
Chapter 1

Introduction

The idea that we learn by interacting with our environment is probably the first to occur to us when
we think about the nature of learning. When an infant plays, waves its arms, or looks about, it has no
explicit teacher, but it does have a direct sensorimotor connection to its environment. Exercising this
connection produces a wealth of information about cause and e↵ect, about the consequences of actions,
and about what to do in order to achieve goals. Throughout our lives, such interactions are undoubtedly
a major source of knowledge about our environment and ourselves. Whether we are learning to drive a
car or to hold a conversation, we are acutely aware of how our environment responds to what we do, and
we seek to influence what happens through our behavior. Learning from interaction is a foundational
idea underlying nearly all theories of learning and intelligence.

In this book we explore a computational approach to learning from interaction. Rather than directly
theorizing about how people or animals learn, we explore idealized learning situations and evaluate the
e↵ectiveness of various learning methods. That is, we adopt the perspective of an artificial intelligence
researcher or engineer. We explore designs for machines that are e↵ective in solving learning problems of
scientific or economic interest, evaluating the designs through mathematical analysis or computational
experiments. The approach we explore, called reinforcement learning , is much more focused on goal-
directed learning from interaction than are other approaches to machine learning.

1.1 Reinforcement Learning

Reinforcement learning is learning what to do—how to map situations to actions—so as to maximize
a numerical reward signal. The learner is not told which actions to take, but instead must discover
which actions yield the most reward by trying them. In the most interesting and challenging cases,
actions may a↵ect not only the immediate reward but also the next situation and, through that, all
subsequent rewards. These two characteristics—trial-and-error search and delayed reward—are the two
most important distinguishing features of reinforcement learning.

Reinforcement learning, like many topics whose names end with “ing,” such as machine learning
and mountaineering, is simultaneously a problem, a class of solution methods that work well on the
problem, and the field that studies this problems and its solution methods. It is convenient to use a
single name for all three things, but at the same time essential to keep the three conceptually separate.
In particular, the distinction between problems and solution methods is very important in reinforcement
learning; failing to make this distinction is the source of a many confusions.

We formalize the problem of reinforcement learning using ideas from dynamical systems theory,
specifically, as the optimal control of incompletely-known Markov decision processes. The details of this

1



2 CHAPTER 1. INTRODUCTION

formalization must wait until Chapter 3, but the basic idea is simply to capture the most important
aspects of the real problem facing a learning agent interacting over time with its environment to achieve
a goal. A learning agent must be able to sense the state of its environment to some extent and must be
able to take actions that a↵ect the state. The agent also must have a goal or goals relating to the state of
the environment. Markov decision processes are intended to include just these three aspects—sensation,
action, and goal—in their simplest possible forms without trivializing any of them. Any method that
is well suited to solving such problems we consider to be a reinforcement learning method.

Reinforcement learning is di↵erent from supervised learning, the kind of learning studied in most
current research in the field of machine learning. Supervised learning is learning from a training set
of labeled examples provided by a knowledgable external supervisor. Each example is a description of
a situation together with a specification—the label—of the correct action the system should take to
that situation, which is often to identify a category to which the situation belongs. The object of this
kind of learning is for the system to extrapolate, or generalize, its responses so that it acts correctly
in situations not present in the training set. This is an important kind of learning, but alone it is
not adequate for learning from interaction. In interactive problems it is often impractical to obtain
examples of desired behavior that are both correct and representative of all the situations in which the
agent has to act. In uncharted territory—where one would expect learning to be most beneficial—an
agent must be able to learn from its own experience.

Reinforcement learning is also di↵erent from what machine learning researchers call unsupervised
learning, which is typically about finding structure hidden in collections of unlabeled data. The terms
supervised learning and unsupervised learning would seem to exhaustively classify machine learning
paradigms, but they do not. Although one might be tempted to think of reinforcement learning as a
kind of unsupervised learning because it does not rely on examples of correct behavior, reinforcement
learning is trying to maximize a reward signal instead of trying to find hidden structure. Uncovering
structure in an agent’s experience can certainly be useful in reinforcement learning, but by itself does
not address the reinforcement learning problem of maximizing a reward signal. We therefore consider
reinforcement learning to be a third machine learning paradigm, alongside supervised learning and
unsupervised learning and perhaps other paradigms as well.

One of the challenges that arise in reinforcement learning, and not in other kinds of learning, is the
trade-o↵ between exploration and exploitation. To obtain a lot of reward, a reinforcement learning
agent must prefer actions that it has tried in the past and found to be e↵ective in producing reward.
But to discover such actions, it has to try actions that it has not selected before. The agent has to
exploit what it has already experienced in order to obtain reward, but it also has to explore in order to
make better action selections in the future. The dilemma is that neither exploration nor exploitation
can be pursued exclusively without failing at the task. The agent must try a variety of actions and
progressively favor those that appear to be best. On a stochastic task, each action must be tried many
times to gain a reliable estimate of its expected reward. The exploration–exploitation dilemma has been
intensively studied by mathematicians for many decades, yet remains unresolved. For now, we simply
note that the entire issue of balancing exploration and exploitation does not even arise in supervised
and unsupervised learning, at least in their purest forms.

Another key feature of reinforcement learning is that it explicitly considers the whole problem of a
goal-directed agent interacting with an uncertain environment. This is in contrast to many approaches
that consider subproblems without addressing how they might fit into a larger picture. For example, we
have mentioned that much of machine learning research is concerned with supervised learning without
explicitly specifying how such an ability would finally be useful. Other researchers have developed
theories of planning with general goals, but without considering planning’s role in real-time decision
making, or the question of where the predictive models necessary for planning would come from. Al-
though these approaches have yielded many useful results, their focus on isolated subproblems is a
significant limitation.



1.1. REINFORCEMENT LEARNING 3

Reinforcement learning takes the opposite tack, starting with a complete, interactive, goal-seeking
agent. All reinforcement learning agents have explicit goals, can sense aspects of their environments,
and can choose actions to influence their environments. Moreover, it is usually assumed from the
beginning that the agent has to operate despite significant uncertainty about the environment it faces.
When reinforcement learning involves planning, it has to address the interplay between planning and
real-time action selection, as well as the question of how environment models are acquired and improved.
When reinforcement learning involves supervised learning, it does so for specific reasons that determine
which capabilities are critical and which are not. For learning research to make progress, important
subproblems have to be isolated and studied, but they should be subproblems that play clear roles in
complete, interactive, goal-seeking agents, even if all the details of the complete agent cannot yet be
filled in.

By a complete, interactive, goal-seeking agent we do not always mean something like a complete
organism or robot. These are clearly examples, but a complete, interactive, goal-seeking agent can also
be a component of a larger behaving system. In this case, the agent directly interacts with the rest of
the larger system and indirectly interacts with the larger system’s environment. A simple example is
an agent that monitors the charge level of robot’s battery and sends commands to the robot’s control
architecture. This agent’s environment is the rest of the robot together with the robot’s environment.
One must look beyond the most obvious examples of agents and their environments to appreciate the
generality of the reinforcement learning framework.

