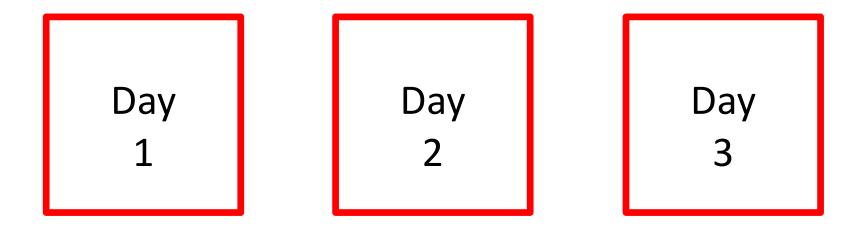

Repeated Measures Analysis of Variance

Review


Univariate Analysis of Variance

Repeated Measures Analysis of Variance

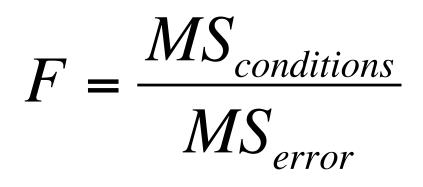
Repeated Measures Analysis of Variance

Basic Logic of RM ANOVA

Hypothesis Testing

 $H_o: \upsilon_1 = \upsilon_2 = \upsilon_3$

 $H_1: \upsilon_1 \neq \upsilon_2 \neq \upsilon_3$ (at least one difference)

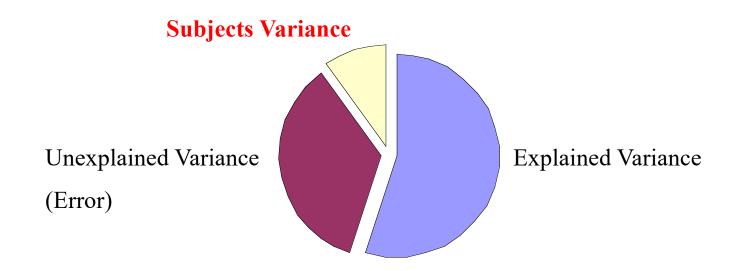

Basic Logic of RM ANOVA

 $F = \frac{MS_{conditions}}{MS_{error}}$

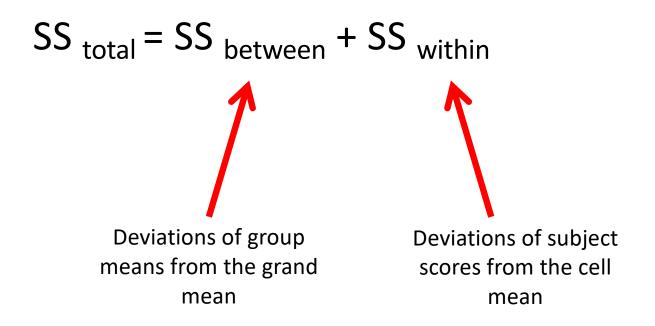
Variance explained by treatment

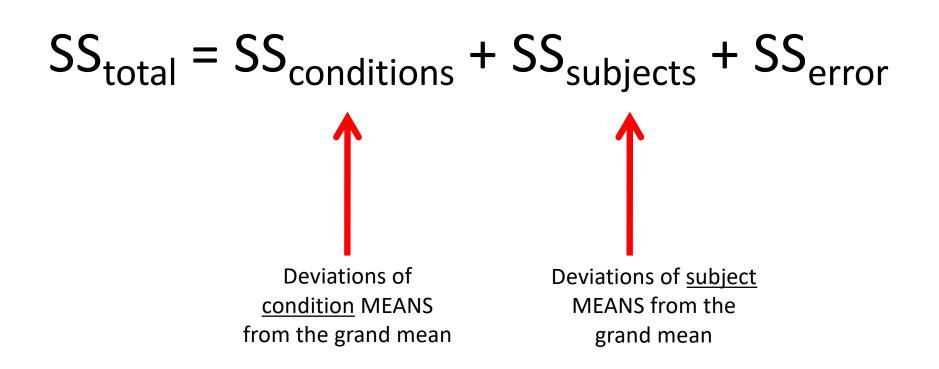
Variance explained by error

Basic Logic of RM ANOVA



Note, Ms_{conditions} is the same as Ms_{between}, whats different is the error term.


