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Parietal cortex: from sight to action 
Giacomo Rizzolatti, Leonardo Fogassi and Vittorio Gallese 

Recent findings have altered radically our thinking about 

the functional role of the parietal cortex. According to this 

view, the parietal lobe consists of a multiplicity of areas with 
specific connections to the frontal lobe. These areas, together 
with the frontal areas to which they are connected, mediate 

distinct sensorimotor transformations related to the control of 
hand, arm, eye or head movements. Space perception is not 
unitary, but derives from the joint activity of the fronto-parietal 
circuits that control actions requiring space computation. 
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Abbreviations 
3D 
AIP 
IPL 
IPS 
LIP 
MDP 
MIP 
MST 
MT 
PIP 
PO 
RF 
SPL 
VIP 

three-dimensional 
anterior intraparietal (area) 
inferior parietal lobule 
intraparietal sulcus 
lateral intraparietal (area) 
medial dorsal parietal (area) 
medial intraparietal (area) 
medial superior temporal (area) 
middle temporal visual (area) 
posterior intraparietal (area) 
parieto-occipital (area) 
receptive field 
superior parietal lobule 
ventral intraparietal (area) 

Introduction 
The parietal lobe of primates consists of three main 
sectors: the postcentral gyrus, the superior parietal lobule 
(SPL) and the inferior parietal lobule (IPL). Together, the 
two lobules (SPL and IPL) form the posterior parietal 
lobe, classically seen as a large association region in 
which different types of sensory information converged 
to provide space perception and a general schema of 
the body [1,2]. At the time, space perception was seen 
as unitary and independent of action systems. Modern 
data have challenged this view. The posterior parietal 
lobe is now thought to consist of a mosaic of areas, each 
receiving specific sensory information and transforming 
it into information appropriate for action [3,4], with no 
identifiable ‘space area’. Rather, space perception appears 
to be a secondary result of the activity of a series of 
sensorimotor circuits, each of which encodes the spatial 
location of an object according to its own motor purposes 
and transforms it into a potential action [4,.5,6’]. 

The main aim of the present review is to focus on 
recent data concerning the functional properties of ‘visual’ 

parietal areas related to the organization of hand, arm 
and head movements. Oculomotor circuits will not be 
considered. 

Inferior parietal lobule 
Figure 1 depicts the main areas of the parietal lobe and 
agranular frontal cortex. Among the inferior parietal areas, 
two areas have recently attracted particular attention: areas 
AIP (anterior intraparietal) and VIP (ventral intraparietal). 
We will discuss their properties in particular detail. 

Fiaure 1 
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Lateral and dorsal view of macaque monkey cerebral cortex, 
highlighting the main areas of the parietal lobe and of the agranular 
frontal cortex. (a) Frontal and parietal areas of the macaque monkey. 
The intraparietal sulcus is opened (shaded gray) to show areas 
located in its medial and lateral banks. Frontal agranular cortical 
areas are classified according to Matelli ef a/. [51]. (b) Occipital and 
posterior parietal areas. Lunate, intraparietal and parieto-occipital sulci 
are opened (shaded gray) to show the location of different areas 
within the sulcal cortex, including areas V6/PO and V6A. Modified 
from Colby et al. (411. 

Area AIP and related areas 
Neurons that discharge in response to the presentation 
of specific three-dimensional (3D) objects and/or during 
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grasping movements directed towards these objects were 

described several years ago by Sakata and co-workers [7,8]. 
These neurons are concentrated in area AIP a specific 
sector of the lateral bank of the intraparietal sulcus (IPS) 
in front of the lateral intraparietal (LIP) area [9]. 

Recently, Sakata and co-workers ([lO”l; M Kusunoki, 
Y Tanaka, H Ohtsuka, K Ishiyama, H Sakata, $0~ Neurosci 
Abstr 1993, 19770) described neurons that most probably 
represent a stage between occipital visual processing 
and area AIP They identified two sets of neurons: 
one set that selectively discharges in response to long 
and thin 3D bars (axis-orientation-selective neurons) 
and another set that discharges in response to 3D flat 
stimuli (surface-orientation-selective neurons). Both sets 
of neurons are sensitive to binocular disparity. These 
neurons are located predominantly in the caudal part of the 
lateral bank of the IPS, posterior to area LIP and anterior 
to area V3A [lO”]. 

Injections of neural tracers in area AIP, after electro- 
physiological characterization, have demonstrated that its 
main target is area F5 (M Matelli, G Luppino, A Murata, 
H Sakata, Sot Neut-osci Abstr 1994, 20:404.4), which is 
characterized by neurons responding to 3D stimuli [ll] 
and coding goal-related hand actions [12]. Areas AIP and 
F5 appear to be part of a visuomotor circuit specific for the 
organization of grasping movements [ 131. 

