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Abstract

This paper considers the use of Hebbian learning rules to model aspects of development and learning,

including the emergence of structure in the visual system in early life. There is considerable physiological

evidence that a Hebb-like learning rule applies to the strengthening of synaptic efficacy seen in

neurophysiological investigations of synaptic plasticity, and similar learning rules are often used to show

how various properties of visual neurons and their organization into ocular dominance stripes and

orientation columns could arise without being otherwise pre-programmed. Some of the pluses and minuses

of Hebbian learning are considered. Hebbian learning can strengthen the neural response that is elicited by

an input; this can be useful if the response made is appropriate to the situation, but it can also be

counterproductive if a different response would be more appropriate. Examples in which this

outcome-independent Hebbian type of strengthening might account at least in part for cases in which

humans fail to learn are considered, and computational models embodying the Hebbian approach are

described that can account for the findings. At a systems level, Hebbian learning cannot be the whole story.

From a computational point of view, Hebbian learning can certainly lead one in the wrong direction, and

some form of control over this is necessary. Also, experimental findings clearly show that human learning

can be affected by accuracy or outcome feedback. Several ways in which sensitivity to feedback might be

incorporated to guide learning within a fundamentally Hebbian framework for learning are considered.
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How Far Can You Go with Hebbian Learning, and When Does it Lead you

Astray?

Connectionist models that learn using error-correcting learning rules have long played a role in the

exploration of issues in cognitive and linguistic development. In my own work in the late 1980’s and early

1990’s, I explored the idea that predictive error-driven learning provided the engine that drives cognitive

development (McClelland, 1994). The central idea was that the developing child is continually making

implicit predictions about the future state of the world based on current inputs, using an internal model

embodied in a connectionist network. Any mismatch between the child’s expectations and observed events

provides an error signal, indicating that the child’s internal model must be updated. Learning then occurs

by adjusting the parameters of the mind — the connection weights in the network — to reduce the

discrepancy between predicted and observed events. The necessary changes are determined by the use of

the back-propagation algorithm (Rumelhart, Hinton, and Williams, 1986).

I applied this predictive error-driven learning approach in a series of models (McClelland, 1989;

McClelland & Jenkins, 1991; McClelland, 1995) addressing aspects of cognitive development as revealed

by the work of Siegler (1976) on the Inhelder and Piaget (1958) balance scale task. Other models that use

back propagation to adjust connection weights to reduce the difference between predicted and observed

events include Elman’s (1990) model of the acquisition of syntax through learning to predict the next word

from previous words, and St. John and McClelland’s (1990) model of learning to comprehend sentences

through learning to predict the characteristics of the events described by sentences. The approach has also

been applied to the development of conceptual and physical knowledge during infancy (Munakata et al,

1997) and to many aspects of conceptual development during childhood (Rogers and McClelland, 2004).

Several papers in this volume present ongoing investigations that can be thought of as exemplifying this

approach.

In spite of my own continuing reliance on error-driven learning (especially in the work with Rogers,

cited above) I have recently begun exploring learning that can occur in the absence of an error signal

(McClelland, 2001). Specifically, I have been exploring the possibility that Hebb’s famous proposal for
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learning in neural systems may provide some guidance in addressing aspects of human learning –

particularly some of its failures as well as its successes – that may not be fully addressed within the

error-driven approach. In the course of this work I have also had occasion to begin to think more generally

about the fact that we learn from our own reactions and behaviors, as well as from the sequences of events

that we see in the world. The key questions addressed in this chapter are:

How well do networks based on Hebbian learning work as computational systems, and

when do they fail?

How do the successes and failures of Hebbian systems compare to the successes and

failures of human learning?

In the first part of this chapter, I will review Hebb’s proposal for learning and describe briefly some

of the neuroscience evidence that has supported the basic proposal and led to a family of Hebb-like

learning rules used widely in biologically-oriented models of neural network learning. The second part of

the chapter will explore some puzzling findings concerning successes and failures of learning that can be

addressed with models in which learning occurs on the basis of these biologically-oriented learning rules.