One of the most exciting aspects of modern reinforcement learning is its substantive and fruitful
interactions with other engineering and scientific disciplines. Reinforcement learning is part of a decades-
long trend within artificial intelligence and machine learning toward greater integration with statistics,
optimization, and other mathematical subjects. For example, the ability of some reinforcement learning
methods to learn with parameterized approximators addresses the classical “curse of dimensionality” in
operations research and control theory. More distinctively, reinforcement learning has also interacted
strongly with psychology and neuroscience, with substantial benefits going both ways. Of all the forms
of machine learning, reinforcement learning is the closest to the kind of learning that humans and
other animals do, and many of the core algorithms of reinforcement learning were originally inspired by
biological learning systems. Reinforcement learning has also given back, both through a psychological
model of animal learning that better matches some of the empirical data, and through an influential
model of parts of the brain’s reward system. The body of this book develops the ideas of reinforcement
learning that pertain to engineering and artificial intelligence, with connections to psychology and
neuroscience summarized in Chapters 14 and 15.

Finally, reinforcement learning is also part of a larger trend in artificial intelligence back toward
simple general principles. Since the late 1960’s, many artificial intelligence researchers presumed that
there are no general principles to be discovered, that intelligence is instead due to the possession of
a vast number of special purpose tricks, procedures, and heuristics. It was sometimes said that if we
could just get enough relevant facts into a machine, say one million, or one billion, then it would become
intelligent. Methods based on general principles, such as search or learning, were characterized as “weak
methods,” whereas those based on specific knowledge were called “strong methods.” This view is still
common today, but not dominant. From our point of view, it was simply premature: too little e↵ort
had been put into the search for general principles to conclude that there were none. Modern artificial
intelligence now includes much research looking for general principles of learning, search, and decision
making, as well as trying to incorporate vast amounts of domain knowledge. It is not clear how far
back the pendulum will swing, but reinforcement learning research is certainly part of the swing back
toward simpler and fewer general principles of artificial intelligence.



4 CHAPTER 1. INTRODUCTION

1.2 Examples

A good way to understand reinforcement learning is to consider some of the examples and possible
applications that have guided its development.

• A master chess player makes a move. The choice is informed both by planning—anticipating
possible replies and counterreplies—and by immediate, intuitive judgments of the desirability of
particular positions and moves.

• An adaptive controller adjusts parameters of a petroleum refinery’s operation in real time. The
controller optimizes the yield/cost/quality trade-o↵ on the basis of specified marginal costs without
sticking strictly to the set points originally suggested by engineers.

• A gazelle calf struggles to its feet minutes after being born. Half an hour later it is running at 20
miles per hour.

• A mobile robot decides whether it should enter a new room in search of more trash to collect or
start trying to find its way back to its battery recharging station. It makes its decision based
on the current charge level of its battery and how quickly and easily it has been able to find the
recharger in the past.

• Phil prepares his breakfast. Closely examined, even this apparently mundane activity reveals a
complex web of conditional behavior and interlocking goal–subgoal relationships: walking to the
cupboard, opening it, selecting a cereal box, then reaching for, grasping, and retrieving the box.
Other complex, tuned, interactive sequences of behavior are required to obtain a bowl, spoon,
and milk jug. Each step involves a series of eye movements to obtain information and to guide
reaching and locomotion. Rapid judgments are continually made about how to carry the objects
or whether it is better to ferry some of them to the dining table before obtaining others. Each
step is guided by goals, such as grasping a spoon or getting to the refrigerator, and is in service
of other goals, such as having the spoon to eat with once the cereal is prepared and ultimately
obtaining nourishment. Whether he is aware of it or not, Phil is accessing information about the
state of his body that determines his nutritional needs, level of hunger, and food preferences.

These examples share features that are so basic that they are easy to overlook. All involve interaction
between an active decision-making agent and its environment, within which the agent seeks to achieve
a goal despite uncertainty about its environment. The agent’s actions are permitted to a↵ect the future
state of the environment (e.g., the next chess position, the level of reservoirs of the refinery, the robot’s
next location and the future charge level of its battery), thereby a↵ecting the options and opportunities
available to the agent at later times. Correct choice requires taking into account indirect, delayed
consequences of actions, and thus may require foresight or planning.

At the same time, in all these examples the e↵ects of actions cannot be fully predicted; thus the
agent must monitor its environment frequently and react appropriately. For example, Phil must watch
the milk he pours into his cereal bowl to keep it from overflowing. All these examples involve goals
that are explicit in the sense that the agent can judge progress toward its goal based on what it can
sense directly. The chess player knows whether or not he wins, the refinery controller knows how much
petroleum is being produced, the mobile robot knows when its batteries run down, and Phil knows
whether or not he is enjoying his breakfast.

In all of these examples the agent can use its experience to improve its performance over time. The
chess player refines the intuition he uses to evaluate positions, thereby improving his play; the gazelle
calf improves the e�ciency with which it can run; Phil learns to streamline making his breakfast. The
knowledge the agent brings to the task at the start—either from previous experience with related tasks
or built into it by design or evolution—influences what is useful or easy to learn, but interaction with
the environment is essential for adjusting behavior to exploit specific features of the task.



1.3. ELEMENTS OF REINFORCEMENT LEARNING 5

1.3 Elements of Reinforcement Learning

Beyond the agent and the environment, one can identify four main subelements of a reinforcement
learning system: a policy , a reward signal , a value function, and, optionally, a model of the environment.

A policy defines the learning agent’s way of behaving at a given time. Roughly speaking, a policy
is a mapping from perceived states of the environment to actions to be taken when in those states.
It corresponds to what in psychology would be called a set of stimulus–response rules or associations.
In some cases the policy may be a simple function or lookup table, whereas in others it may involve
extensive computation such as a search process. The policy is the core of a reinforcement learning agent
in the sense that it alone is su�cient to determine behavior. In general, policies may be stochastic.

A reward signal defines the goal in a reinforcement learning problem. On each time step, the envi-
ronment sends to the reinforcement learning agent a single number called the reward. The agent’s sole
objective is to maximize the total reward it receives over the long run. The reward signal thus defines
what are the good and bad events for the agent. In a biological system, we might think of rewards as
analogous to the experiences of pleasure or pain. They are the immediate and defining features of the
problem faced by the agent. The reward signal is the primary basis for altering the policy; if an action
selected by the policy is followed by low reward, then the policy may be changed to select some other
action in that situation in the future. In general, reward signals may be stochastic functions of the state
of the environment and the actions taken.

Whereas the reward signal indicates what is good in an immediate sense, a value function specifies
what is good in the long run. Roughly speaking, the value of a state is the total amount of reward an
agent can expect to accumulate over the future, starting from that state. Whereas rewards determine
the immediate, intrinsic desirability of environmental states, values indicate the long-term desirability
of states after taking into account the states that are likely to follow, and the rewards available in those
states. For example, a state might always yield a low immediate reward but still have a high value
because it is regularly followed by other states that yield high rewards. Or the reverse could be true.
To make a human analogy, rewards are somewhat like pleasure (if high) and pain (if low), whereas
values correspond to a more refined and farsighted judgment of how pleased or displeased we are that
our environment is in a particular state. Expressed this way, we hope it is clear that value functions
formalize a basic and familiar idea.

