
Ocular Correction



The issue with ocular correction is 
simple…







Blinks

Blinks impact data across the entire scalp due to 
signal propagation.

The magnitude of the blink is much greater than 
the underlying neural activity, hence the signal 
at that point in time is lost, or at best, blurred.



What to do?

1. Instruction

Instruct participants to try and minimize 
blinking, or to blink during rest breaks.

Critique:
Is this now a dual task paradigm?



What to do?

2.  Environment

Adjust stimuli and lighting to avoid high 
contrasts.

Critique:
Sleepiness





What to do?

3.  Removal

Simply remove all trials from analysis with blinks 
in them.

Critique:
Data Loss
Systematic Blinking



What to do?

4.  Correction

Use a correction method to “remove” the blinks 
and “interpolate” the missing data.

Critique:
Data Interpolation
Systematic Blinking



With Ocular Without Ocular
22 44
8 27
5 136
1 18
8 105

24 40
6 91

12 150
22 67
5 68



Common Correction Techniques

Gratton and Coles

The GC technique uses EOG channels to identify 
blinks – based on slope and amplitude criterion. 
Then, a regression approach is used to estimate 
the missing data and interpolate it. Scaling 
factors are used to correct for blink amplitude 
corrections across the scalp.



Common Correction Techniques

Independent Component Analysis

ICA is a more complex correction procedure (we 
will discuss it Friday in depth) that uses the ICA 
solution to identify components that capture 
variance in the data. Those that capture 
variance associated with blinks can be 
subtracted from the data itself to “remove” the 
blink.







What to do?

5.  Short Segments

-200 to 400 13
-200 to 600 40
-200 to 800 64
-200 to 1000 84



Ocular Correction Demonstration



ICA



ICA

ICA has been primarily used in EEG research to 
correct ocular artifacts but can be used to 
isolate spatial components as well.
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Independent Component Analysis

Goal:
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ICA Estimation
Sources Observation

x(t) = As(t)
s(t)

Mixing

The Cocktail Party Problem
 SOLVING WITH ICA

y(t)=Wx(t)



Independent Component Analysis

x = scalp EEG W = unmixing matrix

ICA

W-1 (scalp projections)

W*x = u

u = sources

*
x = W-1*u
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Fig from Jung
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Fig from Jung



What It Looks Like









ICA and EEG

More recently it has been proposed to do the 
reverse, only keep components with a 
topography that is of interest.





Continuous or Segmented Data

ICA will work on continuous or segmented data.

If you want to remove ocular artifacts 
continuous data is fine but you may want to 
train the ICA on a subset of the data.

If you use full data then looking for components 
of interest can be very difficult.



Continuous or Segmented Data

If you want to use ICA on segmented data you 
need to ensure you use a sufficient amount of 
data that does include artifacts.



ICA Demonstration



PCA



The data we are working with is very complex 
and we are making some very broad and simple 
assumptions to estimate properties of the data 
and/or correct/adjust/remove bits of the data.



What do they do?

PCA reduces the data into a series of 
“components”.

(Desmurget and Grafton, 2000; Wolpert and Ghahramani,
2000) or in an online manner using visual feedback (Elliott
et al., 2001; Goodale et al., 1986, 2004). Interestingly, the
results of the present study revealed a negative deflection
in the ERP that was distributed over occipital–parietal re-
gions of the scalp and that peaked about 82 ms after the
ERN. To our knowledge these data comprise the first ERP
evidence of a posterior error system.

One may ask why posterior activity was not revealed in
the ERP during the period before the tracking error oc-
curred. In the present study the errors elicited by the
unlocked difficult corners occurred very rapidly (on aver-
age about 218 ms following the onset of the corner) and
unpredictably. Although the posterior system may have
attempted to prevent a tracking error from occurring, the
speed and the unpredictability of the unlocked difficult
corners may have been beyond its capacity to correct. This
inference is in line with models that suggest the posterior
motor control system depends on visual feedback during a
movement (i.e. Goodale et al., 2004) and is supported by
the results of goal-directed reaching experiments that have
demonstrated that participants are not able to adjust move-
ment trajectories during very rapid movements (Carlton,
1981; Desmurget et al., 1999). Furthermore, the unpredict-
able nature of the unlocked difficult corners may have
negated the ability of a predictive error system to utilize a
forward model of control. Instead, in the present study the
frontal–medial system appears to have determined that
these tracking errors violated a high-level goal of the sys-
tem, namely, to avoid crossing the barriers. It seems likely
that an optimal movement control strategy would most
likely involve both frontal and posterior systems operating
in both feedback and feedforward manners (Desmurget
and Grafton, 2000; Holroyd and Coles, 2002; Seidler et al.,

2004). As such, one possible explanation for timing of the
frontal–central and posterior ERP components in the
present study may be that the high-level error information,
once evaluated by the frontal system, was then communi-
cated to the posterior system for the adaptive modification
of behavior.

