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Abstract

We present a novel descriptive model of choice that achieves an efficient representation

anchored to how the brain represents value. An individual’s behavior is fully described

by two primitives: an individual’s “reward expectation” and a free parameter we call

“predisposition”. We demonstrate the breadth of the model, showing that it captures

many of the behavioral phenomena described by Prospect Theory through a novel

reformulation of its primitives. The model accounts for individual heterogeneity in

behavior, employs fewer parameters than Prospect Theory, and retains neurobiological

plausibility as a causal model of the choice process. Our theory makes a series of

novel behavioral predictions amenable to future testing and includes novel explanations

of the endowment effect and the observed heterogeneity in the probability weighting

functions.

JEL: D03, D81, D87

Keywords: utility, decision-making, reward expectation, neuroeconomics, normalization

model

1 Introduction

Decision scientists from various disciplines, including management, economics, psychology,

have been working for centuries to create a model that tractably describes and correctly

predicts behavior, and that is also easily generalizable and applicable. One principal difficulty

faced by this program of research is that the processes that guide the chooser to arrive at
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a decision are not observable. In the face of this problem, decision scientists have either

derived their models from axioms that captured normative features of choice or they looked

for mathematical frameworks that best described empirically observed data. Due to the

development of widely available technology that now allows us to measure brain function in

living organisms, a new approach that grounds the decision models in how the brain performs

choice has become possible. By capturing the mechanism that implements decisions in the

brain, this approach offers the promise of models that capture both behavior and mechanism.

Such models may offer biological foundations for normative theories and shed a novel light

on persistent theoretical puzzles. In this paper, we present a model that belongs to this

biologically-and-behaviorally motivated class of decision models.

Fundamental to our approach is the recognition by computational biologists that feasi-

ble value functions are necessarily bounded and show finite precision due to the biological

limitations of the nervous system (Platt and Glimcher, 1999, Glimcher, 2011). Information

in the brain is conveyed by the rate with which neurons produce electrochemical impulses,

called action potentials. The number of action potentials a neuron can produce is strictly

bounded (by the laws of physics) and the number of neurons is demonstrably finite. There-

fore, the subjective value function of reward value must necessarily be bounded. Further,

the mechanism for generating action potentials is imperfect and hence introduces (largely

thermodynamic) noise into any representation. As a result of these constraints, there is

a meaningful limit on the information carried in any neural representation by the finite

precision and range of the underlying representational system.

Working from this foundation, there is growing evidence that during the last decade neu-

robiologists have actually succeeded in identifying features of the basic representational form

used by the human brain to encode decision variables for causally producing choice. This

representation relies on a utility-like construct that is in principle observable, and takes as

its natural units the number of action potentials produced by a group of neurons per second

(“firing rate”). To distinguish it from the traditional mathematical concept of utility, follow-

ing the literature in neuroeconomics, we refer to it as subjective value. Neuroscientists have

long argued that the principles that guide this representational form ensure that information

encoded by the nervous system is minimally redundant (Wainwright et al., 2002) and hence

maximally informative, a notion that has recently gained traction in the decision sciences

(Woodford, 2012).

In line with these arguments, Steverson et al. (2019) have shown that a specific class of

utility-like functions identified by neuroeconomists allows agents to optimally balance the

known biological costs of reducing stochasticity (or equivalently increasing choice precision)

against the gains from more accurately representing the utility of options. Unlike other

models, these divisive normalization models can thus be shown to be efficient in the sense that

they optimally balance biological costs and benefits. Steverson et al. (2019) also demonstrate
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that this utility-like function imposes uniqueness on the representation, making it possible

to derive neurological predictions from choice and vice versa. And perhaps more importantly

for economists, recently published papers have shown that this representational form predicts

several interesting human and animal choice behaviors that had previously escaped the notice

of economists (e.g. Louie et al. (2013), Khaw et al. (2017), Guo and Tymula (2020), Landry

and Webb (2018), Webb et al. (2020)).

The standard form of the divisive normalization model has the following key features:

1) it employs a cardinal utility-like construct (aligning well with Steverson et al. (2019)’s

observation of full uniqueness); 2) is numerically bounded and has finite precision (aligning

with Steverson et al. (2019)’s observation of efficiency); and 3) it adjusts dynamically to

changes in the reward expectation, like the recent range normalization models (Kontek and

Lewandowski, 2018), in this case via demonstrably efficient divisive functional form.

The model also aligns well with recent work that has highlighted the implications of repre-

sentational limits of this kind for decision making (Kontek and Lewandowski, 2018, Steverson

et al., 2019, Frydman and Jin, 2019, Rayo and Becker, 2007, Netzer, 2009, Glimcher, 2010,

Woodford, 2012, Robson and Whitehead, 2016, Webb et al., 2020, Payzan-LeNestour et al.,

2020). One principal implication of these kinds of representational limits is that efficient

subjective value representations must be dynamic, adjusting to the mean and range (or vari-

ance) of encountered choice sets. Kontek and Lewandowski (2018), for example, have recently

formulated a range-dependent utility theory that precisely captures an efficient mechanism

for utility encoding in the face of such limits. Woodford (2012) provided yet another such

analysis. Both of these papers argue that with any bounded and imprecise representation

it is optimal for individuals to evaluate options relative to reward expectations and not in

absolute terms. The foundational neurobiological model that we adopt in this paper shares

this critical property while preserving the normative features of Steverson et al. (2019)’s

analysis and a strict adherence to the neurobiological mechanism which produces choice.

Our focus in this presentation is to explore the critical functional properties of a novel-

to-decision-science functional form that has begun to receive significant attention in neu-

roscience. We stress that this functional form is uncontroversial in neuroscience (Heeger,

1992, Schwartz and Simoncelli, 2001, Carandini and Heeger, 2012, Reynolds and Heeger,

2009), is efficient (Steverson et al., 2019, Wainwright et al., 2002), and is grounded in years

of study which we review in the next section. After that review, we present the general form

of the neurobiological model that accounts for efficiency in value coding imposed by other

alternatives in the choice set as well as previously experienced alternatives. For tractability,

we restrict our attention to the case of a singleton choice set, the valuation of a single risky

or certain alternative.

With this approach, we find that the efficient-neurobiological model of choice (its single-

ton valuation form), ESVT, reformulates Prospect Theory in a novel way that we believe
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will be of general interest. Our goal in this paper is: 1) To relate this functional form to

Expected Utility Theory, Prospect Theory and some of its closely-related descendants; 2) To

examine the specific choice theoretic features of the model from a decision scientist’s point

of view; and 3) To briefly compare the model’s ability to account for behavior with standard

Prospect Theory.

Before beginning our formal analysis, we note that ESVT assumes only two primitives:

predisposition and reward expectation. Unlike most economic models of choice, attitudes

towards risk are not primitives of models in this class. Instead, risk attitudes emerge from

and vary with changes in individual expectations and as a function of predisposition. Our

primary finding is that this reformulation preserves much of the representational structure of

Prospect Theory. It accounts for choice behavior at least as well as Prospect Theory and does

so with fewer parameters and in a way that closely aligns with the actual physical mechanism

by which choice is empirically produced inside human beings. ESVT also, however, makes

novel predictions about behavior that extend beyond the domains Prospect Theory was

intended to describe. For example, it makes theoretical predictions about the sources of

heterogeneity in individual-level probability weighting functions that have not yet been well

predicted by any theory and provides a completely novel explanation of the endowment effect

which relies on changes in reward expectation rather than loss aversion.

In the next section, we develop the neurobiological foundations of our functional form

for readers interested in the model’s early origins and recent developments. Additional

information about these foundations can be found in Glimcher (2011). In section 3, we

describe the model and give an intuition about the role of each of the two parameters. In

section four, we present the results of our mathematical analysis of the model. Here, we

set ourselves the task of asking: Given that human choosers represent the values of rewards

in their brains using something very close to this class of transformation, and then perform

an argmax operation on these subjective values, what kinds of preference structures would

one expect to see in choice behavior? Would one see the same phenomena Kahneman and

Tversky described? Furthermore, could such a representation be a refinement of Prospect

Theory, capturing behavior more accurately, under at least some conditions, because it

more accurately captures the biological mechanism of choice? In Appendix A we present a

preliminary empirical test of the model with a dataset consisting of the risky choices of 2,530

individuals made in a set of gain-only lotteries. There we compare the model fit to that of

Prospect Theory and Expected Utility.
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2 Neuro Foundations: Normalization Model-Based Rep-

resentations of Value

The study of how information is represented in the brain largely begins with the study of

how sensory systems (the neurobiological mechanisms underlying sight, touch, hearing, taste,

and smell) encode and represent properties of the outside world (Ratliff and Hartline, 1959,

Barlow, 1961, Attneave, 1954). Nerve cells convey information by “firing rate,” the rate at

which they produce transient electrochemical impulses called action potentials which they

communicate to cells with which they are connected. Three key properties of neural activity

will be crucial in understanding the logic and efficiency of the normalization mechanism.