Rewards are in a sense primary, whereas values, as predictions of rewards, are secondary. Without
rewards there could be no values, and the only purpose of estimating values is to achieve more reward.
Nevertheless, it is values with which we are most concerned when making and evaluating decisions.
Action choices are made based on value judgments. We seek actions that bring about states of highest
value, not highest reward, because these actions obtain the greatest amount of reward for us over the
long run. Unfortunately, it is much harder to determine values than it is to determine rewards. Rewards
are basically given directly by the environment, but values must be estimated and re-estimated from the
sequences of observations an agent makes over its entire lifetime. In fact, the most important component
of almost all reinforcement learning algorithms we consider is a method for e�ciently estimating values.
The central role of value estimation is arguably the most important thing we have learned about
reinforcement learning over the last few decades.

The fourth and final element of some reinforcement learning systems is a model of the environment.
This is something that mimics the behavior of the environment, or more generally, that allows inferences
to be made about how the environment will behave. For example, given a state and action, the model
might predict the resultant next state and next reward. Models are used for planning, by which we
mean any way of deciding on a course of action by considering possible future situations before they are
actually experienced. Methods for solving reinforcement learning problems that use models and planning
are called model-based methods, as opposed to simpler model-free methods that are explicitly trial-and-
error learners—viewed as almost the opposite of planning. In Chapter 8 we explore reinforcement



6 CHAPTER 1. INTRODUCTION

learning systems that simultaneously learn by trial and error, learn a model of the environment, and
use the model for planning. Modern reinforcement learning spans the spectrum from low-level, trial-
and-error learning to high-level, deliberative planning.

1.4 Limitations and Scope

From the preceding discussion, it should be clear that reinforcement learning relies heavily on the
concept of state—as input to the policy and value function, and as both input to and output from the
model. Informally, we can think of the state as a signal conveying to the agent some sense of “how the
environment is” at a particular time. The formal definition of state as we use it here is given by the
framework of Markov decision processes presented in Chapter 3. More generally, however, we encourage
the reader to follow the informal meaning and think of the state as whatever information is available
to the agent about its environment. In e↵ect, we assume that the state signal is produced by some
preprocessing system that is nominally part of the agent’s environment. We do not address the issues
of constructing, changing, or learning the state signal in this book. We take this approach not because
we consider state representation to be unimportant, but in order to focus fully on the decision-making
issues. In other words, our main concern is not with designing the state signal, but with deciding what
action to take as a function of whatever state signal is available. (We do touch briefly on state design
and construction in the last chapter in Section 17.3.)

Most of the reinforcement learning methods we consider in this book are structured around estimating
value functions, but it is not strictly necessary to do this to solve reinforcement learning problems.
For example, methods such as genetic algorithms, genetic programming, simulated annealing, and
other optimization methods have been used to approach reinforcement learning problems without ever
appealing to value functions. These methods evaluate the “lifetime” behavior of many non-learning
agents, each using a di↵erent policy for interacting with its environment, and select those that are able
to obtain the most reward. We call these evolutionary methods because their operation is analogous
to the way biological evolution produces organisms with skilled behavior even when they do not learn
during their individual lifetimes. If the space of policies is su�ciently small, or can be structured so
that good policies are common or easy to find—or if a lot of time is available for the search—then
evolutionary methods can be e↵ective. In addition, evolutionary methods have advantages on problems
in which the learning agent cannot sense the complete state of its environment.

Our focus is on reinforcement learning methods that learn while interacting with the environment,
which evolutionary methods do not do. Methods able to take advantage of the details of individual
behavioral interactions can be much more e�cient than evolutionary methods in many cases. Evolu-
tionary methods ignore much of the useful structure of the reinforcement learning problem: they do
not use the fact that the policy they are searching for is a function from states to actions; they do
not notice which states an individual passes through during its lifetime, or which actions it selects. In
some cases this information can be misleading (e.g., when states are misperceived), but more often it
should enable more e�cient search. Although evolution and learning share many features and naturally
work together, we do not consider evolutionary methods by themselves to be especially well suited to
reinforcement learning problems and, accordingly, we do not cover them in this book.

However, we do include some methods that, like evolutionary methods, do not appeal to value
functions. These methods search in spaces of policies defined by a collection of numerical parameters.
They estimate the directions the parameters should be adjusted in order to most rapidly improve
a policy’s performance. Unlike evolutionary methods, however, they produce these estimates while
the agent is interacting with its environment and so can take advantage of the details of individual
behavioral interactions. Methods like this have proven useful in many problems, and some of the
simplest reinforcement learning methods fall into this category (see Chapter 13). In the end, however,
the best methods of this type tend to include value functions in some form.



1.5. AN EXTENDED EXAMPLE: TIC-TAC-TOE 7

1.5 An Extended Example: Tic-Tac-Toe

To illustrate the general idea of reinforcement learning and contrast it with other approaches, we next
consider a single example in more detail.

X

X

X

O O

XO

Consider the familiar child’s game of tic-tac-toe. Two players take turns
playing on a three-by-three board. One player plays Xs and the other
Os until one player wins by placing three marks in a row, horizontally,
vertically, or diagonally, as the X player has in the game shown to the
right. If the board fills up with neither player getting three in a row, the
game is a draw. Because a skilled player can play so as never to lose, let us
assume that we are playing against an imperfect player, one whose play is
sometimes incorrect and allows us to win. For the moment, in fact, let us
consider draws and losses to be equally bad for us. How might we construct
a player that will find the imperfections in its opponent’s play and learn to maximize its chances of
winning?

Although this is a simple problem, it cannot readily be solved in a satisfactory way through classical
techniques. For example, the classical “minimax” solution from game theory is not correct here because
it assumes a particular way of playing by the opponent. For example, a minimax player would never
reach a game state from which it could lose, even if in fact it always won from that state because of
incorrect play by the opponent. Classical optimization methods for sequential decision problems, such
as dynamic programming, can compute an optimal solution for any opponent, but require as input a
complete specification of that opponent, including the probabilities with which the opponent makes each
move in each board state. Let us assume that this information is not available a priori for this problem,
as it is not for the vast majority of problems of practical interest. On the other hand, such information
can be estimated from experience, in this case by playing many games against the opponent. About
the best one can do on this problem is first to learn a model of the opponent’s behavior, up to some
level of confidence, and then apply dynamic programming to compute an optimal solution given the
approximate opponent model. In the end, this is not that di↵erent from some of the reinforcement
learning methods we examine later in this book.

An evolutionary method applied to this problem would directly search the space of possible policies
for one with a high probability of winning against the opponent. Here, a policy is a rule that tells
the player what move to make for every state of the game—every possible configuration of Xs and
Os on the three-by-three board. For each policy considered, an estimate of its winning probability
would be obtained by playing some number of games against the opponent. This evaluation would then
direct which policy or policies were considered next. A typical evolutionary method would hill-climb
in policy space, successively generating and evaluating policies in an attempt to obtain incremental
improvements. Or, perhaps, a genetic-style algorithm could be used that would maintain and evaluate
a population of policies. Literally hundreds of di↵erent optimization methods could be applied.

