% clear the memory clear; % close all open files and windows close all; % clear the command console clc; % loop through and load the participants for i = 1:10 % specify a file name fileName = ['Subject Wavelet ' num2str(i) '.mat']; % load the file load(fileName); % put the data into a variable called wavData wavData(:,:,:,:,i) = WAV.data; end % now with wavelets to avoid edge artifacts we are going to trim the first % 100 ms and the last 100 ms wavData(:,:,1:50,:,:) = []; wavData(:,:,end-49:end,:,:) = []; % take the grand average grandWAV = mean(wavData,5); % plot the Wavelets for both conditions side by size for channel 52 condition1WaveletData = squeeze(grandWAV(52,:,:,1)); condition2WaveletData = squeeze(grandWAV(52,:,:,2)); % now the plotting is more complex as we are working with an image with 3D % data subplot(1,2,1); imagesc(condition1WaveletData); title('Channel Pz: Condition One'); xlabel('Samples'); ylabel('Frequency (Hz)'); set(gca,'YDir','normal'); subplot(1,2,2); imagesc(condition2WaveletData); title('Channel Pz: Condition Two'); xlabel('Samples'); set(gca,'YDir','normal'); ylabel('Frequency (Hz)'); % compute the difference scores differenceData = squeeze(wavData(52,:,:,1,:) - wavData(52,:,:,2,:)); % and generate a statistical map, you can just alpha using the Bonferroni % rules. alpha = 0.05; statMap = doWAVStats(differenceData,alpha); % and lets plot the result figure; imagesc(statMap); title('Channel Pz: Difference'); xlabel('Samples'); ylabel('Frequency (Hz)'); set(gca,'YDir','normal');