
1 Sampling Distributions

In this chapter we will be developing the mathematical models for the populations under in-
vestigation in statistical studies. We will see that statistics (a quantity computed from values
in a sample) can be used to ESTIMATE the unknown parameter characterizing a population.
In order to evaluate how close the estimate is to the true value we need to study the distribution
of the statistic.

In practical situations the investigator might be able to determine the type of distributions
to use as a model, but the values of the parameters (mean and standard deviation or the
probability for ”success”) that specify its exact form are unknown.

1.1 Statistics and Sampling Distributions

When you select a random sample the numerical descriptive measures you calculate are called
statistics. These statistics vary or change for each different random sample you select; they are
random variables.

Definition:
Any quantity computed from values in a sample is called a statistic.

The value of a statistic varies from sample to sample this is called sample variability. Since the
sampling is done randomly, the value of a statistic is random. In conclusion:

Statistics are random variables.

Since statistics are random variables, they have a distribution, which gives the possible values
and their probability.

Definition:
The distribution of a statistic is called a sampling distribution.

It provides the following information:

• What values of the statistic can occur.

• What is the probability of each value to occur.

Example:
The population is all students in this section of Stat 151. Let µ be the population mean of the
height in this population.

Select a random sample of size 5 and observe the height.

For every random sample the sample mean x̄ is different, this is called the sample variability.

Now suppose you look at every possible random sample of 5 students from this class and the
corresponding sample mean. From these numbers you can create the sampling distribution.

You will find that

1. The value of x̄ differs from one random sample to another (sample variability).
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2. Some samples produced x̄ values larger than µ, whereas other produce x̄ smaller than µ.

3. They can be fairly close to the mean µ, or also quite far off the population mean µ.

The sampling distribution of x̄ provides important information about the behavior of the statis-
tic x̄ and how it relates to the population mean µ.

Considering how many different samples of size five (for 60 students it’s C60
5 ) there are in this

class this process is very cumbersome. Fortunately, there are mathematical theorems that help
us to obtain information about the sampling distributions.

1.2 The Sampling Distribution of a Sample Mean

x̄ based on a large sample tends to be closer to µ than does x̄ based on a small n. This can be
explained by the following theoretical results.

Lemma: Suppose X1, . . . , Xn are random variables with the same distribution with mean µ
and population standard deviation σ.

Now look at the random variable X̄.

1. The population mean of X̄, denoted µX̄ , is equal to µ.

2. The population standard deviation of X̄, denoted σX̄ , is

σX̄ =
σ√
n

This means that the sampling distribution of x̄ is always centered at µ and the second statement
gives the rate the spread of the sampling distribution (sampling variability) decreases as n
increases.

Definition:
The standard deviation of a statistic is called the standard error of the statistic (abbreviated
SE).

The standard error gives the precision of statistic for estimating a population parameter. The
smaller the standard error, the higher the precision.

The standard error of the mean X̄ is SE(X̄) = σ/
√

n.

Now that we learned about the mean and the standard deviation of the sampling distribution of
the sample mean, we might ask, if there is anything we can tell about the shape of the density
curve of this distribution.
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1.3 Central Limit Theorem

This section explains why the normal distribution is so important in statistics.
The result is surprising. The Central Limit Theorem states, that under rather general con-
ditions, means of random samples drawn from one population tend to have an approximately
normal distribution. We find that it does not matter which kind of distribution we find in
the population. It even can be discrete or extremely skewed. But if n is large enough the
distribution of the mean is approximately normal distributed.
That is under all the possible distributions we find one family of distributions, that describes
approximately the distribution of a sample mean, if only n is large enough.

Central Limit Theorem
If random samples of n observations are drawn from any population with finite mean µ and
standard deviation σ, then, when n is large, the sampling distribution of the mean X̄ is ap-
proximately normal distributed, with mean µ and standard deviation σ/

√
n.

Remarks:

• If the population itself is normal X̄ is normal distributed for all n, so that n does not
have to be large.