Here is how the tic-tac-toe problem would be approached with a method making use of a value
function. First we set up a table of numbers, one for each possible state of the game. Each number will
be the latest estimate of the probability of our winning from that state. We treat this estimate as the
state’s value, and the whole table is the learned value function. State A has higher value than state B,
or is considered “better” than state B, if the current estimate of the probability of our winning from A
is higher than it is from B. Assuming we always play Xs, then for all states with three Xs in a row the
probability of winning is 1, because we have already won. Similarly, for all states with three Os in a
row, or that are “filled up,” the correct probability is 0, as we cannot win from them. We set the initial
values of all the other states to 0.5, representing a guess that we have a 50% chance of winning.

We play many games against the opponent. To select our moves we examine the states that would
result from each of our possible moves (one for each blank space on the board) and look up their current



8 CHAPTER 1. INTRODUCTION

values in the table. Most of the time we move greedily, selecting the move that leads to the state with
greatest value, that is, with the highest estimated probability of winning. Occasionally, however, we
select randomly from among the other moves instead. These are called exploratory moves because
they cause us to experience states that we might otherwise never see. A sequence of moves made and
considered during a game can be diagrammed as in Figure 1.1.

..

•

our move{
opponent's move{

our move{

starting position

•

•

•

a

b

c*

d

ee*

opponent's move{

c

•f

•g*g

opponent's move{
our move{

.

•

Figure 1.1: A sequence of tic-tac-toe moves. The solid lines represent the moves taken during a game; the
dashed lines represent moves that we (our reinforcement learning player) considered but did not make. Our
second move was an exploratory move, meaning that it was taken even though another sibling move, the one
leading to e⇤, was ranked higher. Exploratory moves do not result in any learning, but each of our other moves
does, causing updates as suggested by the curved arrow in which estimated values are moved up the tree from
later nodes to earlier as detailed in the text.

While we are playing, we change the values of the states in which we find ourselves during the game.
We attempt to make them more accurate estimates of the probabilities of winning. To do this, we “back
up” the value of the state after each greedy move to the state before the move, as suggested by the
arrows in Figure 1.1. More precisely, the current value of the earlier state is updated to be closer to
the value of the later state. This can be done by moving the earlier state’s value a fraction of the way
toward the value of the later state. If we let s denote the state before the greedy move, and s0 the state
after the move, then the update to the estimated value of s, denoted V (s), can be written as

V (s) V (s) + ↵
h
V (s0)� V (s)

i
,

where ↵ is a small positive fraction called the step-size parameter, which influences the rate of learning.
This update rule is an example of a temporal-di↵erence learning method, so called because its changes
are based on a di↵erence, V (s0)� V (s), between estimates at two di↵erent times.

The method described above performs quite well on this task. For example, if the step-size param-
eter is reduced properly over time, then this method converges, for any fixed opponent, to the true
probabilities of winning from each state given optimal play by our player. Furthermore, the moves then
taken (except on exploratory moves) are in fact the optimal moves against this (imperfect) opponent.
In other words, the method converges to an optimal policy for playing the game against this opponent.



1.5. AN EXTENDED EXAMPLE: TIC-TAC-TOE 9

If the step-size parameter is not reduced all the way to zero over time, then this player also plays well
against opponents that slowly change their way of playing.

This example illustrates the di↵erences between evolutionary methods and methods that learn value
functions. To evaluate a policy an evolutionary method holds the policy fixed and plays many games
against the opponent, or simulates many games using a model of the opponent. The frequency of wins
gives an unbiased estimate of the probability of winning with that policy, and can be used to direct
the next policy selection. But each policy change is made only after many games, and only the final
outcome of each game is used: what happens during the games is ignored. For example, if the player
wins, then all of its behavior in the game is given credit, independently of how specific moves might have
been critical to the win. Credit is even given to moves that never occurred! Value function methods, in
contrast, allow individual states to be evaluated. In the end, evolutionary and value function methods
both search the space of policies, but learning a value function takes advantage of information available
during the course of play.

This simple example illustrates some of the key features of reinforcement learning methods. First,
there is the emphasis on learning while interacting with an environment, in this case with an opponent
player. Second, there is a clear goal, and correct behavior requires planning or foresight that takes into
account delayed e↵ects of one’s choices. For example, the simple reinforcement learning player would
learn to set up multi-move traps for a shortsighted opponent. It is a striking feature of the reinforcement
learning solution that it can achieve the e↵ects of planning and lookahead without using a model of
the opponent and without conducting an explicit search over possible sequences of future states and
actions.

While this example illustrates some of the key features of reinforcement learning, it is so simple that
it might give the impression that reinforcement learning is more limited than it really is. Although tic-
tac-toe is a two-person game, reinforcement learning also applies in the case in which there is no external
adversary, that is, in the case of a “game against nature.” Reinforcement learning also is not restricted
to problems in which behavior breaks down into separate episodes, like the separate games of tic-tac-toe,
with reward only at the end of each episode. It is just as applicable when behavior continues indefinitely
and when rewards of various magnitudes can be received at any time. Reinforcement learning is also
applicable to problems that do not even break down into discrete time steps, like the plays of tic-tac-
toe. The general principles apply to continuous-time problems as well, although the theory gets more
complicated and we omit it from this introductory treatment.

Tic-tac-toe has a relatively small, finite state set, whereas reinforcement learning can be used when
the state set is very large, or even infinite. For example, Gerry Tesauro (1992, 1995) combined the
algorithm described above with an artificial neural network to learn to play backgammon, which has
approximately 1020 states. With this many states it is impossible ever to experience more than a small
fraction of them. Tesauro’s program learned to play far better than any previous program, and now
plays at the level of the world’s best human players (see Chapter 16). The neural network provides
the program with the ability to generalize from its experience, so that in new states it selects moves
based on information saved from similar states faced in the past, as determined by its network. How
well a reinforcement learning system can work in problems with such large state sets is intimately tied
to how appropriately it can generalize from past experience. It is in this role that we have the greatest
need for supervised learning methods with reinforcement learning. Neural networks and deep learning
(Section 9.6) are not the only, or necessarily the best, way to do this.

In this tic-tac-toe example, learning started with no prior knowledge beyond the rules of the game,
but reinforcement learning by no means entails a tabula rasa view of learning and intelligence. On the
contrary, prior information can be incorporated into reinforcement learning in a variety of ways that
can be critical for e�cient learning. We also had access to the true state in the tic-tac-toe example,
whereas reinforcement learning can also be applied when part of the state is hidden, or when di↵erent
states appear to the learner to be the same.



10 CHAPTER 1. INTRODUCTION

Finally, the tic-tac-toe player was able to look ahead and know the states that would result from each
of its possible moves. To do this, it had to have a model of the game that allowed it to “think about”
how its environment would change in response to moves that it might never make. Many problems
are like this, but in others even a short-term model of the e↵ects of actions is lacking. Reinforcement
learning can be applied in either case. No model is required, but models can easily be used if they are
available or can be learned (Chapter 8).

On the other hand, there are reinforcement learning methods that do not need any kind of environ-
ment model at all. Model-free systems cannot even think about how their environments will change in
response to a single action. The tic-tac-toe player is model-free in this sense with respect to its oppo-
nent: it has no model of its opponent of any kind. Because models have to be reasonably accurate to be
useful, model-free methods can have advantages over more complex methods when the real bottleneck in
solving a problem is the di�culty of constructing a su�ciently accurate environment model. Model-free
methods are also important building blocks for model-based methods. In this book we devote several
chapters to model-free methods before we discuss how they can be used as components of more complex
model-based methods.