Between Subjects ANOVA


Unexplained Variance (Error) **Explained Variance**

Within Subjects ANOVA (Repeated Measures)

Recall, between subjects ANOVA

An Example

	Condition				
Р	One	Two	Three		
1	4	4	6		
2	3	4	6		
3	4	3	5		
4	3	5	5		
5	3	4	7		

	Condition					
Р	One	Two	Three	$\frac{1}{x}$		
1	4	4	6	4.666		
2	3	4	6	3.666		
3	4	3	5	4		
4	3	5	5	4.333		
5	3	4	7	4.666		
\overline{x}	3.4	4	5.4			
					$\overline{x}_{}$	4.266

Recall...

 $SS = (x - \overline{x}_{GM})^2$

SS_{conditions}

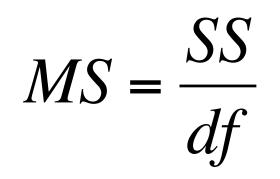
$$SS_{conditions} = n \sum (\overline{x}_{conditions} - \overline{x}_{..})^2$$

$$SS_{conditions} = 5[(3.4 - 4.266)^2 + ...]$$

 $SS_{conditions} = 10.533$

$$SS_{subjects} = k \sum (\overline{x}_{subjects} - \overline{x}_{..})^2$$

$SS_{subjects} = 3[(4.666 - 4.266)^2 + ...]$


$SS_{subjects} = 2.266$

$$SS_{error} = SS_{total} - SS_{conditions} - SS_{subjects}$$

$SS_{error} = 18.933 - 10.533 - 2.266$

 $SS_{error} = 6.133$

Recall...

	Condition				
Р	One	Two	Three		
1	4	4	6		
2	3	4	6		
3	4	3	5		
4	3	5	5		
5	3	4	4		

$$df_{total} = N - 1$$

	Condition				
Р	One	Two	Three		
1	4	4	6		
2	3	4	6		
3	4	3	5		
4	3	5	5		
5	3	4	4		

 $df_{conditions} = k - 1$

	Condition				
Ρ	One	Two	Three		
1	4	4	6		
2	3	4	6		
3	4	3	5		
4	3	5	5		
5	3	4	4		

 $df_{subjects} = n - 1$

	Condition			
Р	One	Two	Three	
1	4	4	6	
2	3	4	6	
3	4	3	5	
4	3	5	5	
5	3	4	4	

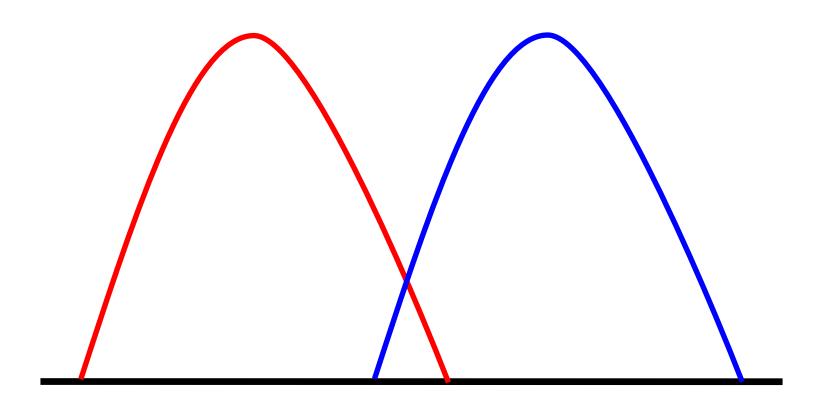
Repeated Measures ANOVA Summary Table

Source	df	SS	MS	F
Subjects	n-1	SS _{subjects}		
Conditions	k-1	SS _{conditions}	$rac{SS_{conditions}}{df_{conditions}}$	$\frac{MS_{conditions}}{MS_{error}}$
Error	(n-1)*(k-1)	SS _{error}	$rac{SS_{error}}{df_{error}}$	
Total	N-1	SS _{total}		