First, the firing rate of a neuron is biophysically bounded by a maximum rate at which

the neuron can produce action potentials, typically about 100 impulses per second. This,

combined with the fact that we have a limited number of neurons in the brain and that a

subset of those is devoted to encoding stimuli of different types, means that for any given

stimulus type, the absolute maximum brain activity that can be allocated to a representation

(measured as the total number of action potentials) is limited. Second, neuronal firing rates

are stochastic, they exhibit (thermodynamic) variance which limits the precision with which

firing rates can be interpreted. Third, neural activity is expensive in the caloric sense, thus

increasing the precision of a representation is metabolically costly. These three properties

imply that an efficient representation of stimuli must tradeoff precision against its costs, as

we explain below.

2.1 Static framework

To begin to understand the costs and benefits of representation, consider how the brain might

represent a static image of a sunset presented on a black-and-white computer monitor’s 1,000

x 1,000 grid of 1,000,000 pixels. One obvious possibility (that is nevertheless not the case

in reality) might be that a single nerve cell in the brain’s visual system would be devoted

to conveying value for each of the 1,000,000 pixels, thus requiring 1,000,000 nerve cells to

convey the content of the picture. To make this example concrete, we might imagine that

each nerve cell would represent that its pixel was black by producing (or firing) one action

potential per second and that its pixel was white by firing at a biophysically maximum rate

of 100 action potentials per second. Intensities (I) between these two extremes would be

represented by a continuous monotone function (F ). In such a situation a perfectly white

computer screen would cause all 1,000,000 neurons to fire 100 action potentials per second.

In this way each pixel is associated with an independent neuron that has an independent

firing rate and no information about the pixels in the display is lost by this transformation

to firing rates.
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What neurobiologists realized in the 1960s and formalized in the 1990s, however, is that

adjacent pixels in real-world images are non-independent. To put that in more formal terms

we can describe each image as a set of 1,000,000 pixels with the intensity of each pixel i

labeled as Ii ∈ IR+. The set of all possible images forms set A. What studies of pixel-

by-pixel correlations in natural images reveal is that the set of all observable images, B, is

much smaller than A (B ⊂ A) and is marked by high (approximately 0.7) adjacent pixel

correlations (Simoncelli and Olshausen, 2001, Simoncelli, 2003). This non-independence is

an incredibly important point. Consider the nine adjacent pixels shown in Figure 1. If one

knew in advance that the eight outer pixels were white and the adjacent pixel correlation was

0.7 (a typical estimate), one would know with better than 99.9% certainty that the central

pixel was also white. Under these conditions, therefore, the activity of the neuron encoding

that central pixel is almost entirely redundant.

Figure 1 An array of local pixels from a photograph.

The reason this is so important is that action potentials and neurons that generate them

are incredibly costly in terms of calorie consumption. Nearly 20% of the calories we consume

go to support our brain even though it accounts for only about 3% of our body weight. Brain

tissue is on average roughly seven times as expensive as the average tissue in our bodies.

Faced with these high costs, a representational form that uses fully independent neuronal

firing rates to encode non-independent pixels intensities is clearly inefficient, in practical

terms wasting much more than half of its metabolic expenditures. Recognizing this fact,

neurobiologists working in the late 1990s and early 2000s began to ask what forms of rep-

resentation would maximize Shannon (or Fisher) Information (Shannon and Weaver, 1949)

in the aggregate of action potential rates conditional on the correlational structure of the

observed sets B (Heeger, 1992, Heeger et al., 1996, Reynolds and Heeger, 2009, Schwartz

and Simoncelli, 2001, Wainwright et al., 2002). The general answer to this question is that

neurons employ a representation of the general form:

5

Electronic copy available at: https://ssrn.com/abstract=2783638



Fi ∝
Iαi

Mα +
∑

j wi,jI
α
j

where Fi is the firing rate of the neuron encoding the intensity of pixel i. Ii is the objective

intensity of pixel i and wi,j is a weight which captures the empirically measured ex-ante

correlations between the pixel at location i and the pixel at location j. α is a free parameter.

M is an expectation over the intensity levels in the image which we return to in section 2.2

when we introduce a dynamic setting. In essence, the denominator is serving to remove from

the firing rate of neuron i information already carried by other neurons, thus maximizing

information per action potential.

Throughout the preceding discussion, neuronal firing rates have been treated as deter-

ministic. If the normalization equations map intensity to firing rate along a segment of IR+

between 0 and 100, in what sense can we think of the information-bearing capacity of these

neurons as limited? Given infinite precision, the restriction that the firing rate of the neu-

ronal set is bounded seems trivial. Firing rates are, however, non-deterministic and roughly

Poisson-distributed1 with mean firing rate and variance highly correlated . This property

makes the limited capacity of the system hugely problematic in finite time. If the entire set

of neurons encoding an image has only an average aggregate action potential rate of 100

to spend and each element (neuron) has high variance proportional to its mean, then the

information carried by the set is quite limited.

For a decision scientist, it is probably useful to think about biological representations of

stimuli through the lens of random utility models where each neuron encodes a mean value

plus a variance term. More on this approach can be found in Webb (2020).

2.1.1 Evidence in decision-making

For neurobiologists studying how we see, there are tools for assessing the independence of

adjacent pixels in huge sets of existing images. Using such an approach to the set of all

observed consumer choice sets is problematic. Fortunately, however, another approach is

possible. For a neuroeconomist, subjective values are by definition both causally responsible

for choice and directly observable (unlike the utilities to which they are related). Using a

variety of neurobiological tools, it is now possible to measure directly, or to infer quite pre-

cisely, the activity levels of neurons encoding the subjective values of options experimentally

presented to choosers. Given that this is possible, rather than asking whether choice sets

have correlational structure, one can ask whether the representation of reward value in the

brain follows a normalization-based representation.

The first effort to do this was undertaken by Louie et al. (2011) who studied the activity

1The actual distribution has been very well studied and is an extreme type-II distribution with interesting
properties beyond the scope of this discussion.
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of single neurons in monkey subjects making choices over two- and three-element choice

sets. The structure of those choice sets was systematically varied in a way designed to reveal

normalization in value representation if it occurred.2 Louie et al. (2011) found that the

firing rates of the neurons encoding each element in a choice set were non-independent and

were extremely well described with normalization-type models. From these findings, they

concluded that subjective value representations appear to be normalized in exactly the way

one would expect if choice sets they sought to represent efficiently showed deep correlational

structure.

Once it was clear that the neural instantiation of subjective value appeared to follow

a normalized form of representation, some scholars began to ask whether these normalized

representations made any unique behavioral predictions. Speaking broadly, these theoretical

investigations have suggested that normalized representations should lead to very specific

violations of the axiom of regularity (Becker et al., 1963), a conclusion that has been tested

successfully in both monkeys and humans in choice sets of varying size and type (Louie et al.

(2013, 2015), Webb et al. (2020), Robinson and Tymula (2019), but see Gluth et al. (2020)).

The effects of choice set size and type on stochasticity in choice have also been examined

theoretically and empirically in riskless (Louie et al., 2013) and risky choice (Robinson and

Tymula, 2019) and once again these studies have found evidence that normalization class

representations can go far in explaining many classes of behavior.

To summarize this literature, one can draw both the conclusion that neural representa-

tions of subjective value follow the predictions of the normalization-form models and the

conclusion that the unique behavioral predictions made about normalization-class represen-

tations are observed.

2.2 Dynamic framework

To continue with our analogy to vision, the same way that visual properties of adjacent

pixels in real-life images show a high correlation, their properties are also highly correlated

across time, meaning that currently experienced stimuli, for example, levels of brightness,

carry information about the brightness levels we should expect in the next second. Such

temporal dependency of firing rates has long been recognized in neuroscience. For example,

Ohzawa et al. (1985) measured firing rates in the cat’s visual cortex and found that the

same objective levels of contrast lead to a higher firing rate if the cat was previously shown

low levels of contrast than when the cat was previously shown high levels of contrast. The

observed patterns of firing rates in the study by Ohzawa et al. (1985) are consistent with the

2They performed these initial measurements on monkeys because it allowed the use of invasive technologies
that yield measurements of subjective value virtually without measurement error. Similar studies have
subsequently been made in humans (Hunt et al., 2014, Webb et al., 2020) using techniques with much lower
signal to noise ratios, and similar results have been obtained.
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representational form we introduced in the previous section. There, we briefly defined M to

be the expectation. In this section, we describe what is known about its origins in neural

activity.