Reinforcement learning can be used at both high and low levels in a system. Although the tic-tac-
toe player learned only about the basic moves of the game, nothing prevents reinforcement learning
from working at higher levels where each of the “actions” may itself be the application of a possibly
elaborate problem-solving method. In hierarchical learning systems, reinforcement learning can work
simultaneously on several levels.

Exercise 1.1: Self-Play Suppose, instead of playing against a random opponent, the reinforcement
learning algorithm described above played against itself, with both sides learning. What do you think
would happen in this case? Would it learn a di↵erent policy for selecting moves? ⇤
Exercise 1.2: Symmetries Many tic-tac-toe positions appear di↵erent but are really the same because
of symmetries. How might we amend the learning process described above to take advantage of this?
In what ways would this change improve the learning process? Now think again. Suppose the opponent
did not take advantage of symmetries. In that case, should we? Is it true, then, that symmetrically
equivalent positions should necessarily have the same value? ⇤
Exercise 1.3: Greedy Play Suppose the reinforcement learning player was greedy, that is, it always
played the move that brought it to the position that it rated the best. Might it learn to play better, or
worse, than a nongreedy player? What problems might occur? ⇤
Exercise 1.4: Learning from Exploration Suppose learning updates occurred after all moves, including
exploratory moves. If the step-size parameter is appropriately reduced over time (but not the tendency
to explore), then the state values would converge to a set of probabilities. What are the two sets of
probabilities computed when we do, and when we do not, learn from exploratory moves? Assuming
that we do continue to make exploratory moves, which set of probabilities might be better to learn?
Which would result in more wins? ⇤
Exercise 1.5: Other Improvements Can you think of other ways to improve the reinforcement learning
player? Can you think of any better way to solve the tic-tac-toe problem as posed? ⇤

1.6 Summary

Reinforcement learning is a computational approach to understanding and automating goal-directed
learning and decision making. It is distinguished from other computational approaches by its emphasis
on learning by an agent from direct interaction with its environment, without relying on exemplary
supervision or complete models of the environment. In our opinion, reinforcement learning is the first
field to seriously address the computational issues that arise when learning from interaction with an



1.7. EARLY HISTORY OF REINFORCEMENT LEARNING 11

environment in order to achieve long-term goals.

Reinforcement learning uses the formal framework of Markov decision processes to define the inter-
action between a learning agent and its environment in terms of states, actions, and rewards. This
framework is intended to be a simple way of representing essential features of the artificial intelligence
problem. These features include a sense of cause and e↵ect, a sense of uncertainty and nondeterminism,
and the existence of explicit goals.

The concepts of value and value functions are the key features of most of the reinforcement learning
methods that we consider in this book. We take the position that value functions are important for
e�cient search in the space of policies. The use of value functions distinguishes reinforcement learning
methods from evolutionary methods that search directly in policy space guided by scalar evaluations of
entire policies.

1.7 Early History of Reinforcement Learning

The early history of reinforcement learning has two main threads, both long and rich, that were pursued
independently before intertwining in modern reinforcement learning. One thread concerns learning by
trial and error that started in the psychology of animal learning. This thread runs through some of
the earliest work in artificial intelligence and led to the revival of reinforcement learning in the early
1980s. The other thread concerns the problem of optimal control and its solution using value functions
and dynamic programming. For the most part, this thread did not involve learning. Although the
two threads have been largely independent, the exceptions revolve around a third, less distinct thread
concerning temporal-di↵erence methods such as the one used in the tic-tac-toe example in this chapter.
All three threads came together in the late 1980s to produce the modern field of reinforcement learning
as we present it in this book.

The thread focusing on trial-and-error learning is the one with which we are most familiar and about
which we have the most to say in this brief history. Before doing that, however, we briefly discuss the
optimal control thread.

The term “optimal control” came into use in the late 1950s to describe the problem of designing a
controller to minimize a measure of a dynamical system’s behavior over time. One of the approaches
to this problem was developed in the mid-1950s by Richard Bellman and others through extending a
nineteenth century theory of Hamilton and Jacobi. This approach uses the concepts of a dynamical
system’s state and of a value function, or “optimal return function,” to define a functional equation, now
often called the Bellman equation. The class of methods for solving optimal control problems by solving
this equation came to be known as dynamic programming (Bellman, 1957a). Bellman (1957b) also
introduced the discrete stochastic version of the optimal control problem known as Markovian decision
processes (MDPs), and Ronald Howard (1960) devised the policy iteration method for MDPs. All of
these are essential elements underlying the theory and algorithms of modern reinforcement learning.

Dynamic programming is widely considered the only feasible way of solving general stochastic optimal
control problems. It su↵ers from what Bellman called “the curse of dimensionality,” meaning that its
computational requirements grow exponentially with the number of state variables, but it is still far more
e�cient and more widely applicable than any other general method. Dynamic programming has been
extensively developed since the late 1950s, including extensions to partially observable MDPs (surveyed
by Lovejoy, 1991), many applications (surveyed by White, 1985, 1988, 1993), approximation methods
(surveyed by Rust, 1996), and asynchronous methods (Bertsekas, 1982, 1983). Many excellent modern
treatments of dynamic programming are available (e.g., Bertsekas, 2005, 2012; Puterman, 1994; Ross,
1983; and Whittle, 1982, 1983). Bryson (1996) provides an authoritative history of optimal control.

Connections between optimal control and dynamic programming, on the one hand, and learning, on
the other, were slow to be recognized. We cannot be sure about what accounted for this separation,



12 CHAPTER 1. INTRODUCTION

but its main cause was likely the separation between the disciplines involved and their di↵erent goals.
Also contributing may have been the prevalent view of dynamic programming as an o↵-line computa-
tion depending essentially on accurate system models and analytic solutions to the Bellman equation.
Further, the simplest form of dynamic programming is a computation that proceeds backwards in time,
making it di�cult to see how it could be involved in a learning process that must proceed in a forward
direction. Some of the earliest work in dynamic programming, such as that by Bellman and Dreyfus
(1959) might now be classified as following a learning approach. Witten’s (1977) work (discussed be-
low) certainly qualifies as a combination of learning and dynamic-programming ideas. Werbos (1987)
argued explicitly greater interrelation of dynamic programming and learning methods and its relevance
to understanding neural and cognitive mechanisms. For us the full integration of dynamic programming
methods with on-line learning did not occur until the work of Chris Watkins in 1989, whose treatment
of reinforcement learning using the MDP formalism has been widely adopted (Watkins, 1989). Since
then these relationships have been extensively developed by many researchers, most particularly by
Dimitri Bertsekas and John Tsitsiklis (1996), who coined the term “neurodynamic programming” to
refer to the combination of dynamic programming and neural networks. Another term currently in
use is “approximate dynamic programming.” These various approaches emphasize di↵erent aspects of
the subject, but they all share with reinforcement learning an interest in circumventing the classical
shortcomings of dynamic programming.

