The Neuroscience of Learning

Dr. Olav E. Krigolson
Associate Director
Centre for Biomedical Research
University of Victoria

Key Information

krigolson@uvic.ca

www.krigolsonteaching.com

Course Outline

Week One: How We Learn

Topic 1. Repetition and Hebbian Learning Topic 2. Feedback and Types of Learning

Week Two; How We Learn

Topic 1. Long Term Potentiation and Synaptic Plasticity

Topic 2. Dopamine and the Basal Ganglia

Week Three: What We Learn Topic 1. Explicit Memory Topic 2. Implicit Memory

Week Four: What We Learn

Topic 1. Neural Basis of Memory

Topic 2. Internal Models

Week Five: How We Can Improve Learning

Topic 1. Distributed Practice, Random Practice, Variable Practice

Topic 2. Specificity of Practice, Part-Whole Practice, Mental Imagery

Week Six: How We Can Improve Learning: March 13th

Topic 1. Sleep, Diet, and Exercise Topic 2. Age, Learning Disorders

How do we learn?

REPETITION and FEEDBACK

C7B12F10.eps

Before LTP

After LTP

Copyright © 2008 Pearson Allyn & Bacon Inc.

What do we learn?

EXPLICIT and IMPLICIT MEMORIES

A Encoding memory

B Retrieving memory

Procedural Memory

How Can We Improve Learning?

The Design of Learning Environments

Science NAAAS

Home	News	Journals	Topics	Careers			
Latest News	ScienceInsider	ScienceShots	Sifter	From the Magazine	About News	Quizzes	

Blah? Traditional lecture classes have higher undergraduate failure rates than those using active learning techniques, new research finds.

Lectures aren't just boring, they're Ineffective, too, study finds

By Aleszu Bajak | May. 12, 2014, 3:00 PM

Figure 11.3. Distribution-of-practice effects on a pursuit rotor task in acquisition and retention. Trials were 30 s in duration, and separate groups received either 0, 15, 30, 45, or 60 s between practice trials. Retention trials were done with 0 s rest between trials.

Reprinted from Bourne and Archer, 1956.

	MONDAY	TUESDAY	WEDNESDAY	THURSDAY
2:00 PM				
2:30 PM				
3:00 PM				
3:30 PM				
4:00 PM	Practice	Practice	Practice	Practice
4:30 PM				
5:00 PM				
5:30 PM				

Tenet One

A distributed practice schedule does not mean less overall time. The total amount of practice time should be the same as with a massed schedule.

	MONDAY	TUESDAY	WEDNESDAY	THURSDAY
2:00 PM				
2:30 PM				
3:00 PM				
3:30 PM				
4:00 PM	Practice	Practice	Practice	Practice
4:30 PM	(Offense)	(Defense)	(Offense)	(Defense)
5:00 PM				

5:30 PM

Tenet Two

Distributed practice benefits are not physiological – the learner simply needs time away from the practice of a given skill for consolidation to occur. Think of it as "neural rest".

10 mins	10 mins	
10 mins	10 mins	
10 mins	10 mins	
•	10 mins	

10 mins

Tenet Three

The length of distributed practice is a continuum. One 30 minute drill could be spilt in 3 x 10 minutes, 6 x 5 minutes, or even 15 x 2 minutes.

Tenet Four

The rest period for distributed practice can contain practice of another skill, but only if the content of the two skills do not overlap.

Evidence for Massed vs Distributed Practice Effects

Balance Tasks

Best performance on a Balance Board for Group that Practiced 57 % of 30 minute block (vs 20, 30, 40, 57, 77 %)

Graw (1968)

Postal Workers

12 weeks x 1 hour more effective than 3 weeks x 2 per day x 2 hour practice

Baddeley and Longman (1978)

What is the optimal number of practices per week and optimal practice length?

Massed Distributed

In Class Activity: Apply the principles of Distributed Practice to this Class

Random vs Blocked Practice

Α	
Α	
Α	
Α	
В	
В	
В	
В	
С	
B B C C	
С	
С	

B C A B C
C A B
В П
В П
A
В С
С
Α
В
С

Blocked Random

Tenet One

The total number of repetitions of a skill within a practice session must remain the same – random practice simply manipulates the order of the skills within a drill.

Tenet Two

Random practice is a continuum – in a ideal random practice situation a skill is never practiced more than once in a row.

Random Practice

Generally poorer performance during acquisition

BUT

Greater RETENTION in TRANSFER i.e. LEARNING

Shea & Morgan (1979)

Task: Arm Movement Pattern

Blocked: task A then task B then task C

Random: random schedule involving A, B, and C

<u>Contextual Interference</u> (Shea and Morgan, 1979)

Figure 2.2 Results of the Shea and Morgan (1979) experiment.

Pluta & Krigolson (In Prep)

Is random practice always better?

Tenet Three

There is evidence to suggest that early in learning is it better to use a BLOCKED practice schedule.

In Class Activity:
Apply the principles of Random
Practice to something you have
learned

Constant vs Variable Practice

10 trials

1 trial

Constant Practice

parameters do not change from trial to trial

Variable Practice

parameters change from trial to trial

Schema Theory

KEY POINT

Variable practice only works if the parameters of the motor program are not exceeded

Constant Practice Early, Variable Practice Later...

Practice Design: (Lai Qin, 1999)

Constant 1st Half → Relative Timing

Variable 2nd Half → Parameter Learning

Fig. 4. (A) M1 and PMA (PMC and SMA) localization; (B) DLPFC; (C) PPC. (Image adapted from BrainVoyager Brain Tutor software).

In Class Activity:
Apply the principles of Variable
Practice to something you have
learned