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Using multi-neuron population recordings for neural

prosthetics

John K Chapin

Classical single-neuron recording methods led to ‘neuron-
centric’ concepts of neural coding, whereas more recent
multi-neuron population recordings have inspired ‘population-
centric’ concepts of distributed processing in neural systems.
Because most neocortical neurons code information coarsely,
sensory or motor processing tends to be widely distributed
across neuronal populations. Dynamic fluctuations in neural
population functions thus involve subtle changes in the
overall pattern of neural activity. Mathematical analysis of
neural population codes allows extraction of ‘motor signals’
from neuronal population recordings in the motor cortices,
which can then be used in real-time to directly control
movement of a robot arm. This technique holds promise for
the development of neurally controlled prosthetic devices and
provides insights into how information is distributed across
several brain regions.

Just as the advent of fine electrode recordings in the 1940s shifted our
neurophysiological focus from the whole brain to the single neuron,
the advent of multi-neuron recordings has shifted our focus to the
study of the neuronal population as a whole. Single-neuron record-
ings can define receptive fieldsb2, but these receptive fields are prob-
lematic in that they do not specify a neuron’s actual response to a
stimulus, but merely its potential responses, summed across the range
of conditions in which it is tested. In the somatosensory cortex, recep-
tive fields can be so large that they cannot (by themselves) accurately
specify stimulus information®. Another drawback to single-neuron
recordings is that there can be a marked variability in the neurons’
responses, even to controlled, discrete stimuli. In awake animals,
much of this ‘noise’ is also related to spontaneously fluctuating brain
states, such as attention or intention*°.

Although this coarse coding and volatility diminishes the useful-
ness of single-neuron recordings for extracting sensory or motor
information from the brain, it increases the usefulness of multi-neu-
ron recordings. A central tenet of parallel distributed processing the-
ory® is that neural information is spread across populations of
neurons, and that each neuron contributes to the processing of many
different informational factors. If so, one should be able to extract
more information from the brain by recording simultaneously from
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large numbers of neurons. Over time, this basic hypothesis has
sparked the development of a variety of electrode arrays and elec-
tronic devices for this purpose. Several laboratories use chronically
implanted electrode arrays because they allow stable recordings of
discriminated single neurons and/or field potentials from up to hun-
dreds of electrodes over long time periods’~1°.

The development of such methods allowed neural recordings to
be analyzed at the level of neuronal populations, as well as the sin-
gle-neuron level. Because the same variables (e.g., neurons) are
recorded simultaneously, one can directly measure the evanescent
patterns of synchronous activity that typically occur in neuronal
populations during spontaneous fluctuations in brain and/or
behavioral state. This ability to statistically account for covariance
within neuronal ensembles provides a major advantage over the
alternative approach of recording the same single neurons in serial
order. Whereas multi-neuron recordings can use neuronal covari-
ance patterns to detect spontaneous changes in brain state, in serial
single-neuron recordings, such variance is normally unexplained
and thus must be considered as noise. One can utilize this approach
to measure complex and heterogeneous changes in neuronal popu-
lation activity recorded over many time frames, ranging from frac-
tions of seconds, as in brain oscillations, to several hours or days, as
in drug or hormone effects'’—22.

How then does one usefully extract the information contained
within neuronal populations? Statistical approaches, such as linear or
nonlinear multivariate regression and discriminant and principal
components analysis (PCA), provide a more accurate estimation of
neural information than the direct summation of neuronal receptive
(or motor) fields, unless their unique features are laboriously meas-
ured in isolation (see ref. 23, p. 456461 this issue). Linear regression,
for example, can use neuronal populations in the motor cortex to pre-
dict arm movement and control external devices!'>!4. Time-binned
neural and arm position data from several training trials are used to
‘fit’ a regression equation that specifies a weighting for each neuron’s
contribution to the arm movement. Sequential arm positions can
then be predicted in real time by weight-summing the neuronal pop-
ulation activity for each new time bin. The accuracy of this prediction
(i.e., its correlation with real arm movement) monotonically increases
with the number of recorded neurons!".

A major advantage of generating predictions of neural population
coded outputs is that they can be directly compared to real external
events (e.g., movements). Thus one can easily test the usefulness of dif-
ferent mathematical approaches to extract the neuronal information.

Though conventional statistics include many approaches and pro-
vide clear measures of significance?4, other approaches may often be
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Figure 1 Neuronal population response maps. a
Normalized 3D surfaces depict post-stimulus

responses of the same 45 simultaneously

recorded neurons (in rat S1 cortex) to 20
vibromechanical touch of (a) palm pad 3,