This view was tested recently by studying the effects of 
reversible independent inactivation of these two areas in 
the monkey ([ 14.1; see also [15]). The main effect was a 
disruption of preshaping of the hand during grasping. The 
deficit consisted in a mismatch between the 3D features 
of the object to be grasped and the posturing of finger 
movements. When the monkey was successful in grasping 
the object, the grip was very often achieved only after 
several corrections that relied on tactile exploration of the 
target. The deficits following inactivation of either area 
AIP or area F5 were very similar. 

In spite of the similarity of the deficits following 
inactivation of areas AIP and F5, the role they play 
in grasping movements is probably different. On the 
basis of the functional properties of the two areas [13] 
and theoretical considerations ([16]; AH Fagg, MI Arbib, 
unpublished data), we have developed a model [14*] 
whereby area AIP provides multiple descriptions of a 
3D object, thus ‘proposing’ several grasping possibilities 
to area F5 -for example, a cup can be grasped on the 
handle or on its upper border. Area F5 then selects the 
most appropriate type of grip on the basis of contextual 
information (e.g. purpose of the action, spatial relation 
with other objects, etc.). Furthermore, F5 fragments the 
selected grip into different phases, such as aperture and 
closure, and simultaneously keeps active the set of AIP 
neurons that also encode the selected grip. 

Our grasping model predicts that AIP neurons have a 
short-term memory of the object to be grasped. This 
possibility was tested in a behavioral paradigm that 
allowed a dissociation between the memory of the object 
and the type of grip employed [17”]. The results 
showed that both ‘visual-dominant’ and ‘visual-and-motor’ 
AIP neurons [9] are endowed with a mechanism for 
remembering objects (or some of their features) [17”]. 

Area VIP and related areas 
Area VIP occupies the fundus of the IPS along its middle 
third (Figure 1). It extends up from the fundus onto both 
the lateral and the medial banks of the sulcus [18]. Area 
VIP receives a rich visual projection from the middle 
temporal visual area (MT) [19,20]. Other visual inputs 
come from the medial superior temporal area (MST), 
the fundus of superior temporal area (FST) and the 
parieto-occipital area (PO). In addition, several cortical 
sources (e.g. area PE and area PF) provide area VIP with 
somatic information. 

The functional properties of VIP neurons have been 
investigated by Colby et a/. [18] and Duhamel et a/. ([Zl’]; 
F Bremmer, J-R Duhamel, S Ben Hamed, W Graf, Sot 
Neurosci Abstr 1996, 22:666.8). They have described two 
main classes of VIP neurons: purely visual neurons and 
bimodal (visual and tactile) neurons. Purely visual VIP 
neurons are strongly selective for the direction and speed 
of the stimuli. Some respond preferentially to expanding 
or contracting stimuli. Their receptive fields (RFs) are 
typically large. Bimodal neurons respond independently 
to visual and tactile stimulation. Tactile RFs are located 
predominantly on the face. Tactile and visual RFs are 
aligned in a congruent manner, with the central visual field 
having its tactile counterpart on the nose and mouth area 
and the peripheral visual field on the side of the head or 
body. Directional selectivity is the same in both modalities 
[Zl’]. A special type of bimodal VIP neurons is formed 
by cells that respond to visual stimuli located proximal to 
the tactile field. Some of these neurons are activated only 
when 3D objects move towards or, more rarely, away from 
the animal [18]. 

In some VIP neurons, the visual RF changes position 
with gaze shift; in others (about 30%), the visual RF 
remains in the same spatial position with respect to the 
head in spite of gaze shift (F Bremmer, J-R Duhamel, 
S Ben Hamed, W Graf, Sot Neurosci Abstr 1996, 22:666.8). 
The independence of RF position from gaze direction 
characterizes also those VIP neurons that respond to 
stimuli moved in the sagittal plane. The fact that 
VIP neurons code in nonretinal coordinates and the 
characteristics of their RFs suggest that VIP neurons play 
a role in acquiring visual targets for somatic movements, 
most probably those of the head [6’]. 

These findings are of great interest because they demon- 
strate that in the IPL, target location may be coded in 
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two ways: by using a retinocentric code, as described 
in the oculomotor area LIP (see [Z]), and by using a 
nonretinotopic code, as shown in area VIP [18]. A similar 
dichotomy between oculomotor and somatomotor areas 
has been observed in the frontal lobe. RFs are coded 
in retinocentric coordinates in frontal eye fields (FEFs) 
[23], whereas they are coded in spatial coordinates in area 
F4 [24,‘25,26**,27]. Furthermore, bimodal neurons with 
tactile and visual RFs are present extensively in area F4 
[26**,28-311. Some of them have tactile RFs on the face 
and visual RFs around it. Others have tactile RFs on the 
body, the arms and the hands, and the visual RFs located 
around the tactile ones. In contrast to area VIP, purely 
visual neurons are rare in area F4 [32]. 

