Primer

Motor prediction
Daniel M. Wolpert* and
J. Randall Flanagan'

T'he concept of motor prediction was
first considered by Helmholtz when
trying to understand how we localise
visual objects. 'To calculate the
location of an object relative to the
head, the central nervous system
(CNS) must take account of both the
retinal location of the object and also
the gaze position of the eye within
the orbit. Helmholtz’s ingenious
suggestion was that the brain, rather
than sensing the gaze position of the
eye, predicted the gaze position
based on a copy of the motor
command acting on the eye muscles,
termed efference copy. He used a
simple experiment on himself to
demonstrate this. When the eye is
moved without using the eye
muscles (cover one eye and gently
press with your finger on your open
eye through the eyelid), the retinal
locations of visual objects change,
but the predicted eye position is not
updated, leading to the false
perception that the world is moving.
The concept of efference copy was
firmly established by experimental
work of Von Holst and Sperry in the
1950s. Since then the idea that we
predict the consequences of our
motor commands has emerged as an
important theoretical concept in all
aspects of sensorimotor control.

In general, prediction refers to
estimating future states of a system.
The extent to which our CNS can
influence these future states covers a
continuous range. For example, most
people have little influence on the
behaviour of the stock market, but a
great deal of influence over the
behaviour of their own body. We
consider motor prediction as
representing predictions of systems
which are directly and usually

immediately influenced by our motor
commands. Therefore, motor
prediction could predict how our arm
moves in response to a motor
command, as well as how a car we are
driving responds to our foot
movement on the pedals. The
relationship between a motor
command sent to the eye and the
consequences for eye position are
relatively simple. However, when we
consider limb motion the relationship
between our motor commands and
behaviour is far more complex due to
the dynamics of multi-joint motion.
This complexity is even greater
when we consider the plethora of
interactions that our bodies can
engage in with the environment,
such as tool use. To predict the
consequences of a motor command in
such complex situations requires a
system that can simulate the dynamic
behaviour of our body and
environment. Such a system is
termed an internal forward model as
it is internal to the CNS, models the
behaviour of the body and captures
the forward or causal relationship
between actions and their
consequences.

Skilled motor behaviour relies on
accurate predictive models of both
our own body and tools we interact
with. As the dynamics of our body
change during development and as
we experience tools which have their
own intrinsic dynamics, we need to
acquire new models and update
existing models. Thus forward
models are not fixed entities but
must be learned and updated
through experience. Forward models
can be trained and updated using
prediction errors, that is by
comparing the predicted and actual
outcome of a motor command. Well
established computational learning
rules can be used to translate these
errors in prediction into changes in
synaptic weights which will improve
future predictions of the forward
model. Here we review the uses of
motor prediction in sensorimotor
control.
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State estimation

Knowing our body’s state, for
example the positions and velocities
of our body segments, is fundamental
for accurate motor control. However,
sensory signals that convey
information about state are subject to
significant delays due to receptor
transduction, neural conduction and
central processing. Moreover, sensors
are not perfect and provide
information which is corrupted by
random processes, known as noise.
Using sensory information to
estimate the state can lead to large
errors especially for fast movements,
and when this erroneous state is used
to control movement it can lead to
instability. An alternative is to
estimate state using prediction based
on motor commands. Here the
estimate is made ahead of the
movement and therefore is better in
terms of time delays, but the
estimate will drift over time if the
forward model is not perfectly
accurate. The drawbacks of both
these mechanisms can be
ameliorated by combining sensory
feedback and motor prediction to
estimate the current state. Such an
approach is used in engineering and
the system which produces the
estimate is known as an observer, an
example of which is the Kalman
filter. The major objectives of the
observer are to compensate for the
delays in the sensorimotor system
and to reduce the uncertainty in the
state estimate which arises through
noise inherent in both the sensory
and motor signals. Such a model has
been supported by empirical studies
examining estimation of hand
position, posture and head
orientation.

Skilled motor behaviour involves
different modes of control which rely
on prediction and sensory feedback
to different extents. These models
of control are nicely illustrated
within the context of object
manipulation. When holding an
object in a precision grip with the
fingertips on either side, sufficient
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To prevent a ketchup bottle from slipping,
sufficient grip force must be exerted to
counteract the load. When the load is
increased in a self-generated manner (left
hand strikes the ketchup bottle, top), a
predictor can use an efference copy of the
motor command to anticipate the upcoming
load force and thereby generate grip which

parallels load force with no delay. However,
when the load is externally generated
(another person strikes the bottle, bottom),
then it cannot be accurately predicted. As a
consequence, the grip force lags behind the
load force and the baseline grip force is
increased to compensate and prevent

slippage.

grip force must be generated to
prevent slip due to load force
exerted by the object. When the
object’s behaviour is unpredictable,
sensory feedback provides the most
useful signal for estimating load. For
example, when flying a kite or
holding the hand of a rambunctious
child, we need to adjust our grip in

response to the unpredictable
actions of the kite or child. When
dealing with such unpredictable
objects our grip force is modified
reactively in response to sensory
feedback from the fingertips, with
the consequence that grip tends to
lag behind load. However, when we
direct behaviour towards objects in

the environment that exhibit stable
properties, predictive control
mechanisms can be effectively
exploited (Figure 1). For example,
when the load is increased by a self
generated action, such as moving the
arm, the grip force increases in
parallel with load force with no
delay. Sensory detection of the load
is too slow to account for this
increased grip force which relies on
predictive processes. Such predictive
control is essential for the rapid
movements commonly observed in
dexterous behaviour.