CONCLUSION

In summary, we have observed for the first time that track-
ing errors in a continuous movement task elicit both an
ERN and a subsequent ERP component that is distributed
over posterior regions of the scalp. These results indicate
that the frontal–medial system is sensitive to errors in a
computational domain normally associated with posterior
parts of the brain, and suggest an interaction between the
frontal and posterior elements of a hierarchically organized
system for error processing.
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PCA

Utilizes the first and second moments of the 
measured data, hence relying heavily on 
Gaussian features.





PCA and EEG

PCA is typically used in EEG research to identify 
spatial, temporal, and/or spatial-temporal 
components in the data.



At the end of the day…

DIMENSION REDUCTION

As opposed to having a bunch of channels/time 
points you have a "spatial component" or a 

"temporal component"



Dimension Reduction
Before PCA

Channels x Time x Conditions x Participants

4 Dimensions



Dimension Reduction
After Spatial PCA

Time x Conditions x Participants

3 Dimensions

for each Spatial Factor



Spatial Factors

Spatial Factors:
Each factor will have
loadings or weights
that when plotted
topographically show
the spatial components. 



What is a Spatial 
Component?

Component Fpz Fz FCz Cz Cpz Pz POz Oz
1 0.1 0.4 0.9 0.8 0.4 0.3 0.2 0.1
2 0.1 0.1 0.1 0.1 0.4 0.7 0.5 0.2
3 0.9 0.5 0.2 0.1 0.1 0.1 0.1 0.1



Next we consider the results from the ignore tasks, in which
subjects performed a primary task while being presented with a
task-irrelevant oddball series. In these tasks, rare stimuli generally
elicited more positive responses than frequents in SF1 and SF2 in
the 250–400 ms latency range ~TF2!, although the magnitude of
the effects are small. In the Puzzle task, the difference between rare
and frequent responses was reliable for both spatial factors, SF1:
F~1,14!! 7.17, p " .05; SF2: F~1,14!! 11.05, p " .01, whereas
in the Reading task, this difference was reliable for SF2, F~1,14!!
13.83, p " .01, but not SF1, F~1,14!! 0.72, p! n.s. These small
positive responses to rares appear to account for the ERP response
in ignore tasks that has been termed the P3a.
The effect of attention on the SF1 and SF2 responses to rares

was examined by comparing the average response to rares from the
Classic and Novelty Oddball tasks with the average response to
rares from the Puzzle and Reading tasks. For both spatial factors,
the response to rares was smaller in the ignore than the attend
tasks, SF1: F~1,14!! 24.02, p " .001; SF2: F~1,14!! 5.60, p "
.05. Hence, it appears that the amplitude of the Novelty P3 as well
as the P300 is modulated by attention to the oddball sequence.
In sum, it appears that deviant stimuli in an oddball series elicit

a Novelty P3 and, depending on the circumstances, a P300. When

an oddball sequence is attended, both target and nontarget deviants
elicit a large P300. Target deviants elicit a small Novelty P3,
whereas highly salient nontarget deviants elicit a large Novelty P3.
When an oddball sequence is to be ignored, deviants elicit a small
Novelty P3, and depending on the primary task, a small P300. It
would seem that the P3a response in ignore tasks is not a different
component than the P300 and Novelty P3, nor is it necessarily the
same component as the Novelty P3, as some authors have claimed
~e.g., Knight, 1984!. Rather, this response reflects the contributions
of both the Novelty P3 and P300 components. The P3a response
that has been reported in some attend tasks may, in fact, be the
Novelty P3 component.

TF3. The classical SlowWave has a posterior-positive, anterior-
negative scalp distribution, and this pattern is evident in the present
data in the TF3 scores associated with SF1 and SF2. The SF1
responses are more positive for deviants than frequents, and the
SF2 responses are more negative for deviants than frequents. In the
attend tasks, SF1 and SF2 show similar patterns of responses. In
the Classic Oddball task, SF2 differs between rares and frequents,
F~1,14! ! 18.89, p " .001, but for SF1 this effect is marginally
significant F~1,14!! 4.41, p! .0544. In the Novelty Oddball task,

Figure 4. Topographic maps of the factor loadings for the spatial factors ~virtual electrodes!. The percentage of variance accounted
for by each factor after rotation is indicated.

Spatiotemporal analysis of the ERP 351



But how is the data reduced?

The component weighting matrix (loadings) are 
multiplied with the data to create component 
scores.