The tight link between areas VIP and F4 was confirmed by 
anatomical studies. Matelli et a/. (M Matelli, G Luppino, 
A Murata, H Sakata, Sot Neurosci Abstr 1994, 20:404.4) 
found that an injection limited to area F4 labeled 
extensively neurons in area VIP The region of projection, 
however, from the frontal lobe to area VIP is larger than 
area F4, as it also extends upwards into the posterior bank 
of the superior arcuate sulcus in lateral F7 (JW Lewis, 
DC Van Essen, Sot Neurosci Abstr 1996, 22:160.4). 

Iriki et al. [33”] have recently published a fascinating 
experiment showing that the parietal bimodal visuotactile 
system is involved also in acquiring visual information for 
arm reaching. They recorded neurons from the fundus and 
medial bank of the IPS. Some neurons had tactile RFs on 
the hand and forearm (distal neurons), whereas others on 
the shoulder and face (proximal neurons). Visual RFs were 
located around the tactile ones and were independent 
of gaze. When the hand moved, the visual RFs moved 
with it. Most interestingly, the visual RFs expanded when 
the animal was trained to use a tool to interact with 
objects. This expansion, which involved both proximal and 
distal neurons, was not related to tool holding but to the 
monkey’s ‘intention’ to use it. 

Other areas that should be involved in visuomotor 
transformations for head, face and arm movements are 
areas PF, PG, and a newly discovered small region in 
the depth of the IPS, just rostra1 to area LIP [34], 
possibly belonging to it. However, with the exception of a 
short report by Graziano et a/. (SA Graziano, CG Gross, 
T Fernandez, Sot Neurosci Abstr 1996, 22:160.5) on PF 
bimodal neurons with tactile RFs located on the arm, there 
are no new reports on areas PF and PG. These authors 
found that in PF unlike in F4, the visual RFs (that are 
very large) did not move when the arm moved. 

Very recently, Snyder et a/. [35**] explored area LIP 
and a region immediately medial and posterior to it 
using a behavioral test that allowed them to differentiate 
arm-related activity from eye-related activity. They found 
that, when appropriately tested, almost all the neurons 

showed an activity preceding either eye saccades or 
reaching movements. 

Superior parietal lobule 
Unlike the IPL, the SPL is essentially related to the 
elaboration of somatosensory information. The anatomical 
dichotomy between the IPL (in large part visual) and the 
SPL (mostly somatosensory) fits well their physiological 
properties ([36-381; see also [39,40’]). However, recent 
data have shown that the posterior part and some of the 
mesial parts of the SPL receive visual information (see 
below). Here, we will review the properties of the visual 
sectors of the SPL and, in particular, the areas forming the 
anterior bank of the parieto-occipital sulcus. 

Areas of the anterior bank of the parieto-occipital sulcus 
There is converging evidence that the anterior bank of 
the parieto-occipital sulcus is formed by two areas: V6/PO, 
which occupies its most ventral part, and V6A, which 
is located more dorsally [41,42”]. V6/PO is a purely 
visual area. It receives retinotopically organized input 
from areas Vl, V2, V3, V4 and MT [41]. In each of 
these areas, the projection to area V6 arises from the 
representation of the periphery of the visual field. The 
study of single neurons of V6 showed that its neurons 
have functional properties typical of the visual areas, being 
either orientation selective or direction selective, or both 
[41,43]. All V6 neurons have visual RFs organized in 
retinotopic coordinates, many of them being modulated by 
the position of the eye [43]. 

Area V6A, in addition to having visual neurons functionally 
indistinguishable from those of V6/PO, is characterized by 
the presence of visual-unresponsive (nonvisual) neurons 
and of neurons with complex visual properties [42”]. Par- 
ticularly interesting, among the latter, are neurons whose 
RF locations do not change in space with gaze shifts. 
Therefore, these neurons, referred to as ‘real position cells’ 
[44], appear to encode space in nonretinotopic coordinates, 
similar to neurons in the VIP-F4 circuit. 

More recently, Galletti et al. [45’] discovered that many 
of the so-called nonvisual neurons in area V6A discharge 
during arm movements; their discharge is time-locked 
to the onset of arm movement and often is direction 
selective. These ‘arm movement’ neurons are also driven 
by passive somatic stimulation. 