How networks of neurons biophysically generate the transformation specified by the nor-

malization equation has also received significant attention providing important insights into

the normalization equations themselves at a positive and at a normative level. Current evi-

dence suggests that each reward in a choice set is represented neurobiologically by what can

be schematized (perhaps too) concisely as two dynamically interacting neurons: an excita-

tory and an inhibitory neuron. For simplicity, we now focus on the representation of the

subjective value of a single reward in a degenerate one-element choice set, a set-up that will

be our primary focus in this paper. In the existing literature, e.g. LoFaro et al. (2014),

the function that represents action potential production in response to objective input x is

presented in the excitatory neuron as the function R and in the inhibitory neuron as the

function G. These functions are described by the following first-order differential equations:

τ
dR

dt
= −R +

x

1 +G

τ
dG

dt
= −G+R

where τ is the time constant of neuronal information integration and x is the objective value

of the reward. LoFaro et al. (2014) showed that in networks of this type, for any given x the

network always has a unique equilibrium state:

R =
x

1 +G

There are two notable aspects of this equation. The first is that the unique equilibrium

state of the neuronal computation is essentially equivalent to a standard normalization equa-

tion. The second is that the normalization emerges spontaneously at equilibrium from the

formal integration of the value inputs over time by the system. Applying some additional

simplification (LoFaro et al., 2014) we can represent the action potential rate at time t as:

Rt ∝
xt

t−1∑
k=0

D(k)xk + xt

where D(k) is a weighting function such that the term on the left in the denominator

(
t−1∑
0

D(k)xk) is a time-discounted average of the rewards previously encountered by the sys-

tem. In the language of modern economics, the reward expectation is based on previously

encountered rewards. Some may be willing to call it a reference point. In essence, just as in

our exposition of the static framework, the denominator is serving to remove from the firing
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rate of a neuron, the information that has been carried by the neurons in the past.

2.2.1 Evidence in decision-making

Empirically, normalization functions have been used to model the time-varying firing rates

of subjective value encoding neurons in a way that goes beyond the statics described earlier

(Louie et al., 2014, LoFaro et al., 2014). Neurons in the subjective value-representing areas

(Louie et al., 2014, Padoa-Schioppa, 2009) are well described by these dynamic equations.

This suggests that these equations might also be used to model the dynamic effects of

expectation changes on human choice behavior. Two recent behavioral studies have assessed

whether the current valuation of the same snack item (Khaw et al., 2017) or the same

monetary gamble (Guo and Tymula, 2020) can be influenced by inconsequential exposure

to rewards in the past as predicted by the normalization model. Both of the studies found

evidence that is consistent with normalization — an individual’s valuation of the same reward

is lower after exposure to high-valued rewards than after exposure to low-valued rewards. The

effect occurs even though the valuations are elicited using an incentive-compatible mechanism

and the comparison is within participants who are providing valuations for the same rewards

within the same experimental session.

2.3 Summary

In this literature review, we have provided insight into the origins of the functional form

we examine in this paper. Existing theoretical work in economics has shown that this class

of functional forms has normative qualities and is equivalent to reducing Shannon entropy

in terms of implied behavior (Steverson et al., 2019). Studies of how the brain actually

represents subjective value in the circuits causally responsible for choice show that these

equations do a better job of predicting steady-state neuronal firing rates than alternatives

(Louie et al., 2011, 2015, Yamada et al., 2018). Econometric studies of representations

employing these equations suggest a number of unique behavioral patterns that would be

the product of representations having these features and many of those properties have now

been observed in humans and animals (Louie et al. (2013), Webb et al. (2020), Louie and

Glimcher (2012) but see Gluth et al. (2020)). Finally, dynamic versions of these equations

have also been developed (LoFaro et al., 2014), used to predict dynamic neuronal firing rates,

and used to predict novel choice dynamics then confirmed in the data (Louie et al., 2015,

Khaw et al., 2017, Guo and Tymula, 2020).

An interesting feature of this approach is that it raises the possibility that many behaviors

that violate Expected Utility may not be failures to maximize as previously thought. Instead,

some violations of Expected Utility might, in fact, be formally rational and a result of efficient

trading of the marginal benefits against the marginal costs of additional precision in choice.
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To date, most of the research on the normalization of subjective value has focused on

the static framework, that is on how the elements of the current choice set affect valuation.

Far fewer papers have focused on the dynamics of value normalization, on how previously

experienced rewards affect current valuation, even though the neuroscientific basis of such

temporal adaptation are well understood in sensory systems (Louie et al., 2015). Most of

the work has also focused on riskless rather than risky choice. Our goal in this paper is to

expand the literature by providing a tractable theoretical framework based on which novel

and testable behavioral hypotheses can be derived and then empirically (neurobiologically

and behaviorally) tested both in the riskless and risky settings. We also see our analysis as a

necessary step towards a comprehensive model that incorporates both types of normalization

— normalization by the value of the previously experienced rewards as well as normalization

by the value of the rewards in the current choice set.

3 Model

We focus in this presentation on the dynamic aspect of normalization by modelling a value

of the current option in a singleton choice set that is normalized by a reward expectation

determined by a stream of previously experienced rewards. Following the literature summa-

rized in section 2, we assume that the subjective value (the “decision value”(Kahneman and

Tversky, 1984, Hare et al., 2008)) of a reward i at time t, xi,t ∈ IR+, is given by:

St(xi,t) =
xαi,t

xαi,t +Mα
t

(1)

where Mt is the reward expectation at time t based on the stream of rewards experienced

until t − 1 and α > 1 is a free parameter we call predisposition to differentiate it from

traditional preference parameters.

The model is restricted to the valuation of a reward in a singleton choice set. We make this

simplification to gain a clear understanding of how dynamic normalization affects subjective

valuations, in the absence of the normalization imposed by the context of a choice set.

Furthermore, we restrict our model to nominal gains as there is significant controversy over

the neural representation of losses (Tom et al., 2007, Knutson et al., 2008, Samanez-Larkin

and Knutson, 2015). Despite these two restrictions, the model still generates novel and

testable predictions that shed light on some of the current puzzles in behavioral economics.

The subjective value function takes values between 0 and 1 (S ∈ [0, 1]) consistent with

the idea that decision makers are bounded in the range of values that they can biophysically

assign to the rewards. Unlike traditional utility (but following Steverson et al. (2019)), this

subjective value function is cardinal. Its natural unit is firing rate, that is the number of

action potentials per second generated by neurons representing the subjective value of an
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alternative, here projected onto the unit line segment for simplicity.3 Neuronal firing rates

map linearly to purely behavioral estimates of subjective value, as has now been repeatedly

observed (Louie and Glimcher, 2010, Kable and Glimcher, 2007, Plassmann et al., 2007,

Smith et al., 2014). The subjective value of xi,t is divisively normalized by the expectation

and itself. The fact that it is normalized by itself guarantees that the subjective value

function always adjusts to the problem at hand. In forms that address larger choice sets,

all elements of the choice set are included in the denominator (Glimcher, 2015, Webb et al.,

2020), though it is a complication we forego in this presentation for analytic tractability. An

interested reader can refer to Robinson and Tymula (2019) for theoretical and experimental

treatment of choice-set level normalization and risk attitudes and to Webb (2020), Webb

et al. (2020) for econometric analyses of choice set effects in these models.

The expected subjective value of a lottery (x, p) with possible rewards x1, x2, ..., xn that

occur with corresponding probabilities p1, p2, ..., pn is calculated by taking a standard expec-

tation:

ESt(xi,t, p) =
n∑
i=1

piSt(xi,t) (2)

3.1 Reward Expectation

We use existing neurobiological data4 on how expectations are computed in the human

brain to select an initial (although admittedly imperfect) functional form for reward expec-

tation, Mt. A large body of neuroscientific evidence has documented the physical existence

of a dopaminergic reward prediction error system in the brain (for a review see Glimcher

(2011)). Axiomatically (Caplin and Dean, 2008) and empirically (Rutledge et al., 2010), this

system has been shown to represent an experience-based expectation of future rewards and

punishments. Following this work, our model employs a simple recursive computation that

calculates a recency-weighted average of past rewards. Computation in this brain system

is typically modeled using discrete time where at each time step t, the brain computes the

reward expectation Pt as:

Pt = Pt−1 + γ(xi,t − Pt−1) (3)

3To transform S into true action potential units, it is typically multiplied by 100, the true maximal action
potential rate of most neurons.

4In the neuroscientific literature a tremendous amount of directly observed data is available on expecta-
tions (Ohzawa et al. (1985), Bayer and Glimcher (2005), Khaw et al. (2017)). Detailed differential equation-
based models of the brain mechanism that computes and represents expectations are now available (Wilson
and Humanski, 1993, Carandini and Heeger, 2012, Watabe-Uchida et al., 2017) as are models of how the
recent history of offers alters choice and valuation in decision making (LoFaro et al., 2014, Khaw et al.,
2017).
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where xi,t is the reward delivered to the subject at time t and γ ∈ (0, 1) sets the forgetting

rate. This iterative computation, performed in known brain circuits, is equivalent to the

following function (although the iterative form above imposes simpler requirements for data

storage in the brain):

Pt = (1− γ)tP0 +
t∑

τ=1

γ(1− γ)t−τxi,τ (4)

Following the early reinforcement learning literature, for simplicity (Sutton and Barto,

1998) we assume that initial expectations are equal to zero and can thus write the reward

expectation (Mt) as:

Mt = Pt−1 =
t−1∑
τ=0

γ(1− γ)t−1−τxi,τ (5)

As can be seen, this mechanism computes a time-weighted average of previous reward

magnitudes and can be fit with one free parameter γ. The forgetting rate, γ ∈ (0, 1), captures

the observation that more recent rewards have a bigger impact on the reward expectation

than older rewards, distinguishing our model from the models in which rewards are evaluated

relative to the current level of wealth instead.