In the course of this we will encounter some evidence that makes it clear why the Hebbian approach is not

fully sufficient without some elaboration to encompass sensitivity to outcome information. This will lead to

a brief discussion of how such information may be accommodated within a fundamentally Hebbian

framework. I will conclude by returning to the broader question of how we learn from our own behavior. I

will suggest that even here Hebbian learning has its limits, and consider ways it may be regulated by

internally-generated signals that can be used to help guide our learning in the right directions.

Hebb’s proposal and the biology of Hebbian learning

In a famous passage in his 1949 book, Hebb proposed a neural mechanism for learning:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently

takes part in firing it, some growth process or metabolic change takes place in one or both cells

such that A’s efficiency, as one of the cells firing B, is increased.
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This passage captures the fundamental idea rather well, but is somewhat cumbersome to process. A

simpler, catchier wording captures the key idea quite succinctly:

Cells that fire together wire together.

The source of this latter version is unknown, but it is oft-repeated in discussions of Hebbian learning in

neuroscience.

Hebb’s proposal has been the inspiration of a wide range of biological research on long-term

potentiation, usually conducted in slices taken from the hippocampus of the rat. Long-term potentiation is

explored by providing a train of impulses to a bundle of fibers projecting to a target neuron (or group of

neurons) whose state of activation is being monitored (and potentially directly controlled). When the train

of impulses is strong, so that the post-synaptic neurons fire, the efficacy of smaller test pulses arriving on

the bundle of fibers is increased, or potentiated. Typically there is a short-lasting component that decays

over minutes, to leave a longer-lasting increment that can persist for the lifetime of the preparation; it is this

longer-lasting increment that we refer to with the phrase long-term potentiation (LTP). It is well-established

that a weak input, itself insufficient to produce LTP, could result in potentiation if paired with a stronger

input arriving on other fibers (Barrionuevo and Brown, 1983; McNaughton, Douglas, and Goddard, 1978).

Research on LTP and related phenomena is ongoing, and several important additional facts have

been established. One of these, the phenomenon of spike-time-dependent-plasticity (STDP), further

supports Hebb’s proposal. What STDP refers to is the finding that the exact timing of neural firing in pre-

and post-synaptic neurons can influence LTP. Indeed, under some conditions, LTP is maximal if the

sending neuron fires just before before the receiving neuron fires, which it must if it is to participate in

firing the receiving neuron; and LTP is reversed if sending neuron fires after the receiving neuron fires.

This phenomenon of STDP arises when individual pre-and-post synaptic events are considered at a fine

time grain. The role of spike-time-dependence in the living, behaving organism is debated, since the timing

of spikes tends to be quite variable; but STDP can help neurons become more selective for temporal

coincidences (Abbott & Nelson, 2000; Song, Miller, & Abbott, 2000), and is likely to receive considerable

further exploration as a mechanism for learning fine-grained temporal information.
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In any case, most existing models aimed at system-level and behavioral phenomena, including all

those to be considered here, do not address neuronal activity at this fine level of granularity. Instead such

models use continuous activation values, thought to reference the mean firing rate of a population of

neurons (generally it is assumed that a population is required to provide a sufficient signal to have an

impact on receiving neurons). At this level, LTP is generally found to be well-captured as depending on the

product of separate functions of pre- and post-synaptic activity:

∆wrs
� ε fr

�
ar � fs
�
as � (1)

Learning rules obeying relations of this form will be considered Hebbian; in the simple case where the

functions are identify functions ( fr
�
ar � � ar, fs

�
as � � as) and where ar and as take on activation values of 1

or 0, this learning rule captures the simple “cells that wire together fire together” idea in a straightforward

and simple form. However, in this form the rule is not quite adequate, either to capture findings from LTP

studies or to address issues in development and learning.