Repeated Measures ANOVA Summary Table

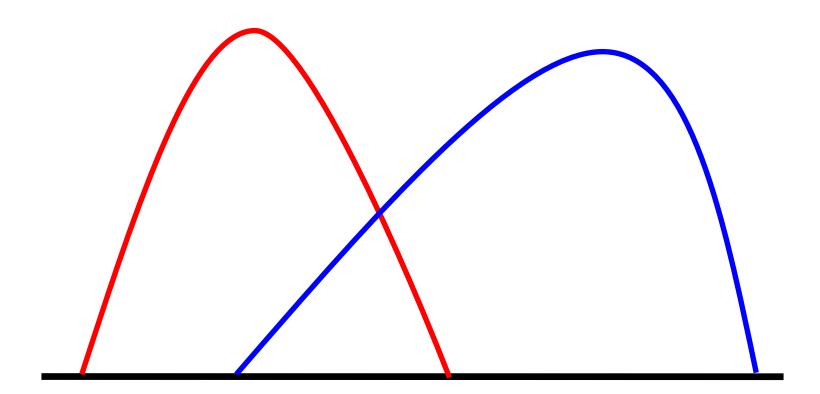
Source	df	SS	MS	F
Subjects	4	2.266		
Conditions	2	10.533	5.267	6.870
Error	8	6.133	0.767	
Total	14	18.933		

Post-Hoc Comparisons: Simple Effects Analysis


	Condition				
Р	One	Two	Three		
1	4	4	6		
2	3	4	6		
3	4	3	5		
4	3	5	5		
5	3	4	7		

	Condition				
Р	One	Two	Three		
1	4	4	6		
2	3	4	6		
3	4	3	5		
4	3	5	5		
5	3	4	7		

	Condition				
Р	One	Two	Three		
1	4	4	6		
2	3	4	6		
3	4	3	5		
4	3	5	5		
5	3	4	7		


Assumptions of repeated measures ANOVA

1. Normality

Assumptions of repeated measures ANOVA

1. Normality

Assumptions of repeated measures ANOVA

2. Homogeneity of Variance

$\sigma_1^2 = \sigma_2^2 = \sigma_3^2$

3. The Assumption of Sphericity

Correlations among pairs of variables are equal...

NO!

Sphericity

- Sphericity is the property that the covariance of the difference scores of the IV levels are same
- Violations generally lead to inflated F statistics (and hence inflated Type I error).

Sphericity Maulchy's Test

What does it mean?

Effect	DFn DFc	F F	р	ges			
condition	2 30	4.47309	0.01994544	* 0.07827009			
Mauchly's Te	st for Sph	ericity					
Effect	W	р					
condition	0.93920	0.64466	537				
Sphericity Corrections							
Effect GG	е	p[GG]	HFe	р			
condition 0.9	42692	0.02222867	1.073846	0.01994544			

Okay, if the sphericity test is not significant...

Keep on going...

Okay, if the sphericity test is significant...

 Check epsilon. The epsilon means the departure from the sphericity, in other words, how far the data is from the ideal sphericity.

The epsilon is a number between 0 and 1, if the epsilon is equal to 1, the data have sphericity.

Look at...

\$ANOVA

Effect DFn DFd F p p<.05 ges 2 condition 2 30 4.473097 0.01994544 * 0.07827009

\$`Mauchly's Test for Sphericity`
Effect W p p<.05
2 condition 0.9392082 0.6446637

\$`Sphericity Corrections`
 Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 condition 0.942692 0.02222867 * 1.073846 0.01994544 *</pre>

Which one should I look at?

Generally, Greenhouse-Geisser.

BUT... if GG epsilon > 0.75

USE Huynh-Feldt.

WHY? GG tends to be too strict when epsilon is large.

ALSO, use Huynh-Feldt when n is small (less than 15)

What do I do with it?

The test provides you with the corrected p value.

Look at...

\$ANOVA

Effect DFn DFd F p p<.05 ges 2 condition 2 30 4.473097 0.01994544 * 0.07827009

\$`Mauchly's Test for Sphericity`
Effect W p p<.05
2 condition 0.9392082 0.6446637

\$`Sphericity Corrections`
 Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 condition 0.942692 0.02222867 * 1.073846 0.01994544 *</pre>

But you also have to...