We note critically that this widely used reward expectation is relatively simple (too

simple for many environments) because it derives from already well understood (and thus

necessarily simple) neurobiological mechanisms. One can say that in these models current

and past experiences and no other knowledge (like information about foregone gains or

sudden changes in context) impact the reward expectation. Of course, we know that the

reward expectation (both behavioral and neurobiological) is much more complicated than

this implies (e.g. Tymula and Plassmann (2016), Heffetz and List (2014), Khalil and Wu

(2017)) and that other factors influence expectations, but this approach supplies reasonable

tractability and predictive power.

3.2 Predisposition (α)

Predisposition is the critical exogeneity that influences choice. When combined with an

expectation it specifies behaviorally observed preferences. The value of predisposition is not

yet normatively constrained, although there are some biological hints about the relationship

between predisposition, the brain during aging (Chung et al. (2017)), and perhaps choice set

size (Webb et al. (2020)). More theoretical and empirical work (now ongoing) is, without

a doubt, necessary to understand the normative foundations of predisposition and whether

we should think about it as an individual-specific or environment-specific parameter. But

from a neuroscientific and behavioral point of view, we know that including predisposition
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as a free parameter is necessary at this stage. The inclusion of this term drastically improves

empirical model fits to both behavior and neural data while we work to endogenize this

parameter. In neural measurements it is typically estimated to be between 1.0 and 3.5

(Albrecht and Hamilton, 1982, Sclar et al., 1990, Busse et al., 2009, Carandini and Heeger,

2012). It is also a critical source of heterogeneity in the model.

3.3 Model Illustration

Figure 2 plots examples of subjective value functions over gains for a range of predisposition

values and expectations. The model can produce a variety of familiar value function shapes: a

value function concave for all xi,t that looks like the utility function introduced by Bernoulli,

as well as the more modern S-shapes used in Prospect Theory (Kahneman and Tversky,

1979) and other reference-dependent models.
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Figure 2 Examples of subjective value functions. In each graph, the vertical dashed lines
are drawn at xi,t = Mt. A: The effect of changes in the predisposition on the subjective
value function. B: The effect of changes in the reward expectation (Mt) on the subjective
value function.

To give the reader a quick overview of the role of predisposition and expectation in the

subjective value function, in Figure 2 A we manipulate predisposition while keeping the

reward expectation constant, and in Figure 2 B we manipulate the reward expectation while

keeping the predisposition constant.

In Figure 2 A we see that predisposition affects the curvature of the value function. When

predisposition is low (α = 1, blue solid line), the subjective value function is concave for all

x and thus the decision maker is always risk-averse. Under these conditions, the subjective
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value function looks very much like the utility functions that dominated economics before

the development of reference-dependent utility theories. As α increases, the subjective value

function begins to take on the familiar S-shape from Prospect Theory — it starts as a convex

function and then at some point changes to concave.

To illustrate the role of the expectation, Figure 2 B plots three different value functions

with different expectations and the same predisposition. As the expectation increases, the

subjective value function shifts to the right as in many reference dependent models. Impor-

tantly, the shift is such that at the expectation the function always takes the same value,

St(Mt) = 0.5. This can be easily checked by substituting Mt in place of xi,t in Equation 1.

For every α, whenever xi,t = Mt, then St(xi,t) = 0.5. This property is consistent with behav-

ioral and neural evidence that people evaluate the rewards and other stimuli as departures

from the expectation rather than in absolute terms.

It is also important to note that the subjective value function does not shift in a strictly

parallel fashion. As it shifts to the right the overall slope of the function decreases. This has

the positive feature of preserving diminishing marginal value (a point we return to later).

We take this as a significant feature, distinguishing this class of models from models where

the reward expectation shifts the value function rigidly.

4 Model predictions

In this section, we establish the relationship between ESVT’s primitives, predisposition and

expectation, and the critical behavioral phenomena captured by the model.

4.1 Risk Taking

To understand the role that expectation and predisposition play in risk-taking, we analyze

the curvature of the subjective value function and the Arrow-Pratt index of relative risk

aversion (RRA) as a measure of local curvature:

RRAt = −xi,tS
′′

S ′
=

(1 + α)xαi,t − (α− 1)Mα
t

xαi,t +Mα
t

(6)

The index can take both positive (local risk aversion) and negative (local risk seeking)

values. Given that S ′ > 0 and xi,t ∈ IR+, the conditions for the RRA to be positive and the

subjective value to be concave (and for RRA to be negative and the subjective value to be

convex) are equivalent. In traditional reference-dependent models, individuals are assumed

to be risk-averse (seeking) whenever the rewards are larger (smaller) than the reference

point. The inflection point in our subjective value function, which determines the switch

from convexity to concavity as well as the change in the local risk attitude, is not only

determined by the reward expectation, but also by predisposition.
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Theorem 1. The individual with ESVT preferences is locally risk averse and has a concave

subjective value function for

xi,t >
α

√
α− 1

α + 1
Mt (7)

An individual is risk seeking and has a convex subjective value function for xi,t < α

√
α−1
α+1

Mt.

Proof. Given that S ′ > 0 and xi,t > 0 ∀xi,t, the proof follows from the definition of Arrow-

Pratt relative risk attitude index (Equation 6). �

4.1.1 Adaptive Reward Expectation and (In)stability of Preferences

Since the expectation, Mt, varies in ESVT from period to period, the individual risk attitude

for a given xi,t, as determined by Equation 6 and Theorem 1, can change dramatically over

time. This observation reveals that ESVT interacts with a contemporary discussion on

the stability of preferences. Economists and psychologists have traditionally taken different

views on the issue of preference stability, with psychologists largely arguing against stability

(Slovic, 1995) and economists largely wishing for stability (Stigler and Becker, 1977). In

this model, the fact that the expectation changes over time as the individual experiences

different rewards implies that an individual’s willingness to accept a given risky option will

also change over time. This change is, however, determined by an individual’s reward history

and forgetting rate. The model, therefore, walks a line between traditional psychological

and more economic approaches to decision-making. It yields a varying risk tolerance due to

what could be construed as a rational contextual effect without discontinuities in the overall

preference structure.

To derive predictions about how local risk attitude changes due to dynamic normalization,

we first establish that the local Arrow-Pratt index of relative risk attitude declines when the

reward expectation increases.

Theorem 2. Under ESVT, the Arrow-Pratt index of relative risk attitude declines when the

reward expectation increases.

Proof. To show: ∂RRAt
∂Mt

< 0

∂RRAt
∂Mt

= −2α2Mα−1
t xαi,t

(xαi,t+M
α
t )

2 < 0 which completes the proof. �

Thus, the role of reward history in explaining risk attitudes in ESVT goes beyond the pure

wealth effects that economists have modeled for centuries. It is not only the total income

earned but also the timing of when each reward was received as well as the individual’s

forgetting rate, which determines willingness to take risks. This is illustrated in the next

two propositions.
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Proposition 1. Assume two individuals who have the same predisposition (α), the same

forgetting rate (γ ∈ (0, 1)), experienced an identical set of rewards in the past
∑

t xi,t−1, and

face an identical risky gamble. The individual who received the past rewards in an order such

that they increase in value from one period to the next (xi,0 < xi,1 < ... < xi,t−2 < xi,t−1) will

be more risk tolerant in their valuations than the individual who received the same rewards

but in a sequence that decreases in value from one period to the next (xi,0 > xi,1 > ... >

xi,t−2 > xi,t−1).

Proof. The proof follows from the fact that the individual who received rewards in an order

that is increasing in value has higher reward expectation. �

To understand this proposition, imagine two individuals in period t, Oskar and John,

who have the same predisposition, α, the same forgetting rate γ, and have earned the same

total income until period t. Oskar initially earned a lower income than John, but then his

income continued increasing over time. The opposite happened to John. Since their total

accumulated wealth is the same in period t, Expected Utility Theory, Prospect Theory, and

Range-Dependent Utility Theory would all predict that Oskar and John are going to have

the same risk preference. ESVT, however, makes a different prediction. Since the more

recent events have a larger impact on Mt, Oskar will have a higher reward expectation. We

can now use Theorem 2 to predict that in period t Oskar will be more risk-tolerant.

Another prediction of the model is that the individuals who have the same reward history

can differ in their attitude to risk if they have different forgetting rates as established in the

next proposition.

Proposition 2. Two individuals with the same predisposition (α) who have experienced the

same stream of rewards in the past will exhibit different risk attitudes if their forgetting rates

(γ) differ.