• When the sampled population has a symmetric distribution, the sampling distribution of
X̄ becomes quickly normal. Compare the example below for n = 3.

• If the distribution is skewed, usually for n = 30 the sampling distribution is already close
to a normal distribution.

Example:
Consider tossing n unbiased dice and recording the average number of the upper faces.
The graphs display the sampling distribution for X̄ for n = 1, 2, 3, 4.
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Looking at only n = 4 dice leads to a distributions that is very close to a normal distribution.

Summary: Assume that the measurements in a population follow all the same distribution
with finite mean µ and standard deviation σ. Then

• The mean of the sampling distribution of the mean X̄ of n observations holds

µx̄ = µ

• The standard deviation of the sampling distribution of the mean X̄ of n observations
holds

σX̄ =
σ√
n

• The sampling distribution of the mean X̄ of n observations is approximately normal
distributed, if n is large enough.

Example:
The duration of Alzheimer’s disease from the onset of symptoms until death ranges from 3 to
20 years. The mean is 8 years and the standard deviation is 4 years.
Looking at the average duration for 30 randomly selected Alzheimer patients:
What is the probability that the average duration of those 30 patients is less than 7 years?

P (X̄ < 7) = P

(
X̄ − µX̄

σx̄

<
7− µX̄

σx̄

)
standardize

= P

(
z <

7− 8

4/
√

30

)

= P (z < −1.37)

= 0.0853 Table

1.4 The Sampling Distribution of the Sample Proportion

Look now at a binomial distributed random variable X. That is the experiment is the result
of n trials, in which the event of interest occurs with probability p. X is the random variable
that gives the number out of n trials in which the event of interest occurred.
For example:
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• flip n coins and observe, how often tail was tossed.

• look at n people and survey how many have an IQ above 120.

• check for n students, how many are ”nonresidents”.

• check how many out of n patients survived at least five years, after a specific cancer
treatment.

• count how many out of n clinical tests are positive.

Looking at a random sample of the size n, the probability p can be estimated by calculating
the sample proportion of Successes. If X gives the count of Successes out of n trials

p̂ =
X

n
.

The random variable X is binomial distributed with mean pn and standard deviation equals√
p(1− p). Since p̂ is simply the value of X expressed as an proportion, the sampling distribu-

tion of p̂ is identical to the probability distribution of X, except that it has a new measurement
scale.

Now rewrite the sample proportion in the following way.

First let single observations be encoded in the following way.

Xi =





0 if individual is labelled F

1 if individual is labelled S

Then is p̂ =
∑

Xi/n = X̄. So that the Central Limit Theorem applies to p̂.

Result:

• µp̂ the mean of the sampling distribution of p̂ equals p: µp̂ = p

• The population standard deviation is

σp̂ =

√
p(1− p)

n

• The sampling proportion p̂ is for large n approximately normal distributed. (Central
Limit Theorem)

A rule of thumb states that the Central Limit Theorem can be applied if:

np > 5 and n(1− p) > 5

Example:
A study showed, that the proportion of people in the 20 to 34 age group with an IQ (on the
Wechsler Intelligence Scale) of over 120 is about 0.35.

Calculate the probability for the event that in a sample of 50 there are more than 30 people
with an IQ of at least 120.
First obtain µp̂ and σp̂ for the distribution of the sample proportion p̂.
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• µp̂ = p = 0.35

• σp̂ =
√

p(1−p)
n

=
√

0.35(1−0.35)
50

= 0.06745.

P (p̂ > 30
50

) = P

(
p̂− µp̂

σp̂

>
0.6− µp̂

σp̂

)
standardize

= P

(
p̂− 0.35

0.06745
>

0.6− 0.35

0.06745

)
use above results

= 1− P

(
p̂− 0.35

0.06745
≤ 3.706

)
Rule for Compliments

= 1− 0.9999 CLT, np = 17.5 > 5, Table3

= 0.0001

We calculated that the probability that more than 30 out of 50 people (between 20 and 34)
have an IQ greater than 120 is 0.0001. It is highly unlikely!
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