We would consider all of the work in optimal control also to be, in a sense, work in reinforcement learn-
ing. We define a reinforcement learning method as any e↵ective way of solving reinforcement learning
problems, and it is now clear that these problems are closely related to optimal control problems, par-
ticularly stochastic optimal control problems such as those formulated as MDPs. Accordingly, we must
consider the solution methods of optimal control, such as dynamic programming, also to be reinforce-
ment learning methods. Because almost all of the conventional methods require complete knowledge
of the system to be controlled, it feels a little unnatural to say that they are part of reinforcement
learning. On the other hand, many dynamic programming algorithms are incremental and iterative.
Like learning methods, they gradually reach the correct answer through successive approximations. As
we show in the rest of this book, these similarities are far more than superficial. The theories and
solution methods for the cases of complete and incomplete knowledge are so closely related that we feel
they must be considered together as part of the same subject matter.

Let us return now to the other major thread leading to the modern field of reinforcement learning,
that centered on the idea of trial-and-error learning. We only touch on the major points of contact
here, taking up this topic in more detail in Chapter 14. According to American psychologist R. S.
Woodworth the idea of trial-and-error learning goes as far back as the 1850s to Alexander Bain’s
discussion of learning by “groping and experiment” and more explicitly to the British ethologist and
psychologist Conway Lloyd Morgan’s 1894 use of the term to describe his observations of animal behavior
(Woodworth, 1938). Perhaps the first to succinctly express the essence of trial-and-error learning as a
principle of learning was Edward Thorndike:

Of several responses made to the same situation, those which are accompanied or closely
followed by satisfaction to the animal will, other things being equal, be more firmly connected
with the situation, so that, when it recurs, they will be more likely to recur; those which are
accompanied or closely followed by discomfort to the animal will, other things being equal,
have their connections with that situation weakened, so that, when it recurs, they will be
less likely to occur. The greater the satisfaction or discomfort, the greater the strengthening
or weakening of the bond. (Thorndike, 1911, p. 244)

Thorndike called this the “Law of E↵ect” because it describes the e↵ect of reinforcing events on the
tendency to select actions. Thorndike later modified the law to better account for accumulating data
on animal learning (such as di↵erences between the e↵ects of reward and punishment), and the law in
its various forms has generated considerable controversy among learning theorists (e.g., see Gallistel,



1.7. EARLY HISTORY OF REINFORCEMENT LEARNING 13

2005; Herrnstein, 1970; Kimble, 1961, 1967; Mazur, 1994). Despite this, the Law of E↵ect—in one form
or another—is widely regarded as a basic principle underlying much behavior (e.g., Hilgard and Bower,
1975; Dennett, 1978; Campbell, 1960; Cziko, 1995). It is the basis of the influential learning theories of
Clark Hull and experimental methods of B. F. Skinner (e.g., Hull, 1943; Skinner, 1938).

The term “reinforcement” in the context of animal learning came into use well after Thorndike’s
expression of the Law of E↵ect, to the best of our knowledge first appearing in this context in the 1927
English translation of Pavlov’s monograph on conditioned reflexes. Reinforcement is the strengthening
of a pattern of behavior as a result of an animal receiving a stimulus—a reinforcer—in an appropri-
ate temporal relationship with another stimulus or with a response. Some psychologists extended its
meaning to include the process of weakening in addition to strengthening, as well applying when the
omission or termination of an event changes behavior. Reinforcement produces changes in behavior
that persist after the reinforcer is withdrawn, so that a stimulus that attracts an animal’s attention or
that energizes its behavior without producing lasting changes is not considered to be a reinforcer.

The idea of implementing trial-and-error learning in a computer appeared among the earliest thoughts
about the possibility of artificial intelligence. In a 1948 report, Alan Turing described a design for a
“pleasure-pain system” that worked along the lines of the Law of E↵ect:

When a configuration is reached for which the action is undetermined, a random choice for
the missing data is made and the appropriate entry is made in the description, tentatively,
and is applied. When a pain stimulus occurs all tentative entries are cancelled, and when a
pleasure stimulus occurs they are all made permanent. (Turing, 1948)

Many ingenious electro-mechanical machines were constructed that demonstrated trial-and-error learn-
ing. The earliest may have been a machine built by Thomas Ross (1933) that was able to find its way
through a simple maze and remember the path through the settings of switches. In 1951 W. Grey
Walter, already known for his “mechanical tortoise” (Walter, 1950), built a version capable of a simple
form of learning (Walter, 1951). In 1952 Claude Shannon demonstrated a maze-running mouse named
Theseus that used trial and error to find its way through a maze, with the maze itself remembering the
successful directions via magnets and relays under its floor (Shannon, 1951, 1952). J. A. Deutsch (1954)
described a maze-solving machine based on his behavior theory (Deutsch, 1953) that has some proper-
ties in common with model-based reinforcement learning (Chapter 8). In his Ph.D. dissertation, Marvin
Minsky (1954) discussed computational models of reinforcement learning and described his construction
of an analog machine composed of components he called SNARCs (Stochastic Neural-Analog Reinforce-
ment Calculators) meant to resemble modifiable synaptic connections in the brain (Chapter 15) The
fascinating web site cyberneticzoo.com contains a wealth of information on these and many other
electro-mechanical learning machines.

Building electro-mechanical learning machines gave way to programming digital computers to perform
various types of learning, some of which implemented trial-and-error learning. Farley and Clark (1954)
described a digital simulation of a neural-network learning machine that learned by trial and error. But
their interests soon shifted from trial-and-error learning to generalization and pattern recognition, that
is, from reinforcement learning to supervised learning (Clark and Farley, 1955). This began a pattern of
confusion about the relationship between these types of learning. Many researchers seemed to believe
that they were studying reinforcement learning when they were actually studying supervised learning.
For example, neural network pioneers such as Rosenblatt (1962) and Widrow and Ho↵ (1960) were
clearly motivated by reinforcement learning—they used the language of rewards and punishments—
but the systems they studied were supervised learning systems suitable for pattern recognition and
perceptual learning. Even today, some researchers and textbooks minimize or blur the distinction
between these types of learning. For example, some neural-network textbooks have used the term
“trial-and-error” to describe networks that learn from training examples. This is an understandable
confusion because these networks use error information to update connection weights, but this misses
the essential character of trial-and-error learning as selecting actions on the basis of evaluative feedback



14 CHAPTER 1. INTRODUCTION

that does not rely on knowledge of what the correct action should be.

Partly as a result of these confusions, research into genuine trial-and-error learning became rare in
the 1960s and 1970s, although there were notable exceptions. In the 1960s the terms “reinforcement”
and “reinforcement learning” were used in the engineering literature for the first time to describe
engineering uses of trial-and-error learning (e.g., Waltz and Fu, 1965; Mendel, 1966; Fu, 1970; Mendel
and McClaren, 1970). Particularly influential was Minsky’s paper “Steps Toward Artificial Intelligence”
(Minsky, 1961), which discussed several issues relevant to trial-and-error learning, including prediction,
expectation, and what he called the basic credit-assignment problem for complex reinforcement learning
systems: How do you distribute credit for success among the many decisions that may have been
involved in producing it? All of the methods we discuss in this book are, in a sense, directed toward
solving this problem. Minsky’s paper is well worth reading today.

In the next few paragraphs we discuss some of the other exceptions and partial exceptions to the
relative neglect of computational and theoretical study of genuine trial-and-error learning in the 1960s
and 1970s.