Proof. The proof follows directly from the fact that the reward expectation depends on the

forgetting rate (γ). �

Intuitively, an individual with a higher forgetting rate will have risk attitudes that are

less affected by the rewards from the more distant past. Individuals with different forgetting

rates will also respond differently to positive and negative shocks to the rewards. Imagine

now that Oskar and John have the same predisposition and experienced the same stream of

rewards until the previous period (t − 1) when they both received a reward much smaller

than the previous rewards in the stream (a negative shock when benchmarked against their

expectations). If we assume that Oskar has a low forgetting rate (a long memory), his

expectation reflects many previous rewards that mitigate the influence of the smaller reward

in t − 1 on his expectation. If John forgets very quickly, in contrast, his current reward

expectation could be solely based on the small reward in the previous period. Under these
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conditions, Oskar would be more risk-tolerant than John because his reward expectation is

higher as it incorporates information about the rewards from periods preceding the negative

shock. Going forward though, the relationship reverses. If in the current period the reward

increases, in the following period, John will immediately “forget” about the negative shock

and in the next period will be more risk-tolerant than Oskar who will “remember” about

the negative shock for a longer period.

4.1.2 Predisposition and Risk Attitude

Proposition 1 implies that an individual with a very low-valued predisposition (α = 1) is risk

averse for all xi,t, just as in traditional functional forms for utility. At the other extreme,

when the individual’s predisposition has high values (α→∞), ESVT predicts risk aversion

for gains ( SV is concave, RRAt > 0 iff xi,t > Mt) and risk seeking for losses (SV is convex,

RRAt < 0 iff x < Mt) relative to reward expectation, a pattern generally in line with the

value function of Prospect Theory. The model can thus accommodate the two most popular

and competing models of the value function as its extreme cases without much complexity.

One might suspect that most decision makers are somewhere in between these two extremes:

their subjective value function starts off as convex and as x increases switches to concave.

The inflection in S occurs for some xi,t < Mt because α

√
α−1
α+1
≤ 1.

4.2 Reward Expectation and Diminishing Marginal Value

Many reference-dependent models predict constant marginal utility with respect to the mov-

ing reference point; as the reference point shifts upwards, the marginal value of a $1 gain

relative to the reference point remains constant. This is of some concern because the notion

of a stable diminishing marginal value with increasing wealth has been central to economic

thought since Adam Smith’s exposition on the Diamond-Water Paradox (Smith, 1776). To il-

lustrate the point, assume a very simple Prospect Theoretic reference-dependent model where

the reward expectation is given by the status quo and the utility is given by U = u(x− r),
where x is the actual reward and r is the reward expectation. In such a simple model, the

marginal utility from an additional unit (of x) is constant with respect to how many units

of the reward individual already owns (see Figure 3A). This, of course, makes the surprising

prediction that a single consumption unit offered in excess of the status quo is of equal utility

to a pauper as to a billionaire.

ESVT does not make this prediction but rather preserves a form of diminishing marginal

value across wealth and expectation levels. In ESVT, the subjective value function com-

bines the reward expectation and predisposition; their interaction yields a value function

that preserves diminishing marginal value. In ESVT the subjective marginal value that an

individual experiences with successive increments in reward always strictly declines as illus-
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trated in Figure 3B. For tractability and comparison (as with Prospect Theory above), here

we assume a situation where an individual’s reward expectation is equal to their current

status quo. It is clear, from Figure 3B, that the individual values an additional consumption

unit less, the more consumption units she already possesses, and that this is true regardless

of the expectation level. We establish this formally in the proposition below.
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Figure 3 Marginal utility and marginal value in difference-based reward expectation model
(A) and in divisive normalization model (B).

Proposition 3. Assume two individuals with the same predisposition and expectations equal

to their status quo. The marginal value of an additional unit of the consumable reward will

be lower for the individual who has one more unit of this consumable reward.

Proof. For an individual with reward expectation Mi,t = xi,t, an increase in subjective value

from another unit of consumable reward (an increase from xi,t to xj,t) is given by

St(xj,t,Mi,t)− St(xi,t,Mi,t) =
xαj,t

xαj,t+M
α
i,t
− 0.5

Let x1,t + 2 = x2,t + 1 = xx,t, M1,t = x1,t, and M2,t = x2,t.

To show: St(x2,t,M1,t)−St(x1,t,M1,t) > St(x3,t,M2,t)−St(x2,t,M2,t) (diminishing marginal

value condition).

Since St(x1,t,M1,t) = St(x2,t,M2,t) = 0.5, the diminishing marginal value condition boils

down to:

St(x2,t,M1,t) =
xα2,t

xα2,t+M
α
1,t
>

xα3,t
xα3,t+M

α
2,t

= St(x3,t,M2,t)

Using our assumption that Mi,t = xi,t and rearranging, we get that the diminishing marginal

value condition holds if and only if
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x2α2,t > xα1,tx
α
3,t ⇔

x22,t > x1,tx3,t ⇔
(x1,t+x3,t

2
)2 > x1,tx3,t ⇔

0.25(x21,t + 2x1,tx3,t + x23,t) > x1,tx3,t ⇔
0.25(x21,t − 2x1,tx3,t + x23,t) > 0 ⇔

(x1,t − x3,t)2 > 0

which always is true and completes the proof.

�

4.3 Relation to Probability Weighting

One of the most discussed features of human choice behavior is the widely observed over-

weighting of low probabilities and the underweighting of high probabilities. For this reason,

it is notable that ESVT does not explicitly employ a probability weighting function of the

kind envisioned by Savage (1952) and implemented by Prospect Theory. ESVT, however,

does achieve a probability weighting-like effect, by embedding a mechanism that captures

the overweighting of low probabilities and the underweighting of high probabilities via its

2-parameter value function.5 When we observe in human choice behavior an overvaluation of

low probability offers, we are observing that subjects place higher (certain) monetary values

on low probability outcomes than would be predicted from their behavior observed at higher

probabilities. Conversely, we see that subjects state lower values, in the form of certainty

equivalents, on high probability outcomes than expected. Like prospect theory, ESVT also

captures this feature of human choice behavior.

To illustrate this in Figure 4 we plot the certainty equivalent c, the certain monetary

reward that the subject would view as subjectively equivalent to a reward x received with

probability p. The certainty equivalent formula under ESVT shows curvature that is very

similar to a popular probability weighting function, first introduced by Goldstein and Einhorn

(1987):

c =

(
pxαMα

(1− p)xα +Mα

) 1
α

(8)

Note that just as in Prospect Theory, in ESVT we predict behavior consistent with an

“overweighting” of low probabilities and an “underweighting” of larger probabilities (shown

here in certainty equivalent decisions). Said more precisely, ESVT individuals make risk-

seeking valuations for a gamble at low probabilities but shift to risk averse behaviors as prob-

abilities grow. Our model, even though it does not explicitly include a probability weighting

5A similar mechanism occurs in range-normalization models as shown previously by Kontek and
Lewandowski (2018).
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Figure 4 Certainty equivalent of a gamble that pays $1 with probability p drawn as a
function of p. The 45-degree line indicates the certainty equivalent for an expected value
maximizer. α = 3

function, embeds a mechanism that can explain why people are generally risk averse but at

the same time are willing to purchase lottery tickets which offer a small probability of large

gain and cost more than their expected value.

It is worth noting that empirically observed probability weighting functions estimated at

the individual subject level differ between individuals and take shapes that are often far from

the canonical inverse-S (Abdellaoui, 2000, Bruhin et al., 2010, Harbaugh et al., 2002, Harrison

and Rutström, 2009, Wilcox, 2015, Hsu et al., 2009, Tobler et al., 2008, Fehr-Duda et al.,

2011). Existing models do not capture this heterogeneity at the individual level. ESVT,

in contrast, generates testable predictions about this heterogeneity in revealed probability

distortions. To elaborate on the relationship between expectation, predisposition, and the

probability weighting function, we undertook a simple numerical exercise. First, we used

ESVT generatively to produce a series of choices in response to a set of lotteries. To do

this, we simply implemented our value function, varying both the reward expectation and

the predisposition. We then fit that choice data (generated by a synthetic ESVT chooser)

with a probability weighting function embedded in traditional Prospect Theory.

We simulated nine individuals with different predispositions (αlow = 1, αmed = 2, and

αhigh = 5) and different reward expectations (Mlow = 40, Mmed = 60, and Mhigh = 80).

Given these predispositions and expectations, for each of the individuals we generated their

choices in the well-known decision problems used by Gonzalez and Wu (1999). We then fit

the ESVT-generated choices of our nine synthetic agents using the standard joint estimation

approach with a classic parametrization of Prospect Theory, assuming CRRA utility function

and a two-parameter probability weighting function (w(p) = δpγ

δpγ+(1−p)γ ). Figure 5 presents
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the results of this analysis.
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Figure 5 Probability weighting functions of ESVT choosers estimated with w(p) =
δpγ

δpγ+(1−p)γ and CRRA utility functions.

What is striking is that our fit of Prospect Theory to the ESVT-generated synthetic

choosers gave rise to probability weighting-like behavior when analyzed with prospect the-

ory. If it did not, our estimated probability weighting functions in Figure 5 would all be

straight, 45-degree lines. Another interesting feature of our model, illustrated in Figure

5, is that the estimated probability weighting functions systematically differ based on the

expectation and predisposition. This raises the possibility that our model can shed some

light on the to-date unknown sources of heterogeneity in the estimated probability weighting

functions. We see that individuals with the highest-valued predisposition show the most

noticeable probability distortions. Individuals with medium expectations show the curva-

ture of the probability weighting function most commonly encountered in the literature.