Think of it this way, each point in time for each 
condition for each subject would be weighted by 
that component relative to the original data 
value present.



Virtual ERPs

Once this is done, you can reshape the scores 
back into the original data format, but with the 
dimensionality greatly reduced.



SF1 and SF2 differ reliably between rares and frequents, SF1:
F~1,14!! 36.76, p " .0001; SF2: F~1,14!! 10.34, p " .01, and
between novels and frequents, SF1: F~1,14! ! 6.84, p " 0.05;
SF2: F~1,14! ! 16.47, p " .01. In the Novelty Oddball, neither
SF1 nor SF2 differ between rares and novels, SF1: F~1,14!! 3.78,
p ! n.s.; SF2: F~1,14! ! 0.59, p ! n.s.
In the ignore tasks, however, the SF1 and SF2 patterns diverge.

SF1 does not differ between rares and frequents in the Puzzle and
Reading tasks, Puzzle: F~1,14!!0.47, p!n.s.; Reading: F~1,14!!
0.56, p ! n.s., whereas rares do elicit greater SF2 activity than
frequents, Puzzle: F~1,14! ! 8.51, p " .05; Reading: F~1,14! !
16.19, p " .01. Both SF1 and SF2 responses to rares are larger
under attend than ignore conditions, SF1: F~1,14! ! 15.08, p "
.01; SF2: F~1,14! ! 6.48, p " .05.
The dissociation of the SF1 and SF2 responses to rares across

the tasks suggests that the Slow Wave is not a single component;
rather, the anterior-negative and posterior-positive portions of the
Slow Wave appear to be individual ERP components. This con-
clusion is consistent with other reports pointing to a dissociation
between these components ~Fitzgerald & Picton, 1981; Friedman,
1984; Loveless, Simpson, & Näätänen, 1987; Näätänen, Simpson,
& Loveless, 1982; Ruchkin & Sutton, 1983; Sutton & Ruchkin,
1984!. In particular, Näätänen et al. ~1982! also found that the
anterior-negative Slow Wave is elicited by deviants in attend and
ignore conditions, whereas the posterior-positive Slow Wave is
elicited only by attended deviants.

SF4. In the P300 latency range ~TF2!, the SF4 responses to
rares were more negative than to frequents only in the Classic
Oddball task, F~1,14!! 9.63, p " .01. In the Slow Wave latency
range ~TF3!, SF4 responses were more negative to rares than
frequents in the Classic Oddball, F~1,14! ! 5.05, p " .05, and
Novelty Oddball, F~1,14! ! 7.20, p " .05, tasks. SF40TF3 re-
sponses to novels were also more negative than to frequents,
F~1,14!! 11.27, p " .01. The SF4 responses in the TF2 and TF3
latency ranges thus represent new late ERP components elicited by
attended deviant stimuli.

Discussion

Kutas and Dale ~1997!, in a review of electrophysiological neuro-
imaging, articulated the issue we addressed in the present study.
They report as follows:

Identifying a positivity as the P3 is problematic. Most researchers have
skirted the problem by referring to any positivity after 300 ms as a late
positive component ~LPC! or simply as a member of the P3 family. Others
have placed greater emphasis on a topographical criterion, although often
implicitly in combination with sensitivity to experimental manipulations:
thus the “true” P3b or parietal P3 is sensitive to probability and task
relevance, while the P3a or frontal P3 is smaller, earlier, and presumably
does not require attention. It is unclear by these criteria whether the P3a
differs from the novel P3 which also is early, has a frontal maximum and
is elicited by infrequently occurring “novel” events such as dog barks
interspersed in a sequence of tones in an oddball task. . . . ~pp. 220–221!

Figure 5. Grand average spatial factor scores ~virtual ERPs! to stimulus
types in the attend conditions ~Classic and Novelty Oddball tasks! for
spatial factors 1–8 ~SF1–8!. The value of the factor scores ~y axis! is a
unitless dimension.

Figure 6. Grand average virtual ERPs for SF9–15 in the attend conditions
~see caption for Figure 5!.
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Component 1 Scores
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Virtual ERPs



Temporal PCA

The same logic as Spatial PCA but with Time 
Points as the DV. 