One of these was the work by a New Zealand researcher named John Andreae. Andreae (1963)
developed a system called STeLLA that learned by trial and error in interaction with its environment.
This system included an internal model of the world and, later, an “internal monologue” to deal with
problems of hidden state (Andreae, 1969a). Andreae’s later work (1977) placed more emphasis on
learning from a teacher, but still included learning by trial and error, with the generation of novel
events being one of the system’s goals. A feature of this work was a “leakback process,” elaborated
more fully in Andreae (1998), that implemented a credit-assignment mechanism similar to the backing-
up update operations that we describe. Unfortunately, his pioneering research was not well known, and
did not greatly impact subsequent reinforcement learning research.

More influential was the work of Donald Michie. In 1961 and 1963 he described a simple trial-and-
error learning system for learning how to play tic-tac-toe (or naughts and crosses) called MENACE (for
Matchbox Educable Naughts and Crosses Engine). It consisted of a matchbox for each possible game
position, each matchbox containing a number of colored beads, a di↵erent color for each possible move
from that position. By drawing a bead at random from the matchbox corresponding to the current
game position, one could determine MENACE’s move. When a game was over, beads were added
to or removed from the boxes used during play to reinforce or punish MENACE’s decisions. Michie
and Chambers (1968) described another tic-tac-toe reinforcement learner called GLEE (Game Learning
Expectimaxing Engine) and a reinforcement learning controller called BOXES. They applied BOXES to
the task of learning to balance a pole hinged to a movable cart on the basis of a failure signal occurring
only when the pole fell or the cart reached the end of a track. This task was adapted from the earlier
work of Widrow and Smith (1964), who used supervised learning methods, assuming instruction from
a teacher already able to balance the pole. Michie and Chambers’s version of pole-balancing is one of
the best early examples of a reinforcement learning task under conditions of incomplete knowledge. It
influenced much later work in reinforcement learning, beginning with some of our own studies (Barto,
Sutton, and Anderson, 1983; Sutton, 1984). Michie consistently emphasized the role of trial and error
and learning as essential aspects of artificial intelligence (Michie, 1974).

Widrow, Gupta, and Maitra (1973) modified the Least-Mean-Square (LMS) algorithm of Widrow and
Ho↵ (1960) to produce a reinforcement learning rule that could learn from success and failure signals
instead of from training examples. They called this form of learning “selective bootstrap adaptation”
and described it as “learning with a critic” instead of “learning with a teacher.” They analyzed this rule
and showed how it could learn to play blackjack. This was an isolated foray into reinforcement learning
by Widrow, whose contributions to supervised learning were much more influential. Our use of the term
“critic” is derived from Widrow, Gupta, and Maitra’s paper. Buchanan, Mitchell, Smith, and Johnson
(1978) independently used the term critic in the context of machine learning (see also Dietterich and
Buchanan, 1984), but for them a critic is an expert system able to do more than evaluate performance.



1.7. EARLY HISTORY OF REINFORCEMENT LEARNING 15

Research on learning automata had a more direct influence on the trial-and-error thread leading
to modern reinforcement learning research. These are methods for solving a nonassociative, purely
selectional learning problem known as the k-armed bandit by analogy to a slot machine, or “one-armed
bandit,” except with k levers (see Chapter 2). Learning automata are simple, low-memory machines for
improving the probability of reward in these problems. Learning automata originated with work in the
1960s of the Russian mathematician and physicist M. L. Tsetlin and colleagues (published posthumously
in Tsetlin, 1973) and has been extensively developed since then within engineering (see Narendra and
Thathachar, 1974, 1989). These developments included the study of stochastic learning automata,
which are methods for updating action probabilities on the basis of reward signals. Stochastic learning
automata were foreshadowed by earlier work in psychology, beginning with William Estes’ 1950 e↵ort
toward a statistical theory of learning (Estes, 1950) and further developed by others, most famously by
psychologist Robert Bush and statistician Frederick Mosteller (Bush and Mosteller, 1955).

The statistical learning theories developed in psychology were adopted by researchers in economics,
leading to a thread of research in that field devoted to reinforcement learning. This work began in 1973
with the application of Bush and Mosteller’s learning theory to a collection of classical economic models
(Cross, 1973). One goal of this research was to study artificial agents that act more like real people
than do traditional idealized economic agents (Arthur, 1991). This approach expanded to the study of
reinforcement learning in the context of game theory. Although reinforcement learning in economics
developed largely independently of the early work in artificial intelligence, reinforcement learning and
game theory is a topic of current interest in both fields, but one that is beyond the scope of this book.
Camerer (2003) discusses the reinforcement learning tradition in economics, and Nowé et al. (2012)
provide an overview of the subject from the point of view of multi-agent extensions to the approach
that we introduce in this book. Reinforcement in the context of game theory is a much di↵erent subject
than reinforcement learning used in programs to play tic-tac-toe, checkers, and other recreational games.
See, for example, Szita (2012) for an overview of this aspect of reinforcement learning and games.

John Holland (1975) outlined a general theory of adaptive systems based on selectional principles.
His early work concerned trial and error primarily in its nonassociative form, as in evolutionary methods
and the k-armed bandit. In 1976 and more fully in 1986, he introduced classifier systems, true rein-
forcement learning systems including association and value functions. A key component of Holland’s
classifier systems was the “bucket-brigade algorithm” for credit assignment that is closely related to the
temporal di↵erence algorithm used in our tic-tac-toe example and discussed in Chapter 6. Another key
component was a genetic algorithm, an evolutionary method whose role was to evolve useful representa-
tions. Classifier systems have been extensively developed by many researchers to form a major branch
of reinforcement learning research (reviewed by Urbanowicz and Moore, 2009), but genetic algorithms—
which we do not consider to be reinforcement learning systems by themselves—have received much more
attention, as have other approaches to evolutionary computation (e.g., Fogel, Owens and Walsh, 1966,
and Koza, 1992).

The individual most responsible for reviving the trial-and-error thread to reinforcement learning
within artificial intelligence was Harry Klopf (1972, 1975, 1982). Klopf recognized that essential as-
pects of adaptive behavior were being lost as learning researchers came to focus almost exclusively on
supervised learning. What was missing, according to Klopf, were the hedonic aspects of behavior, the
drive to achieve some result from the environment, to control the environment toward desired ends and
away from undesired ends. This is the essential idea of trial-and-error learning. Klopf’s ideas were
especially influential on the authors because our assessment of them (Barto and Sutton, 1981a) led to
our appreciation of the distinction between supervised and reinforcement learning, and to our eventual
focus on reinforcement learning. Much of the early work that we and colleagues accomplished was di-
rected toward showing that reinforcement learning and supervised learning were indeed di↵erent (Barto,
Sutton, and Brouwer, 1981; Barto and Sutton, 1981b; Barto and Anandan, 1985). Other studies showed
how reinforcement learning could address important problems in neural network learning, in particular,
how it could produce learning algorithms for multilayer networks (Barto, Anderson, and Sutton, 1982;



16 CHAPTER 1. INTRODUCTION

Barto and Anderson, 1985; Barto and Anandan, 1985; Barto, 1985, 1986; Barto and Jordan, 1987). We
say more about reinforcement learning and neural networks in Chapter 15.