(b) palm pad 2 and (c) their difference. Each
neuron’s peristimulus responses were 10
standardized into Zscores. (Mean and standard
deviation (s.d.) of responses measured in the
15-ms period before the stimulus were used to
standardize all peristimulus bins.) For each plot,
the x axis shows neuron number (1-45), the
yaxis is response latency (-15 ms to 35 ms
around stimulus), and the z axis (in s.d.) depicts
standardized response level in relief and color
codes (calibrated in bars at right of a-c). Panel ¢
is also a 3D surface, but viewed from above to
show the precise spatiotemporal difference 10
pattern between palm pad 3 (positive in
yellow/red) and palm pad 2 (negative in
green/blue). It also shows (in red) the spatial -10
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chronically implanted across the forepaw representation (electrode 1 most caudolateral; electrode 16 most rostromedial). A week later, 1-4 single neurons
were discriminated from each electrode, and recordings began. All stimuli used a vibromechanical stimulator with a 1-mm diameter shaft tip held just
above the skin between stimuli (0.5 mm displacement, 500 ps duration, 2 Hz, 340 stimuli). Figure from J.K.C. and S. Xu, unpublished data.

preferable because of particularities of data distribution or the
underlying hypothesis. Thus, neuronal population recordings have
been analyzed using Bayesian statistics, artificial neural networks
and kernel analysis.

Analysis of spatiotemporally distributed information

It is becoming clear that information in the brain is coded not only in
space (across neuronal populations) but also in time (temporal pat-
terning of neuronal responses). For example, vibromechanical touch
stimuli to the palm pads of rats produce discrete responses in the pri-
mary and secondary afferents, but as these signals ascend through the
thalamus and cortex, they become increasingly distributed across larger
portions of the somatosensory representation; they also show an
increasing range of response latencies'?. A different view of neural cod-
ing thus emerges from multi-neuron recordings in the thalamus and
cortex (Fig. 1). When the responses to fine punctate tactile stimulation

Forepaw touch stimuli
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of palm pad 3 and palm pad 2 were obtained from 45 neurons recorded
from a 16-electrode array covering the whole somatosensory cortical
forepaw area in a rat (Fig. 1la,b) and plotted as normalized three-
dimensional (3D) surface maps, both showed spatiotemporally com-
plex patterns of neural responses that were distributed across the whole
forepaw representation, even though the two stimulus sites were on
closely adjacent palm pads. Any mathematical procedure used to dis-
criminate between these two stimuli must incorporate both spatial and
temporal criteria, because the significant information is spread out over
many neurons and also over post-stimulus time?.

Encoding multi-functional and dynamical phenomena

Distributed processing theory posits that neurons are multi-
functional—that is, under different conditions they can manifest dif-
ferent information. As a simple example, Figure 2 shows recordings
from neuronal populations in the somatosensory cortex and thala-
mus that are rapidly shifting between two distinct functional states:
sensory response processing and spontaneous oscillations. Here we
show that one population coding method (PCA) can be used to
cleanly distinguish between these two functions, allowing their inter-
actions to be studied?”. These functional states cannot be differenti-

Figure 2 Interactions between sensory stimuli and brain dynamics in
neural populations. (a) Spike rasters of 36 simultaneously recorded neurons
in S1 cortex and 16 in VPL thalamus during 8 vibromechanical stimuli of
palm pad 3 (0.5 mm displacement, 500 ps duration, 1 Hz). Stimulation
times at arrows. (b) Population functions encoded using weights derived
from a principal components analysis (PCA) using neural data from the
whole experiment. PCA involved eigenvalue decomposition of the 52 x 52
correlation matrix between all neurons. Population functions for PCs 1-3
were constructed by binning the spiking data (10 ms), multiplying each
neuron’s firing by its weighting in PCs 1-3, and summing over all neurons.
Population functions are displayed as rate meters. Bin heights scaled as
weighted total firing rate (vertical axis). Figure from J.K.C. and S. Xu,
unpublished data.
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ated in single neurons because they are dis-
tinguished by the different levels of correla-
tion among neurons. Our PCA method
involves cross-correlating the binned spiking
activity of all recorded neurons over some
time period and then performing successive
eigenvalue rotations of this correlation
matrix to yield a set of uncorrelated princi-
pal components, each representing a
uniquely weighted average of the original
Neuronal populations  were
recorded in the cortex and thalamus during
rhythmic oscillations and also during 1-Hz
stimulation of the forepaw (Fig. 2a). We used
three neural population functions, weighted
to depict principal components 1-3 (PC1-3)
of the whole neuronal population (Fig. 2b).
Whereas PC1 resembles an unweighted pop-
ulation average, PC2 segregates the paw
stimuli (positive) from the main thalamo-
cortical oscillatory regime (negative), and
PC3 isolates a secondary oscillatory regime
emanating from the thalamus. In statistical
terms, each neuron contributes weighted
portions of its variance to each of these three
components, which here discriminate
between different functional activities of the
overall population. Although the correctness
of various methods for deriving and apply-
ing the weights will be investigated for years,
this general concept has proved to be quite
useful for understanding population coding
in neuronal populations, especially those

neurons.