Sensory confirmation and
cancellation

In addition to state estimation,
prediction allows us to filter sensory
information, attenuating unwanted
information or highlighting
information critical for control.
Sensory prediction can be derived
from the state prediction and used to
cancel the sensory effects of
movement (reafference). By using
such prediction, it is possible to
cancel out the effects of sensory
changes induced by self-motion,
thereby enhancing more relevant
sensory information. For example,
predictive mechanisms underlie the
observation that the same tactile
stimulus, such as a tickle, is felt less
intensely when it is self-applied.
This mechanism has been supported
by studies in which a time delay is
introduced between the motor
command and the resulting tickle
(Figure 2). The greater the time
delay the more ticklish the percept,
presumably due to a reduction in the
ability to cancel the sensory
feedback based on the motor
command.

Similarly, sensory predictions
provide a mechanism to determine
whether motion of our bodies has
been generated by us or by an
external agent. For example, when |
move my arm, my predicted sensory
feedback and the actual feedback
match and I therefore attribute the
motion as being generated by me.
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An experiment in which subjects tickle
themselves through a robotic interface (not
shown). In the top Figure the motion of the
right hand is directly transmitted to the left.
Using a predictor the sensory consequences
of this motion are estimated and subtracted
from the actual sensory feedback leaving little
discrepancy. In the lower Figure a time delay
was introduced between the motion of the

right hand and the effect on the left. The
motion of the right hand and stimulus on the
left hand is the same as in the upper figure.
However, the temporal rearrangement
between cause and effect means that the
prediction is out of synchronisation with the
actual feedback, leading to a large sensory
discrepancy which is felt as tickle.

However, if someone else moves my
arm, my sensory predictions are
discordant with the actual feedback
and I attribute the movement as not
being generated by me. Therefore, in
general, movements predicted based
on my motor command are labelled
as self-generated and those that are
unpredictable are labelled as not
produced by me. Frith has proposed
that a failure in this mechanism may
underly delusions of control in
schizophrenia, in which it appears to
the patient that their body is being
moved by forces other than their
own. Interestingly, Sirigu and

colleagues have shown that damage
to the left parietal cortex can lead to
a relative inability to determine
whether viewed movements are ones
own or not.

The discrepancy between actual
and predicted sensory feedback is
essential in motor control. For
example, when we pick up an object
we anticipate the timing of discrete
events such as object lift off. The
CNS is particularly sensitive to the
occurrence of unexpected events or
the absence of an expected event.
T'hus if the object is lighter or
heavier than expected, and therefore
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lifts off too early or fails to lift off,
reactive responses are envoked. The
CNS seems to specifically monitor
these critical moments to confirm
the progress of the task and to
engage subsequent phases in the
cascade of actions underlying natural
tasks.

Context estimation

Humans demonstrate a remarkable
ability to generate accurate and
appropriate motor behaviour under
many different and often uncertain
environmental conditions. It has
been proposed that the CNS uses a
modular approach in which multiple
controllers co-exist and are selected
based on the movement context.
Therefore when we pick up an
object with unknown dynamics we
need to identify the context and
select the appropriate controller.
One possible solution to this
identification and selection problem
has been proposed in the form of
the MOdular Selection and
Identification for Control
(MOSAIC) model. The idea is that,
when lifting an object, the brain
simultaneously runs multiple
forward models that predict the
behaviour of the motor systems
when interacting with different
previously learned objects (Figure
3). Each forward model generates a
prediction of the sensory feedback
that should be obtained for its
context. Moreover, each forward
model is paired with a
corresponding controller forming a
predictor-controller pair. If the
prediction of one of the forward
models closely matches the actual
sensory feedback, then its paired
controller will be selected and used
to determine subsequent motor
commands. In computational terms,
the sensory prediction error from a
given forward model is represented
as a probability; if the error is small
then the probability that the forward
model is appropriate is high. The set
of probabilities from an array of
forward models is used to weight the
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A schematic of context estimation with just
two contexts, that a teapot is empty or full.
When a motor command is generated, an
efference copy of the motor command is
used to simulate the sensory consequences
under the two possible contexts. The
predictions based on an empty teapot
suggest that lift-off will take place early

compared to the full teapot context and that
the lift will be higher. These predictions are
compared with actual feedback. As the
teapot is in fact empty, the sensory feedback
matches the predictions of the empty teapot
context. This leads to a high likelihood for the
empty teapot and a low likelihood for the full
teapot.

outputs of the corresponding
controllers.

Mental practice, imitation and social
cognition

Not only is prediction essential for
motor control, it may also be
fundamental for high level cognitive
functions including action
observation and understanding,
mental practice, imitation and social
cognition. The forward model may
provide a general framework for
prediction in all of these domains. In
these situations a forward model is
used to predict the sensory outcome

of an action, without actually
performing the action. For example,
it is conceivable that mental practice
can improve performance by tuning
controllers or selecting between
possible mentally rehearsed actions.
Imaging studies have shown that
brain areas active during mental
rehearsal of an action are strikingly
similar to those used in performing
the action. Moreover, the durations
of mentally simulated movements
are tightly correlated with the
durations of actual movements, a
correlation that is lost with damage to
parietal cortex.

In motor control, a forward model
can be used to predict the sensory
consequences of our actions. In
perception of action we could use
multiple forward models to make
multiple predictions and, based on
the correspondence between these
predictions and the observed
behaviour, we could infer which of
our controllers would be used to
generate the observed action.
Finally, in social interaction, a
forward social model could be used
to predict the reactions of others to
our actions. It may be that the same
computational mechanisms which
developed for sensorimotor
prediction have adapted for other
cognitive functions.
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