We turn now to the third thread to the history of reinforcement learning, that concerning temporal-
di↵erence learning. Temporal-di↵erence learning methods are distinctive in being driven by the di↵er-
ence between temporally successive estimates of the same quantity—for example, of the probability of
winning in the tic-tac-toe example. This thread is smaller and less distinct than the other two, but it
has played a particularly important role in the field, in part because temporal-di↵erence methods seem
to be new and unique to reinforcement learning.

The origins of temporal-di↵erence learning are in part in animal learning psychology, in particular,
in the notion of secondary reinforcers. A secondary reinforcer is a stimulus that has been paired with
a primary reinforcer such as food or pain and, as a result, has come to take on similar reinforcing
properties. Minsky (1954) may have been the first to realize that this psychological principle could be
important for artificial learning systems. Arthur Samuel (1959) was the first to propose and implement
a learning method that included temporal-di↵erence ideas, as part of his celebrated checkers-playing
program.

Samuel made no reference to Minsky’s work or to possible connections to animal learning. His inspira-
tion apparently came from Claude Shannon’s (1950) suggestion that a computer could be programmed
to use an evaluation function to play chess, and that it might be able to improve its play by modifying
this function on-line. (It is possible that these ideas of Shannon’s also influenced Bellman, but we
know of no evidence for this.) Minsky (1961) extensively discussed Samuel’s work in his “Steps” paper,
suggesting the connection to secondary reinforcement theories, both natural and artificial.

As we have discussed, in the decade following the work of Minsky and Samuel, little computational
work was done on trial-and-error learning, and apparently no computational work at all was done on
temporal-di↵erence learning. In 1972, Klopf brought trial-and-error learning together with an impor-
tant component of temporal-di↵erence learning. Klopf was interested in principles that would scale to
learning in large systems, and thus was intrigued by notions of local reinforcement, whereby subcompo-
nents of an overall learning system could reinforce one another. He developed the idea of “generalized
reinforcement,” whereby every component (nominally, every neuron) views all of its inputs in reinforce-
ment terms: excitatory inputs as rewards and inhibitory inputs as punishments. This is not the same
idea as what we now know as temporal-di↵erence learning, and in retrospect it is farther from it than
was Samuel’s work. On the other hand, Klopf linked the idea with trial-and-error learning and related
it to the massive empirical database of animal learning psychology.

Sutton (1978a, 1978b, 1978c) developed Klopf’s ideas further, particularly the links to animal learning
theories, describing learning rules driven by changes in temporally successive predictions. He and Barto
refined these ideas and developed a psychological model of classical conditioning based on temporal-
di↵erence learning (Sutton and Barto, 1981a; Barto and Sutton, 1982). There followed several other
influential psychological models of classical conditioning based on temporal-di↵erence learning (e.g.,
Klopf, 1988; Moore et al., 1986; Sutton and Barto, 1987, 1990). Some neuroscience models developed
at this time are well interpreted in terms of temporal-di↵erence learning (Hawkins and Kandel, 1984;
Byrne, Gingrich, and Baxter, 1990; Gelperin, Hopfield, and Tank, 1985; Tesauro, 1986; Friston et al.,
1994), although in most cases there was no historical connection.

Our early work on temporal-di↵erence learning was strongly influenced by animal learning theories
and by Klopf’s work. Relationships to Minsky’s “Steps” paper and to Samuel’s checkers players appear
to have been recognized only afterward. By 1981, however, we were fully aware of all the prior work
mentioned above as part of the temporal-di↵erence and trial-and-error threads. At this time we de-
veloped a method for using temporal-di↵erence learning combined with trial-and-error learning, known
as the actor–critic architecture, and applied this method to Michie and Chambers’s pole-balancing
problem (Barto, Sutton, and Anderson, 1983). This method was extensively studied in Sutton’s (1984)
Ph.D. dissertation and extended to use backpropagation neural networks in Anderson’s (1986) Ph.D.



17

dissertation. Around this time, Holland (1986) incorporated temporal-di↵erence ideas explicitly into
his classifier systems in the form of his bucket-brigade algorithm. A key step was taken by Sutton in
1988 by separating temporal-di↵erence learning from control, treating it as a general prediction method.
That paper also introduced the TD(�) algorithm and proved some of its convergence properties.

As we were finalizing our work on the actor–critic architecture in 1981, we discovered a paper by
Ian Witten (1977) which appears to be the earliest publication of a temporal-di↵erence learning rule.
He proposed the method that we now call tabular TD(0) for use as part of an adaptive controller for
solving MDPs. Witten’s work was a descendant of Andreae’s early experiments with STeLLA and
other trial-and-error learning systems. Thus, Witten’s 1977 paper spanned both major threads of
reinforcement learning research—trial-and-error learning and optimal control—while making a distinct
early contribution to temporal-di↵erence learning.

The temporal-di↵erence and optimal control threads were fully brought together in 1989 with Chris
Watkins’s development of Q-learning. This work extended and integrated prior work in all three threads
of reinforcement learning research. Paul Werbos (1987) contributed to this integration by arguing for
the convergence of trial-and-error learning and dynamic programming since 1977. By the time of
Watkins’s work there had been tremendous growth in reinforcement learning research, primarily in the
machine learning subfield of artificial intelligence, but also in neural networks and artificial intelligence
more broadly. In 1992, the remarkable success of Gerry Tesauro’s backgammon playing program, TD-
Gammon, brought additional attention to the field.

In the time since publication of the first edition of this book, a flourishing subfield of neuroscience
developed that focuses on the relationship between reinforcement learning algorithms and reinforcement
learning in the nervous system. Most responsible for this is an uncanny similarity between the behavior
of temporal-di↵erence algorithms and the activity of dopamine producing neurons in the brain, as
pointed out by a number of researchers (Friston et al., 1994; Barto, 1995a; Houk, Adams, and Barto,
1995; Montague, Dayan, and Sejnowski, 1996; and Schultz, Dayan, and Montague, 1997). Chapter 15
provides an introduction to this exciting aspect of reinforcement learning.

Other important contributions made in the recent history of reinforcement learning are too numerous
to mention in this brief account; we cite many of these at the end of the individual chapters in which
they arise.

Bibliographical Remarks

For additional general coverage of reinforcement learning, we refer the reader to the books by Szepesvári
(2010), Bertsekas and Tsitsiklis (1996), Kaelbling (1993a), and Sugiyama et al. (2013). Books that take
a control or operations research perspective include those of Si et al. (2004), Powell (2011), Lewis and
Liu (2012), and Bertsekas (2012). Cao’s (2009) review places reinforcement learning in the context of
other approaches to learning and optimization of stochastic dynamic systems. Three special issues of
the journal Machine Learning focus on reinforcement learning: Sutton (1992), Kaelbling (1996), and
Singh (2002). Useful surveys are provided by Barto (1995b); Kaelbling, Littman, and Moore (1996);
and Keerthi and Ravindran (1997). The volume edited by Weiring and van Otterlo (2012) provides an
excellent overview of recent developments.

1.2 The example of Phil’s breakfast in this chapter was inspired by Agre (1988).

1.5 The temporal-di↵erence method used in the tic-tac-toe example is developed in Chapter 6.