Individuals with low (high) expectations underweight (overweight) probability at almost all

levels. Intuitively, the reason for such distortions is that in ESVT, individuals with high re-

ward expectation take more risks. The smallest probability distortions occur for individuals

with low-valued predisposition parameters. This is expected because their value function

closely resembles CRRA (with which it is fit) thus no significant distortions in probability

are inferred.

Probability weighting has been conceived as an explanation for famous failings of Ex-

pected Utility such as the Allais Paradox (Allais, 1953). Choosers with ESVT preferences

are of interest in this regard because while they have no generative distortions in probability

perception, they do still show an overweighting of rewards received with low probabilities and

an underweighting of rewards received with high probabilities; an inverse S-shaped probabil-

ity weighting functions when estimated using Prospect Theory. ESVT does this by tracing

differences in the estimated probability weighting functions to the individual’s expectations

and predispositions. However, a critical shortcoming of the dynamic model that we focus
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on here is that it cannot capture the Allais Paradox itself. A similar shortcoming in the

range-normalization models has been resolved by assuming loss aversion and setting the ref-

erence point to the maxmin (Baucells et al., 2018, 2019). In a similar spirit, an extension of

the simplified dynamic normalization model presented here to the more general form which

includes choice-set (spatial) normalization (Webb et al., 2020) (see Section 2) would enrich

the “reference point” by allowing it to account for other payoffs in the current choice set.

This together with below expectation aversion or loss aversion provides an avenue for exten-

sions of ESVT that can capture both the Allais Paradox and the basic probability distortion

feature we describe here.

4.4 Below-Expectation Aversion

Loss aversion is a key component of Prospect Theory and many other contemporary models

of choice. This concept derives from the observation that in many situations losses loom

larger for choosers than equally sized gains. Although our model is limited in scope to

positive rewards, it captures a related phenomenon, aversion to outcomes that are below

reward expectation, which we call “below-expectation aversion”.

Inspired by the traditional definition of loss aversion, we define the related phenomena

of below-expectation aversion (λe) as the ratio of the subjective value of loss of size k and

gain of size k, each relative to the subjective value at the reward expectation Mt (Abdellaoui

et al., 2007):

λet =
S(Mt)− S(Mt − k)

S(Mt + k)− S(Mt)
(9)

Plugging in the formula for the subjective value function (Equation 1), and simplifying,

we get the expression for below-expectation aversion in our model:

λet =
(Mα

t − (Mt − k)α)(Mα
t + (Mt + k)α)

((Mt − k)α +Mα
t )((Mt + k)α −Mα

t )
(10)

Whenever λe > 1, an individual exhibits below-expectation aversion by definition. If

λe = 1, an individual treats losses and gains relative to the expectation equally.

Theorem 3. An individual with ESVT preferences always displays below-expectation aver-

sion. The strength of below-expectation aversion depends on stake size and predisposition.

Proof. To show: For all k, for all Mt such that 0 < k < Mt and for all α > 0, individual is

below-expectation averse (λe > 1).

λe > 1 ⇔ (Mα
t −(Mt−k)α)(Mα

t +(Mt+k)α)

((Mt−k)α+Mα
t )((Mt+k)α−Mα

t )
> 1
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Since the denominator is always positive (((Mt − k)α + Mα
t )((Mt + k)α −Mα

t ) > 0), we

can multiply both sides of the inequality by it without changing the sign and rewrite the

condition for below-expectation aversion, λe > 1, as:

(Mα
t − (Mt − k)α)(Mα

t + (Mt + k)α) > (Mα
t + (Mt − k)α)(−Mα

t + (Mt + k)α)

Performing the algebra, we get λe > 1 ⇔ 2k2 > 0, which holds for all k and completes

the proof. �

One key feature that distinguishes below-expectation aversion from Prospect Theory’s

loss aversion is that below-expectation aversion is not a fixed parameter added to the model.

Instead, below-expectation aversion is a function of both predisposition and how far the offer

under consideration would place you above or below the reward expectation Mt (captured

by the stake size k). It is thus clear that both the stake size k and predisposition play

important roles in determining the strength of below-expectation aversion. In general, the

model predicts that higher predispositions lead to less below-expectation aversion and that

below-expectation aversion first increases and then decreases in stake size. These effects

are illustrated in Figure 6. While there has been some research suggesting that the stake

size affects loss aversion (Pope and Schweitzer, 2011, Blavatskyy and Pogrebna, 2007), more

empirical research is needed to understand whether the pattern of behavior is fully consistent

with the non-monotonic predictions of our model.
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Figure 6 Below-expectation aversion (λe) as a function of the gain (loss) size (k) at different
values of predisposition (α).

While ESVT in the form presented here does capture something closely akin to loss

aversion in the domain of gains, it is important to note that ESVT, as presented here, is

a theory of choice over gains and does not include the representation of “true” losses as in
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Prospect Theory. This raises a number of critical uncertainties that arise when we consider

extending ESVT to the domain of “true” losses.

Unfortunately, the neurobiological evidence which might provide some guidance on how

to incorporate true losses into the theory is complex and not entirely unambiguous. As

noted in section 2 single neurons encode real numbers in their firing rates (in units of action

potentials per second), which are bounded between zero and a fixed upper value, typically

around 100. These same neurons also have a so-called baseline rate, the rate of action

potential generation produced by the neuron in the absence of an input, often observed to

be in the range of 10 action potentials per second. This set of observations raises two clear

possibilities for how these physical systems encode losses.

One possibility is that firing rates below baseline are effectively employed to encode

negative numbers and hence losses. The classic paper of Tom et al. (2007) explicitly sought

to test this hypothesis in a loss aversion experiment and concluded that losses were indeed

coded as below-baseline firing rates, as observed indirectly with a brain scanner. If, however,

the unique zero of neurons is fixed at (for example) 10, then this would imply a lower precision

representation for losses than for gains. This would have to be true given our understanding

of neuronal variance (Churchland et al., 2011), unless the unique zero point, the baseline

firing rate, was dynamically adjusted by the subject’s expectation — a possibility that has not

yet been tested. If this were the case, then the mechanism we describe for below-expectation

aversion could apply to the case of true loss aversion, with only moderate changes.

A second possibility is that separate and parallel neural systems encode IR+, and IR−,

with the IR− encoding system consisting of output neurons that show a negative correlation

between firing rate and value. Some evidence exists which supports this interpretation

(Knutson et al., 2008, Samanez-Larkin and Knutson, 2015). If this were the case, then

true loss aversion might well rest on a unique mechanism that we have not yet modeled.

Ongoing neurobiological research should continue to shed light on this issue and we have

every expectation that the mechanism by which losses are incorporated into human choice

behavior will soon become clearer. It is partly in response to this uncertainty that the current

form of the theory remains restricted to the domain of gains.

The second set of issues that serve to constrain the theory to the domain of gains revolves

around the nature of the ESVT value function. It is important to note that the ESVT value

function does not include a discontinuity or sudden change in slope at the expectation point.

This strongly differentiates it from Prospect Theory in which the value function shows a

discrete “kink” at an x-value of zero. While many behavioral models and studies tend to rely

on such a value function, neurobiological data do not appear to support such representation.

There is to our knowledge, no evidence to suggest that neural firing rate functions show a

discontinuity at the baseline firing rate, although the curvature of the firing rate function

may well change continuously at that point. Still, the kink has served a significant role in
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broadening our understanding (e.g. Köszegi and Rabin (2006), Baucells and Hwang (2017)).

Today, ESVT walks a middle ground in addressing these issues by restricting itself to a more

limited domain (gains only) within which it can reproduce a below-expectation aversion

without invoking a sharp change in the slope of the value function, a restriction that keeps

ESVT in line with neurobiological evidence in Tom et al. (2007).

4.5 The Endowment Effect

The traditional explanation for the endowment effect is loss aversion: People endowed with

a mug demand more money to sell it than people who do not have the mug are willing to

pay for it because losses loom larger than gains. This explanation has been challenged in the

literature and revisions have been suggested which center on an interaction between changes

in expectations and loss aversion (Köszegi and Rabin, 2006). This newer model of the gap

between willingness to pay (WTP) and willingness to accept (WTA) predicts that the more

unexpected a trade is, the larger should be the endowment effect (the WTP-WTA gap) for a

given level of loss aversion. Empirical tests of these newer models have, however, produced

mixed results (Heffetz and List, 2014, Ericson and Fuster, 2011, Khalil and Wu, 2017).