Correct df's... (effect and error term)

Multiply then by Epsilon:

2 * **0.942692 = 1.885**

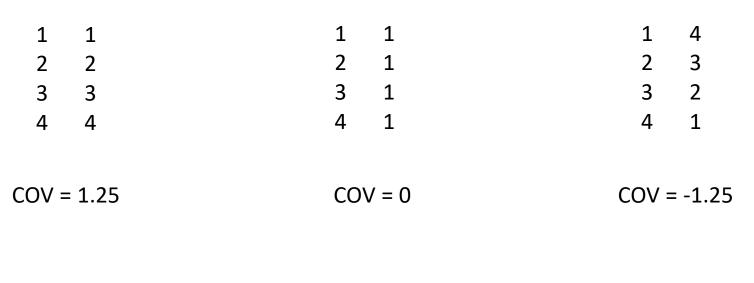
Mauchly's Test of Sphericity ^b							
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Epsilon ^a Greenhouse- Geisser Huynh-Feldt Lower-bound		
Condition	.720	.657	2	.720	.781	1.000	.500

Tests of Within-Subjects Effects Measure:MEASURE 1						
Source		Type III Sum of Squares	df	Mean Square	F	Siq.
Condition	Sphericity Assumed	10.533	2	5.267	6.870	.018
	Greenhouse-Geisser	10.533	1.931	5.456	6.870	.020
	Huynh–Feldt	10.533	2.000	5.267	6.870	.018
	Lower-bound	10.533	1.000	10.533	6.870	.059
Error(Condition)	Sphericity Assumed	6.133	8	.767		
	Greenhouse-Geisser	6.133	7.723	.794		
	Huynh–Feldt	6.133	8.000	.767		
	Lower-bound	6.133	4.000	1.533		

But what is SPERICITY?

Variance

 $s^2 = \frac{\sum (X - \overline{X})^2}{N - 1}$


Covariance

The degree to which two variables vary together.

$$COV_{xy} = \frac{\sum (x - \overline{x})(y - \overline{y})}{N - 1}$$

Covariance

The degree to which two variables vary together.

1	2
2	4
3	9
4	16

COV = 5.875

3. Sphericity

	Condition				
	One	Two	Three	Four	
One	S_{1}^{2}				
Two		S ₂ ²			
Three			S ₃ ²		
Four				S_4^2	

3. Sphericity

	Condition			
	One Two Three Fou			Four
One	S_{1}^{2}	S ₁₂	S ₁₃	S ₁₄
Two	S ₂₁	S ₂ ²	S ₂₃	S ₂₄
Three	S ₃₁	S ₃₂	S ₃ ²	S ₃₄
Four	S ₄₁	S ₄₂	S ₄₃	S_4^2

3. Sphericity: Compound Symmetry

	Condition			
	One	Two	Three	Four
One	S ₁ ²	S ₁₂	S ₁₃	S ₁₄
Two	S ₂₁	S ₂ ²	S ₂₃	S ₂₄
Three	S ₃₁	S ₃₂	S ₃ ²	S ₃₄
Four	S ₄₁	S ₄₂	S ₄₃	S_4^2

The variances AND covariances are equal

3. Sphericity: <u>Difference Scores</u>

	Condition			
Р	C1-C2	C1-C3	C1-C4	
1	x ₁₁ -x ₁₂	x ₁₁ -x ₁₃	x ₁₁ -x ₁₄	
2	x ₂₁ -x ₂₂	x ₂₁ -x ₂₃	x ₂₁ -x ₂₄	
3	x ₃₁ -x ₃₂	x ₃₁ -x ₃₃	x ₃₁ -x ₃₄	
4	x ₄₁ -x ₄₂	x ₄₁ -x ₄₃	x ₄₁ -x ₄₄	

