both can be considered as on-line ways of doing Bayesian
inference in an uncertain environment.

This interpretation of the processes necessary for context
estimation is consistent with recent neurophysiological studies
in primates, showing that the CNS both models the expected
sensory feedback for a particular context39, and represents the
likelihood of the sensory feedback given the context40. In an
elegant example of context estimation6, when subjects make a
reaching movement while rotating their torso, they compensate
for the velocity-dependent Coriolis forces that arise from the

Fig. 4. A schematic of context estimation with just two
contexts, that a milk carton is empty or full. Initially sensory
information from vision is used to set the prior probabilities
of the two possible contexts and, in this case, the carton
appears more likely to be full. When the motor commands
appropriate for a full carton are generated, an efference
copy of the motor command is used to simulate the sen-
sory consequences under the two possible contexts. The
predictions based on an empty carton suggest a large
amount of movement compared to the full-carton context.
These predictions are compared with actual feedback.
Because as the carton is, in fact, empty, the sensory feed-
back matches the predictions of the empty-carton context.
This leads to a high likelihood for the empty carton and a
low likelihood of the full carton. The likelihoods are com-
bined with the priors using Bayes’ rule to generate the final
(posterior) probability of each context.
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rotation and act on the arm. When subjects experience illusory
self-rotation induced by a large moving visual image, they make
movements as though they expect, based on the visual priors,
the context of the Coriolis force. This leads to misreaching,
which is reduced over subsequent movements as the sensory
consequences of the expected Coriolis force are not experi-
enced.

Internal models: learning
Internal models, both forward and inverse, capture information
about the properties of the sensorimotor system. These proper-
ties are not static but change throughout life, both on a short
time-scale, due to interactions with the environment, and on a
longer time-scale, due to growth. Internal models must therefore
be adaptable to changes in the sensorimotor system’s properties.
The environment readily provides an appropriate training sig-
nal to learn predictors of sensory feedback. The difference
between the predicted and actual sensory feedback can be used
as an error signal to update a predictive model. The neural mech-
anisms that lead to such predictive learning in the cerebellum-
like structure of electric fish are partially understood33.

Acquiring an inverse internal model through motor learning

is generally a difficult task. This is because the appropriate
training signal, the motor command error, is not directly avail-
able. When we fail to bowl a googly, no one tells us how our
muscle activations should change to achieve this cricketing feat.
Instead we receive error signals in sensory coordinates, and
these sensory errors need to be converted into motor errors
before they can be used to train an inverse model. The feed-
back-error learning model15,41 provides an ingenious solution
to this problem (Fig. 5). A hard-wired, but not perfect, feed-
back controller computes a motor command based on the dis-
crepancy between desired and estimated states. The motor
command is the sum of the feedback controller motor com-
mand and the output of an adaptive inverse model. The ration-
ale behind this model is that if the feedback controller ends up
producing no motor command, then there must be no discrep-
ancy between desired and estimated state, that is, no error in
performance, and the inverse model is performing perfectly.
Thus the output of the feedback controller can be regarded as
the error signal, and used to train the inverse model, an
approach that is highly successful. Neurophysiological evi-
dence42 supports this learning mechanism within the cerebel-
lum for the simple reflex eye movement called the ocular
following response, suggesting that the cerebellum constructs
an inverse model of the eye’s dynamics.

Recent work on dynamic learning has focused on the repre-
sentation of the inverse model. If subjects make point-to-point
movements in a force field generated either by a robot attached
to their hand2 or by a rotating room43, over time they adapt
and are able to move naturally in the presence of the field.
Several theoretical questions have been addressed using this
protocol. The learning of dynamics generalizes in joint-based
coordinates2, learning depends on the states experienced but
not on their temporal order44, state-dependent fields are
learned more efficiently than temporally changing fields45, and
both forward and inverse models are simultaneously adapted
during learning46.

Focus has begun to shift away from examining learning of a
single context to consider how we are able to learn a variety of
contexts. One architecture that can learn to act in multiple con-
texts is the modular selection and identification for control
(MOSAIC) model, which contains multiple predictor–
controller pairs38. As described above, the predictors provide
the probability of each context, and these probabilities are used
to weight the outputs of a set of corresponding controllers
tuned to each context. This system can simultaneously learn the
multiple predictors and controllers necessary and how to select
the controller appropriate for a given context.

Our understanding of the mechanisms of motor learning
has gained from examining how learning one context can
interfere with learning others. When subjects try to learn two
different dynamics47,48 or visuomotor rearrangements49, inter-
ference occurs when they are presented in quick succession,
but not when they are separated by several hours. This suggests
that motor learning undergoes a period of consolidation, dur-
ing which time the motor memory is fragile to being disrupted.
Interestingly, visuomotor and dynamic perturbations do not
interfere and can be learned as fast together as they can indi-
vidually49.

Many situations that we encounter are derived from combi-
nations of previously experienced contexts, such as novel 
conjoints of manipulated objects and environments. By modu-
lating the contribution of the outputs of the individual con-
trollers to the final motor command, an enormous repertoire of
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Fig. 5. A schematic of feedback-error learning. The aim is to learn an
inverse model that can generate motor commands given a series of
desired states. A hard-wired and low-gain feedback controller is used to
correct for errors between desired and estimated states. This generates
a feedback motor command that is added to the feedforward motor
command generated by the inverse model. If the feedback motor com-
mand goes to zero, then the state error, in general, will also be zero.
Therefore the feedback motor command is a measure of the error of
the inverse model and is used as the error signal to train it.
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behaviors can be generated. Therefore, multiple internal mod-
els can be regarded conceptually as motor primitives, the build-
ing blocks used to construct intricate motor behaviors with an
enormous vocabulary. After learning two different contexts, the
CNS can appropriately mix the outputs both within the visuo-
motor domain4 and across the visuomotor and dynamic
domains50.

Unifying principles
Computational approaches have started to provide unifying prin-
ciples for motor control. Several common themes have already
emerged. First, internal models are fundamental for under-
standing a range of processes such as state estimation, predic-
tion, context estimation, control and learning. Second, optimality
underlies many theories of movement planning, control and esti-
mation and can account for a wide range of experimental find-
ings. Third, the motor system has to cope with uncertainty about
the world and noise in its sensory inputs and motor commands,
and the Bayesian approach provides a powerful framework for
optimal estimation in the face of such uncertainty. We believe
that these and other unifying principles will be found to under-
lie the control of motor systems as diverse as the eye, arm, speech,
posture, balance and locomotion.
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