From these data it is clear that areas V6/PO and V6A 
are markedly different. The former is a visual area that 
provides a relatively direct route from the occipital lobe 
visual field periphery to the parietal lobe. Its output 
terminates in various areas of the IPS, including areas 
VIP, LIP and MIP (medial intraparietal). Its hierarchical 
level in the visual pathways appears to be similar to 
that of areas MT and V4 [41]. In contrast, area V6A 
appears to be functionally similar to parietal areas, showing 
nonretinotopic RFs and motor properties. A detailed study 
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contrasting the output of V6/PO with that of V6A is 
lacking. Shipp and Zeki (S Shipp, S Zeki, Eur.J Neurosci 
1995, suppl 8:32.24), however, have described a direct 
route from area V6A to the dorsal premotor cortex. 

Other superior parietal lobule areas 
Recently, it was shown independently by Boussaoud [46] 
and Caminiti [47] and their co-workers that injections of 
retrograde neural tracers in the dorsal premotor cortex 
along its rostro-caudal extension mark different parts of 
the SPL. Posterior injections label area PE, whereas 
rostra1 injections label areas MIP, PGm, V6A and MDP 
(medial dorsal parietal). These data, which fit very well the 
organization of the visual afferents to the SPL (see above), 
were confirmed by the observation that the number of 
neurons that increase their activity at the presentation of a 
stimulus (signal-related neurons) is high in the rostra1 part 
of the dorsal premotor cortex and low caudally, whereas, 
conversely, movement-related neurons follow an opposite 
gradient [40*]. 

Very little is known about area MIP and the other 
areas that may convey information to the dorsal premotor 
neurons. Colby and Duhamel [6*,48] reported that, 
moving from the upper part of the medial bank of 
the IPS to its depth, purely somatosensory, bimodal 
(visual and somatosensory) and purely visual neurons were 
progressively encountered. Johnson et a/. [40*] found that 
in SPL, as in the dorsal premotor cortex, there is a gradient 
in the percentage of signal-related and movement-related 
neurons, the latter being more frequent in area PE and the 
former in area MII? 

Conclusions 
Reaching and grasping circuits: what can one conclude? 
We know much more about grasping mechanisms than 
about those subserving reaching. Although this may seem 
surprising, in fact it is not. Grasping implies a transforma- 
tion of a real thing (an object) into a movement. Reaching 
implies the transformation of an abstract construct (space) 
into a movement. The understanding of how we get this 
construct is difficult, per se, and, in addition, hindered 
by the historical primacy of vision in the neurosciences. 
In the newborn, space does not appear to be unitary but 
is formed by many spaces, each of which is related to 
a different motor activity [49]. Visual information is later 
matched on these motor spaces. Furthermore, in the early 
stages of development, visual space has a limited depth, 
being restricted essentially to personal and peripersonal 
space [49]. Therefore, space is initially motor; later, it 
becomes linked to teleception. From this perspective, 
the functional’ properties of premotor neurons of area 
F4 represent the initial step (and the outcome) of the 
active interaction of an individual with its body. From 
this interaction, a ‘motor space’ (which includes space 
sectors around the different body parts) is formed. This 
‘motor space’ is then coupled with sectors of visual space. 
According to this view, the visual RFs of VIP neurons 

should reflect this inverse transformation from movement 

to space. 

Confirming the developmental studies, clinical evidence 
also indicates that reaching is not unitary. Patients with 
optic ataxia are able to perform correctly movements 
directed towards the body but not away from it, suggesting 
that movements away and towards the body are mediated 
by different circuits. It is interesting to note that typically 
in optic ataxia, reaching is impaired mostly for targets in 
the periphery of vision. Furthermore, in these patients, 
misreaching is commonly detected only when the patients 
cannot see their hand. As optic ataxia is caused by lesions 
of the SPL (see [3,50]), these data suggest that the SPL 
system is particularly important for the control of the 
arm during the transport phase, especially when it is 
performed without foveation. Consistent with this view are 
the physiological data reviewed above that the nodal visual 
point of the SPL system is area V6/PO, in which the visual 
periphery and not the fovea is represented. This visual 
information, together with the proprioceptive ipformation 
typical of the SPL, should be used to monitor and control 
arm position during the transport phase. 

Space versus action 
Is visual information reaching the parietal lobe used 
for action or for space perception? In agreement with 
Milner and Goodale [3], the data reviewed here clearly 
point out that the parietal lobe is involved also in 
visuomotor transformations that do not require an analysis 
of space, such as in object grasping. Furthermore, clinical 
observations that patients with SPL lesions show optic 
ataxia but no deficit in space perception [SO] suggest 
that even some visuomotor transformations requiring space 
analysis do not necessarily intervene in space perception. 
Unlike Milner and Goodale [3], we do not think, however, 
that these considerations are sufficient to rule out a 
specific role of the parietal lobe in space perception. Our 
proposal is that the IPL-with its circuits that acquire 
visual information and transform it into eye, head and 
arm movements-represents the anatomical substrate at 
the basis of space perception. Clinical data showing that 
lesions of the IPL produce spatial neglect [SO] support this 
contention. 
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