The variances of the difference scores are equal

3. Sphericity: Covariance Matrix

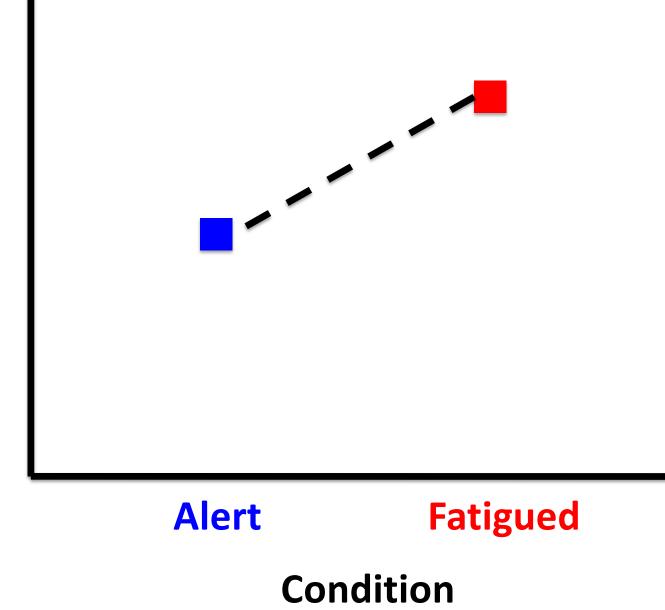
$$S_{x-y}^2 = S_x^2 + S_y^2 - 2S_{xy}$$

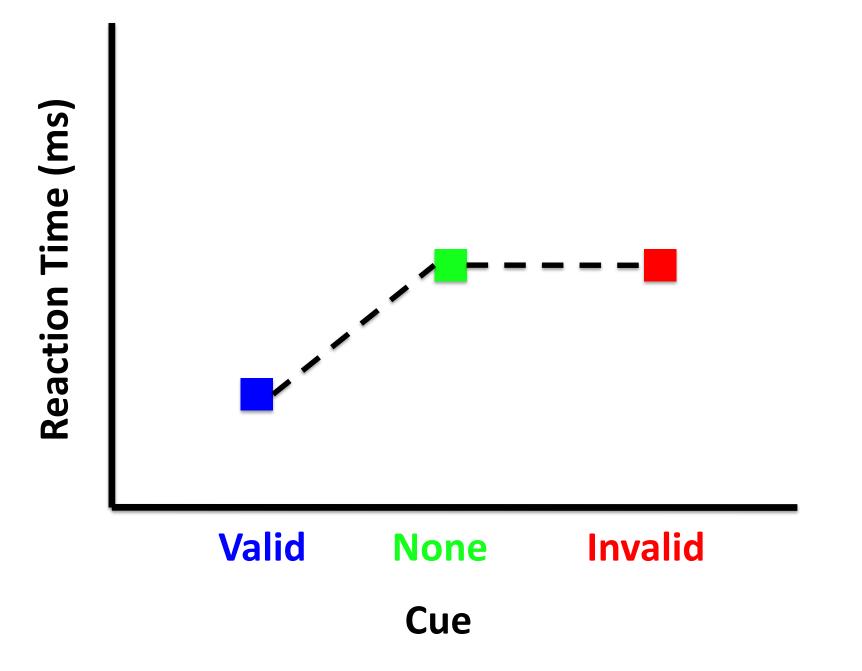
The variances of the difference scores are equal

Factorial Repeated Measures ANOVA

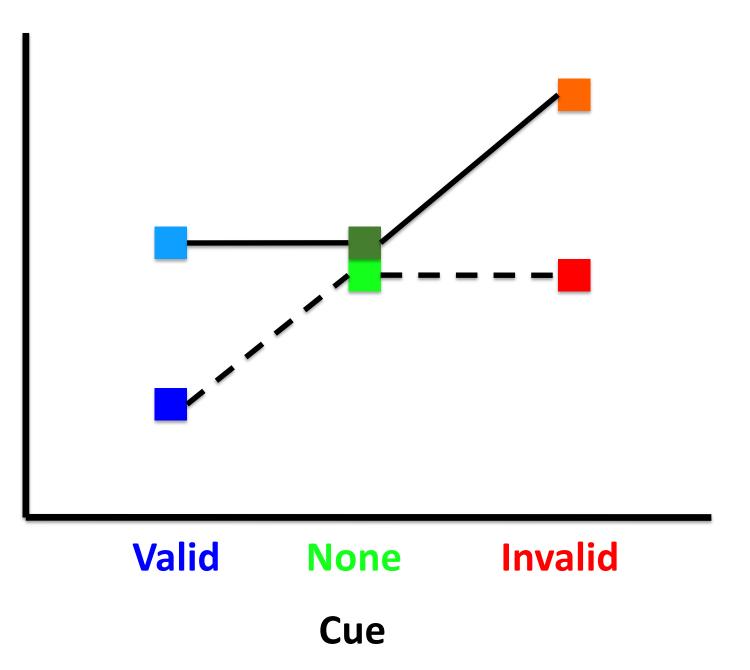
An Example

Participants in an experiment are asked to perform a cued reaction time task when they are alert and when they are fatigued. As such, you have participants performing a reaction time task with three conditions (valid cue, no cue, invalid cue) when they are either alert or fatigued.


An Example


Main Effect: Fatigue (Alert, Fatigued)

Main Effect: Condition (Valid Cue, No Cue, Invalid Cue)


Interaction: Fatigue x Condition

Reaction Time (ms)