Dimension Reduction
Before PCA

Channels x Time x Conditions x Participants

4 Dimensions



Dimension Reduction
After Temporal PCA

Channels x Conditions x Participants

3 Dimensions

for each Temporal Factor
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Temporal PCA LoadingsTemporal Factor Loadings



Spatial – Temporal 
or 

Temporal – Spatial PCA

The logic is simple – you run a PCA on either the 
spatial or temporal dimension first and then you 
run a second PCA on the virtual data from one 
of the factors from the first PCA to reduced the 
dimensionality further.
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Virtual ERPs

The second PCA would collapse the time dimension to a series of factors.
For each factor you would have a score. For example, a factor might be maximal
between 200 to 300 ms.
As such, when you reshape the data one last time, you would have a single score
for each participant for each condition. The score reflects the value of a single
spatial and temporal compoment.
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Source Analysis and a Few Other Tricks



Source Analysis





The Inverse Problem

Simply put, because we do not know the 
number of dipoles at any given point in time, 
there are an infinite number of potential 
solutions for a given scalp topography.

Source localization techniques try to get around 
this by using certain assumptions.





Discrete vs Distributed Source 
Solutions

Discrete source solutions focus on dipoles.

Distributed source solutions use dipoles but 
“consider” whole brain activity.





Loreta

The mathematics behind these techniques is 
beyond the scope of what we are covering here.

In a nutshell, Loreta divides the brain into a 
number of voxels each containing three 
perpendicular dipoles (X, Y, Z) and then varies 
the parameters of these dipoles for each voxel 
to obtain the observed scalp topography.



Loreta

There are still multiple solutions. So, the 
determined solution is the one that has the best 
smoothness – contiguous voxels should have 
gradual changes in dipole strength.

There are additional constraints such as 
perpendicular dipoles only, minimum overall 
source magnitudes, and more…



Be careful…

Loreta has a strong bias towards the midline and 
towards the cortical surface.

When using a source technique, do not use it 
like fMRI. At best, it is a confirmation of 
something we already know from other lines of 
research.



sLoreta and eLoreta

http://www.uzh.ch/keyinst/loreta.htm

http://www.uzh.ch/keyinst/loreta.htm


Reporting Source Data



BESA



BESA



What to do?



Bins and Running Averages



Bins

You do not always have to collapse all of your 
markers across and entire experiment.

You may want to look at learning effects for 
instance.





The Oddball Data

For instance, you have 60 infrequent markers, so:
Bin 1 = Segments 1 to 30, Bin 2 = 31 to 60

In a like manner, for the 240 frequent markers:
Bin 1 = Segments 1 to 120, Bin 2 = 121 to 240

You could then do your peak detection to compare the first 
half of the experiment.
Obviously, the same logic could be applied to any other 
break down of the average.



Running Averages

The principle behind a running average is somewhat 
similar to bins, but somewhat more “smooth”.

As opposed to creating 2 bins (or more bins) you create a 
series of bins.

If you have 100 segments, you create the following bins:

Average 1 = Segments 1 to 50
Average 2 = Segments 2 to 51
Average 3 = Segments 3 to 52
etc



Running Averages

To be able to do this, you need to work with 
MATLAB.

But, its not as hard as you think.

Analyzer has a MATLAB interface so you can 
export directly to MATLAB and then bring the 
data back in.



Single Trial Analysis





So how do you do it?
Strategy One

Focus on the P300 – its large and easy to see.

Similar to Running Averages, calculate the a peak 
voltage  - the mean – but do this for every trial and 
not on the average of a subset of trials.

You can then plot this as a function of time.



So how do you do it?

Strategy Two

Fit a function to the component of interest on 
the grand average.

Estimate the quality of fit for each individual 
trial. 







Component Latency and Onset 
Analysis



Component Latency

It is relatively easy to do a component latency 
analysis.

All you need to do is use a maxima / minima 
peak detection approach and get a latency value 
for the peak for each subject for each condition.

Following that, traditional null hypothesis 
testing can be used.



Condition A Condition B
12.4 uV 324 ms 11.3 uV 378 ms
9.8 uV 333 ms 10.4 uV 402 ms

10.3 uV 356 ms 8.8 uV 444 ms
4.2 uV 401 ms 7.6 uV 424ms
7.8 uV 367 ms 6.4 uV 401 ms



Component Onset

Component onset is a bit trickier.

Why?

Because we cannot do single trial analysis very 
effectively, we cannot get an onset value for 
each subject based on their own data. Why is 
that?



Finding a maxima is easy



How do you find the point of separation?
(recall you only have one waveform per
condition per participant)



One Solution
Rodrigues – Fornells

1. Get the average waveform for each 
participant for the channel of interest for 
each condition.

2. Use a running average to smooth these, say 
+/- 5 time points on either side.

3. Sequentially t-test every point of the 
smoothed waveforms till there is a significant 
difference using a stricter alpha (0.001)



The Problem

This approach will tell you when two conditions 
diverge, it does not allow you to compare the 
difference of onset between A and B with the 
difference in onset between C and D.



Pooling Electrodes