Monkey uses pole
to move robot arm

Multi-
electrode Pole
recordings
N Brain activity moves robot arm
Discrimin_ate multi- 3 Decode monkey’s intended Move robot arm
neuron signals movements

Figure 3 Brain-controlled neural prosthesis. (a) Monkey is initially trained to sit in a chair and
manipulate a pole to move a cursor toward a target depicted on a computer screen (not depicted
here). This pole movement is also translated into equivalent movement of a robot arm. Three tasks are
trained in serial order: (1) move pole to a particular target position, (2) squeeze force transducer on
pole to reach a force target, and (3) do 1 (move) and then 2 (squeeze) in sequence. The first
experiments involve ‘pole control’ (depicted in green) in which the pole output goes to the robot
controller, which moves the robot and/or its gripper. Feedback from the robot then moves the cursor on
the screen. Once this task is learned, the control of the robot is changed to ‘brain control’ (depicted in
red), utilizing multi-neuron recordings obtained from microwire electrode arrays implanted in several
contralateral and ipsilateral sensorimotor cortices, including primary motor (M1), dorsal premotor
(PMd), primary somatosensory (S1) and posterior parietal (PP) cotices. Multi-neuron recordings are
amplified, filtered and discriminated by an acquisition system box (Plexon Inc.), as controlled by a
graphics interface on a host computer that also functions as a data server. A client computer receives
spike times and field potential data from the server in real time, and uses adaptive linear or nonlinear
fitting algorithms to ‘predict’ the pole movement, transforming the neural data into neuronal
population functions suitable for controlling the robot and/or its gripper. The resulting feedback from
sensors on the robot, including arm position, velocity and/or force is then represented with a cursor on
the monkey’s computer display. The monkey ultimately learns to use the decoded neural population
prediction functions to directly control the cursor movement toward the target, often without moving
the arm at all. Figure adapted from ref. 31.

discussed below.

Extraction of neuronal population information: neural prostheses
The most visible success of multi-neuron recording to date has been
in extracting information from the brain in real time and using this
information to control external devices?. We originally developed
such technology for online population encoding of multi-neurons in
the motor cortex (M1) and thalamus (ventral lateral) in rats trained
to press a lever to move a robot arm that retrieved water from a drop-
per?’. Population encodings of the brain’s ‘motor signal’ were elec-
tronically implemented in real time, allowing the robot arm to be
moved in direct proportion to the population function amplitude.
The rat thereafter obtained its daily water by using this neural signal
alone to control the robot’s movement to the water dropper. Over
time, the rat was able to obtain its water without actually pressing the
lever, suggesting that the M1 cortex neurons had learned a direct rep-
resentation of the robot arm, independent of the real arm.

Similar results have now been obtained in monkeys!'>?8-31, derived
from simultaneous recording from hundreds of neurons across the
primary motor, premotor, somatosensory and parietal cortices
(Fig. 3). An offline computer was used to calculate the neuronal
weightings for multivariate linear regression predictive filters (as
described above). An on-line computer then used these filters to con-
vert real-time neuronal activity into neural population codes that
simultaneously specified three dimensions of hand position, velocity
and/or force. These population-coded outputs were then used to con-
trol a robot arm and/or a cursor on a computer screen with good
accuracy (R*> = 0.5-0.8) compared with the monkey’s arm itself.

Though the quality and quantity of useful coding information
obtained in these recordings varied across the bilaterally recorded
sensorimotor cortical areas, all of these areas contributed at least
some useful information to the control. This is consistent with previ-
ous findings that cortical neurons tend to be widely tuned'=32%3% and
thus can be active in a wide variety of experimental conditions. Much
of the success of multiple-electrode recording is attributable to this
wide tuning, because the investigator can depend on obtaining useful
signals from the majority of recorded neurons.

Future of neural population recording

Thanks to these early successes, this field may soon have commercial
implications. The Nicolelis laboratory has already demonstrated the
ability of simultaneously recorded neurons in the brains of awake
human patients to predict arm and hand movements32. Further suc-
cesses will necessitate further research in a number of areas, including
development of biocompatible ultra-miniaturized multi-electrode
designs, implantable electronics to amplify and process these record-
ings, and embedded computer systems to control the output func-
tions, such as computer screens, robots and wheelchairs. Moreover,
this neuroprosthetic technology will be joined with others, such as
‘functional neuromuscular stimulation’, which uses stimulating elec-
trodes to activate a paralyzed patient’s muscles. As another example,
our current focus is to convert the open-loop brain-controlled
robotic systems into a closed-loop neural interface by using multi-

electrode arrays for both recording and stimulation in the brain33.
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Finally, non-invasive techniques, such as EEG, MEG, fMRI and
infrared (IR) methods may also be important in many of these tech-
nologies. Overall, this explosion of information will also require a
major neuroinformatic effort to design database methods capable of
efficiently storing the necessary data so that they can be quickly mobi-
lized for use in controlling a robot arm or a real arm in real time.

At the same time, basic scientists will find increased impetus to
work on the problem of population coding in the brain. This will
require more cooperation between experimentalists, theoreticians
and neuroinformaticists, particularly in the sharing of datasets.
Though the current academic and funding culture tends to discour-
age such interactions, focused government efforts can in theory
overcome these difficulties.
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