ESVT captures the endowment effect in a somewhat novel way that we believe remains

consistent with empirical findings and which may merit examination:

Proposition 4. Let xi,1 be the individual’s initial ownership level of the good under consid-

eration. In period 2, the individual is endowed with an additional amount of the good such

that, in t ≥ 2, xj,t > xi,1 is the ownership level after endowment. Let M1 be the reward

expectation before the endowment and Mt be the reward expectation in periods t ≥ 2 after

the endowment. The endowment effect occurs if Mt <
xi,1xj,t
M1

. The endowment effect does

not occur if (Mα
1 −Mα

t )(Mα
1 M

α
t − xαi,1xαj,t) = 0.

Proof. The endowment effect occurs whenever:

WTA =
xαj,t

(Mα
t +x

α
j,t)
− xαi,1

(Mα
t +x

α
i,1)

>
xαj,t

(Mα
1 +xαj,t)

− xαi,1
(Mα

1 +xαi,1)
= WTP

Which is equivalent to:

WTA =
(xαj,t−xαi,1)Mα

t

(Mα
t +x

α
j,t)(M

α
t +x

α
i,1)

>
(xαj,t−xαi,1)Mα

1

(Mα
1 +xαj,t)(M

α
1 +xαi,1)

= WTP

After simplifying, we get that WTA > WTP if and only if

(Mα
1 −Mα

t )(Mα
1 M

α
t − xαi,1xαj,t) > 0

Since by assumption, Mα
1 −Mα

t < 0, WTA > WTP if and only if

Mα
1 M

α
t − xαi,1xαj,t < 0 ⇔ MtM1 < xi,1xj,t.

The endowment effect does not occur whenever

WTA = WTP ⇔ (Mα
1 −Mα

t )(Mα
1 M

α
t − xαi,1xαj,t) = 0

�

This proposition implies that there are two particular situations when the endowment

effect does not occur which we can understand with the help of Figure 7A. In Figure 7A,
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in blue we plot a subjective value function for an ESVT chooser who has three mugs, and

is expecting to have three mugs, and indicates the corresponding willingness to pay (WTP)

for a fourth mug. The first situation under which the endowment effect does not occur

is when there is no change in the reward expectation after an endowment M1 = Mt and

therefore post-endowment and pre-endowment subjective value functions are the same blue

curve and trivially the valuation of the fourth mug stays the same. Empirically such cases

have been demonstrated in List (2004), Heffetz and List (2014), Khalil and Wu (2017). This

implies that an endowment that actively changes the reward expectation is necessary for the

endowment effect to occur. The second case when the endowment effect does not occur is

when the reward expectation changes after the endowment and is equal to the new level of

ownership (M1 = xi,1 and Mt = xj,t). Such a post-endowment subjective value function is

given by the red curve in Figure 7A. As proven in Proposition 4, in such a case there is no

endowment effect. This is likely to occur when a sufficiently long time (or perhaps a sufficient

number of offers) has passed between the endowment and the elicitation of willingness to

accept; a time sufficient for the individual to fully adjust her reward expectation to the new

ownership level relative to her forgetting rate. ESVT’s model of the endowment effect thus

rests on the movement of the overall expectation and curvature of the value function, in

contrast to Köszegi and Rabin (2006) in which loss aversion and the extent to which a future

trading event is expected controls the level of observed endowment effect.
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Figure 7 Endowment effect and reward expectation. S1 in blue (S2 in red) represent sub-
jective value function before (after) endowment. A: No endowment effect with no or full
adaptation of the reward expectation to current ownership. B: Endowment effect occurs
because of incomplete adjustment of the reward expectation to current ownership. C:
Reverse endowment effect occurs because initial reward expectation is inflated above the
ownership level.

To better understand how the endowment effect occurs in ESVT, let us concentrate on

one simple case: let us assume that before the endowment occurs, the individual’s reward

expectation coincides with the status quo ownership level M1 = xi,1 = 3 (as illustrated
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by the blue curve in Figure 7B). The endowment effect will be observed as long as the

reward expectation after the endowment has not fully updated to the new ownership level

(Mt < xj,t = 4), for example, because the forgetting rate is sufficiently low or an insufficient

amount of time has passed since the endowment. This is illustrated by an example red curve

in Figure 7B. In ESVT, after the endowment, the individual’s reward expectation increases,

and hence the subjective value function shifts to the right, but due to the slow forgetting rate

does not change all the way to the new ownership level immediately. Instead, the new reward

expectation is a time-weighted average somewhere between the new and old ownership levels.

In ESVT, as long as the reward expectation remains between the new and old ownership

levels, the endowment effect occurs. As established in the next proposition, the endowment

effect first gets stronger as time since endowment passes (consistent with the evidence in

Strahilevitz and Loewenstein (1998)), and then it begins to weaken.

Proposition 5. Assume that the individual’s reward expectation is at the status quo own-

ership level. After an endowment of an additional unit of the good, as time goes by the

endowment effect first increases and then decreases.

Proof. Let xi,1 be the initial level of ownership. In t = 2 the individual receives an additional

amount of the good such that in t ≥ 2 xj,t − xi,1 > 0 is the additional endowment received

in period 2. Assume that after period 2, there are no further endowments and that the

ownership remains at xj,2.

To show: For t > 2, ∂WTAt
∂Mt

> 0 for Mt ∈ (xi,1, z) and ∂WTAt
∂Mt

< 0 for Mt ∈ (z, xj,2) where

z ∈ (xi,1, xj,2).

WTAt =
xαj,2

(Mα
t +x

α
j,2)
− xαi,1

(Mα
t +x

α
i,1)

∂WTAt
∂Mt

=
αMα−1

t

(Mα
t +x

α
j,2)

2(Mα
t +x

α
i,1)

2 [xαi,1(M
α
t + xαj,2)

2 − xαj,2(Mα
t + xαi,1)

2]

Since
αMα−1

t

(Mα
t +x

α
j,2)

2(Mα
t +x

α
i,1)

2 > 0 always holds, the sign of ∂WTAt
∂Mt

is determined by xαi,1(M
α
t +

xαj,2)
2 − xαj,2(Mα

t + xαi,1)
2.

∂WTAt
∂Mt

> 0 ⇔
xαi,1(M

α
t + xαj,2)

2 − xαj,2(Mα
t + xαi,1)

2 > 0 ⇔
(xαj,2 − xαi,1)(xαi,1xαj,2 −M2α

t ) > 0 ⇔
Since (xαj,2−xαi,1) > 0 by assumption, the above inequality holds when xαi,1x

α
j,2−M2α

t > 0

⇔ Mt <
√
xi,1xj,2.

We can now conclude that ∂WTAt
∂Mt

> 0 for Mt ∈ (xi,1,
√
xi,1xj,2) and ∂WTAt

∂Mt
< 0 for

Mt ∈ (
√
xi,1xj,2, xj,2) which completes the proof.

�

Our framework can be used to derive more cases when the endowment effect will or will

not occur or even when it, paradoxically might be observed to reverse. Figure 7C presents

a graphical example of a reverse endowment effect predicted by our model. The intuition
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for this case is that the reverse endowment effect can occur if initially, the participant has

reward expectations that are above their ownership level. These are illustrated in Figure 7

via the blue curve that has a reward expectation above 3 (even though the actual ownership

is 3). In our framework, such a situation can occur if an individual has a low forgetting rate

and has experienced a loss shortly before the endowment. Suppose that such an individual

is endowed with an additional mug. For a range of initial inflated reward expectations and

forgetting rates, the reward expectation after the endowment may increase, leading to a

smaller willingness to accept than willingness to pay.

Here we have offered a description of a subset of ESVT’s key testable predictions on

when the endowment effect, reverse endowment effect, or no endowment effect will occur for

relatively simple circumstances like those that have been examined experimentally. The key

force driving the endowment effect under these conditions is whether and how fast the reward

expectation updates after the endowment. In presenting our analysis of the endowment effect

in ESVT we have, of course, examined only quite simple and generic situations. For example,

we have assumed that the consumption/experienced value of the good does not change with

time which is not true for all types of goods. Goods such as one’s mother’s jewelry might

well grow in experienced value as years pass, a feature not captured by this model. To take

another example, the market value of wine or property usually appreciates over time. All of

these elements of consumption or experienced value vary from good to good exogenously to

our model (and perhaps to the chooser). Despite these simplifications, our model does make

a number of unexpected and testable predictions. We predict that under some conditions a

reverse endowment effect can arise. We also predict that if sufficient time has passed after

the endowment is made (and no changes in the remembered value of the good are imposed

by emotional events), the endowment effect associated with the endowed good diminishes.

5 Discussion

In this paper we have presented an analysis of the preference structures produced by Expected

Subjective Value Theory, attempting to assess its strengths and weaknesses as a descriptive

model of human choice behavior. Expected Subjective Value Theory rests on the optimal

coding normalization models from neuroscience (Carandini and Heeger, 2012) which have

been gaining popularity in neuroeconomics (Louie et al., 2013) and which have recently been

shown to be normatively efficient (Steverson et al., 2019). The analyses presented in this pa-

per suggest that many of the key behavioral phenomena that Prospect Theory was designed

to capture can also be explained by Expected Subjective Value Theory while preserving the

notion of diminishing marginal value which was abandoned under Prospect Theory (Kah-

neman and Tversky, 1979). We also find that Expected Subjective Value Theory makes a

series of novel predictions that distinguish it from Prospect Theory behaviorally, predictions
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that are amenable to future testing. Specifically, ESVT provides a new explanation for the

endowment effect that is unrelated to loss aversion (or its ESVT analogue below-expectation

aversion) and offers a theoretical explanation for the heterogeneity in estimated probability

weighting functions. It is, at least to us, surprising that this simple model, created to de-

scribe optimal representational frameworks in the brain, can capture such a broad variety of

human choice behaviors — phenomena that it was not originally designed to capture.

We take it as a given that divisive normalization, the parent theory for ESVT, outper-

forms other models with regard to neurobiological observables in context-driven situations

(Glimcher, 2015, Louie et al., 2014, LoFaro et al., 2014, Louie et al., 2013). Models like

Prospect Theory cannot, by design, capture the effect of temporal context effects or choice-

set context effects which have now been observed neurobiologically. Here we have focused

on the temporal context effects induced by the expectation, neglecting choice-set context ef-

fects for tractability, but we acknowledge that this ability to capture neurobiological context

effects will be only marginally interesting to pure economists. As a result, the focus of this

paper has been to examine how and where one can compare the performance of Prospect

Theory and ESVT in behavioral data under quite simple conditions. We believe our analysis

suggests that ESVT compares well with Prospect Theory in many regards at the behavioral

level.

5.1 Primitives of the Theory

It is important to note that ESVT differs fundamentally from nearly all other descriptive

choice theories in the basic nature of its primitives, although in a way driven by recent insights

into the neurobiology of decision-making. Expected Utility, at least when typically used as a

predictive tool, relies on the specification of a functional form for utility to define a chooser’s

preferences. And of course, this means that when one fits Expected Utility to observed

behavior to formulate a quantitative prediction about future choices, one parameterizes the

utility function one has selected, typically with a curvature specification and a wealth level.

To restate this in a more philosophical vein, Expected Utility represents choosers as being

exogenously provided with a utility function, and as having an endogenous wealth level,

nothing more.

Prospect Theory broadened the parameter set for the utility function by introducing the

value function and the probability weighting function (Kahneman and Tversky, 1979). This

was accomplished by introducing two curvature terms (one for gains and one for losses), a

loss aversion term, a reference point, and subjective distortions in probability perception

(via one or two additional parameters). Effectively, Kahneman and Tversky broadened

the primitives of their theory (relative to Expected Utility) to include not just the notion

of utility function curvature but also the notions of a reference point, loss aversion, and
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subjective probabilities. These four ideas (utility curvature, a reference point, loss aversion,

and probability weighting) form the core primitives of value and choice in their theory and

are the four (or six) exogenous elements with which choosers are provisioned by the theory,

although the reference point is sometimes viewed as endogenous.

In contrast, ESVT’s value function emerges from an interaction between the two core

primitives of its theory: predisposition and expectation. When one says that a chooser

employing Prospect Theory shows overweighting of low probabilities, we mean that over-

weighting of low probabilities is both a logical primitive and an endowed property of the

chooser. In some sense, we mean that choosers behave as if they had a specific mechanism

inside their brains which differentially weighted small and large probabilities. In contrast,

when we say that a chooser employing ESVT overweights small probabilities, we mean that

were one to use standard econometric tools to measure a probability weighting function, one

would observe values consistent with overweighting of small probabilities.

5.2 Related Models of Choice and Future Directions

The core idea underlying divisive normalization models like ESVT is that precision in choice

is costly. These costs have been absent from much but not all (for example Simon (1976),

Robson (2001), Rayo and Becker (2007), Netzer (2009), Glimcher (2010), Woodford (2012),

Bordalo et al. (2012), Robson and Whitehead (2016), Steverson et al. (2019)) decision-

scientific thinking. Neurobiological evidence available today clearly indicates that increasing

the precision of any neural representation is without a doubt costly. The model we analyze

here is not the first one in economics or decision science to study how limited neural resources

affect an individual’s attitude towards risk. Woodford (2012), Robson and Whitehead (2016),

Rayo and Becker (2007) all come to the conclusion that the efficient use of finite processing

resources would result in an S-shaped value function. In these models, known statistics

about the reward structure in the environment determine the exact shape of the efficient

value function. Such adaptive coding is also present in the neurobiological model of Padoa-

Schioppa and Rustichini (2014). The divisive normalization models of which ESVT is an

exemplar can also be thought of as an implementation of the ideas conveyed in these earlier

theoretical models, related to the idea of limited neural resources that drive modern economic

models of attention.6

Finally, we note that it is quite unsatisfying to us that the central free parameter of

the model, predisposition, is not yet specified in some deep philosophical form ultimately

amenable to endogenization within the model (or at least within the chooser). We acknowl-

edge that neurobiologists have only made cursory attempts to explain what predisposition

means. Heeger (1992) argues that it reflects the nonlinear response to inputs. Webb et al.

6For a review of models of attention see Caplin (2016).
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(2020) relates it to the capacity constraints of the nervous system. Chung et al. (2017) hints

that it may be related to age and the size of certain brain areas. Given that increases in the

predisposition steepen the subjective value function, it is also possible that the parameter

tracks historical (or chosen item) reward magnitude statistics such as variance. We find

these suggestions deeply interesting. More theoretical and experimental research is needed,

however, to define what predisposition is before we render it a directly observable property

of choosers.
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Appendix A Empirical Fit of the Model

As a demonstration, we fit the model to a dataset that includes the risky decisions of 2,530

individuals. These individuals visited the National Academy of Sciences Museum in Wash-

ington, DC where, as a part of the LifeLab exhibit, they had an opportunity to assess their

own risk attitudes. Risk attitudes were measured using a standard economic task in which

participants are asked to choose between a certain option ($5 for sure) and a lottery with

changing reward ($5, $8, $20, $50, and $125) and a changing probability of winning this

reward (13%, 25%, 38%, 50%, and 75%) (Levy et al., 2010). The task involved a total of

40 decisions per individual — 25 in the risky condition and 15 in the ambiguous condition.

Here we analyze data from the risky condition only. One randomly selected participant per

month was paid based on one of his/her own choices that was randomly selected as well.

Payments were delivered as gift cards. For more details on the procedure, see Glimcher and

Tymula (2017).

In this dataset, we treat expectations as a free parameter rather than estimate it from the

history of rewards because of the presence of ambiguous rewards that we do not include in

the analysis. To begin, we estimate ESVT parameters and compare our model fit to Prospect

Theory and Expected Utility. In our estimation procedures, we follow Harrison (2008). For

ESVT, we assume the value function as specified in our model in Equation 1. For Prospect

Theory, we assume a CRRA utility function (since we did not examine losses) (u(x) = xr)

and a probability weighting function as in Lattimore et al. (1992) (w(p) = δpγ

δpγ+(1−p)γ ).

For Expected Utility, we assume CRRA utility function (u(x) = xr) and no distortion in

probability weighting.

For all the models, we then created an index that says that an individual selects the risky

option whenever the expected value of the risky option (vr) is larger than the value of the

safe option (vs) subject to some additive stochastic error ε ∼ N(0, σ2):

vr − vs + ε > 0

We related this latent index to our choice data using a logistic choice function where the

probability of choosing the risky lottery is given by:

P (x, p) = 1
1+exp(−(vr−vs)/σ)

We fit the data using a maximum likelihood procedure, clustering standard errors on the

subject level. Table C1 presents the results. Out of all the models, ESVT performs the best

according to Akaike and Bayesian information criteria. Prospect Theory comes second.

Thus in this gains-only dataset, ESVT performs well as an alternative to Prospect Theory.

Of course, much more detailed comparisons between Prospect Theory and ESVT will need

to be made.
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Table A1 Paramter estimates of ESVT, Prospect Theory, and Expected Utility. Standard
errors clustered on participant are in parenthesis. Akaike and Bayesian information crite-
rion is in the last two rows.

A. ESVT
α 1.153

(0.019)
M 12.248

(0.351)
noise 0.084

(0.002)
AIC 55427
BIC 55456

B. Prospect Theory

r 0.185
(0.014)

δ 3.332
(0.300)

γ 0.661
(0.019)

noise 0.198
(0.020)

AIC 56813
BIC 56849

C. Expected Utility

r 0.456
(0.004)

noise 0.739
(0.014)

AIC 57632
BIC 576511

Interestingly, in our sample, we do not see any effect of age on risk attitudes using the

standard CRRA utility function. One could infer from this that the utility function does

not change as people age or vary with age cohorts. Fitting our participants’ choices with

ESVT, however, we find evidence that suggests that such a conclusion might be premature.

Consistent with lifetime wealth effects, we find that expectations increase with age across

our population. Predisposition, on the other hand, decreases. These two changes push

risk attitudes in opposite directions. The decline in predisposition is pushing older people

toward more risk averse behavior while an increase in expectations is pushing toward more

risk tolerant behavior. As these effects counteract one another behavior remains the same,

but the subjective value function underlying these choices changes.
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