Two findings from LTP research have contributed to the specification of the functions f r and fs. (1)

Early research by Levy and Steward (1979) established that LTP is accompanied by a corresponding

depression of the efficacy of inputs that are not activated when the receiving neuron is activated. This

phenomenon, known as “hetero-synaptic long-term depression” can be captured in models by assuming

that the pre-synaptic function fs in the equation above is given by the difference between the sending unit’s

activation and the existing value of the connection weight:

fs
�
as � � � as � wrs � (2)

(2) Under conditions where strong trains of input stimulation produce LTP, repeated weak trains tend to

produce a long-term depression or reduction of synaptic efficacy (Dudek & Bear, 1993). This phenomenon

was predicted from a model of developmental stabilization in which the Hebbian update equation is

assumed to be non-monotonic (Bienenstock, Cooper, & Munro, 1982). With very low levels of activity in

the receiving neuron, ar, the value of the post-synaptic term is 0; as activity increases it first becomes

negative, then as activity increases further still it becomes positive. This non-monotonic function, called φ,

was proposed because it tends to encourage the stabilization of neuronal responses and to promote sharp
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tuning of the receiving neuron’s receptive field. This occurs because inputs that only weakly activate the

neuron are weakened still further. Although the use of the φ function would likely improve most models,

the slightly simpler form below, in which φ
�
ar � is approximated simply by ar, is used in many

computational models (Grossberg, 1976; Rumelhart & Zipser, 1985).

∆wrs
� εar

�
as � wrs � (3)

A variety of different names have been given to this learning rule. Although the name is a bit cumbersome,

I will refer to this rule as the Hebbian redistribution rule or the Hebbr rule for short, since it re-distributes

the incoming weights to a unit so that they are aligned with the input pattern activating the unit.

Applications of Hebbian Learning in Biological and Psychological Development

Insert Table 1 about here

Learning rules of the general form of Equation 1 have been used in many models addressing aspects

of biological and psychological development. On the biological side, Linsker (1986a, 1986b, 1986c) has

used a variant of Equation 1 to model the emergence of center-surround receptive fields, oriented edge

detectors, and ocular dominance columns during pre-natal development. Considering first center-surround

receptive fields, what Linsker observed is that the post-synaptic or receiving neuron tends to strengthen the

subset of its inputs that are most highly correlated with each other. To see why this should be, suppose

there are three inputs to a receiving neuron, and suppose that the first two occur together but the third

occurs when the other two do not (this very simple case represents the extreme of positive vs. negative

correlation; the same principle applies to less extreme cases). As illustrated in Table 1, the post-synaptic

term in the Hebbian learning rule will be larger, on average, when either the first or the second input is

active than it is when the third is active, so Equation 1 will cause the weights to the receiver from the first

and second units to increase more than the weight to the receiver from the third unit. This tendency, when

opposed by an overall tendency for connection weights to decay, can result in a situation where the inputs

that have relatively strong correlations with other inputs to the receiving unit end up with connection
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weights to the receiver that grow stronger over time, and those that are less correlated with the other inputs

to the receiver end up with weights that grow increasingly more negative.

Linsker (1986a,b) considered a network consisting of several two-dimensional arrays of cells

(similar to the retina and subsequent layers in the visual pathway), with the density of connections reaching

a given cell in one layer from the preceding layer obeying a decreasing (Gaussian) function of distance

between the positions of the cells in the two layers. He then considered what would happen if the cells in

the first layer fired spontaneously and independently. Because of the distance-dependence in the initial

connections, neighboring cells in the second layer are likely to receive connections from some of the same

cells in the first layer, so that the inputs — and therefore the resulting activations — of these neighboring

cells will be slightly correlated; the degree of correlation falls off with distance between the neighbors.

Now, the crucial observation concerns the inputs to cells at the third layer. Each third-layer cell receives

relatively dense projections from the cells at the corresponding location in the preceding layer, with density

falling off with distance. As a result, cells near the center of the projection to the third-layer cell tend to

have a greater correlation with all the other cells projecting to the third layer cell than those near the edges.

The result is that the connections from cells near the center of the projection end up with positive

connections and those near the edges end up with negative values, thereby producing center-surround

receptive fields. If the outputs of center-surround cells at the third layer are propagated forward through

several further layers, Linsker (1886b) found that edge detectors can emerge. The reasons for this are less

intuitive but still follow from the principle that the neurons at higher levels are maximizing their

responsiveness to maximally correlated clusters of cells in their inputs.

In order to organize the edge detectors that emerge at higher levels into orientation columns, Linsker

(1986c) assumed a particular “cortical interaction function” in which nearby neurons tend to excite each

other and neurons at a greater distance tend to inhibit each other. The result of this is that neighboring

neurons tend to encourage each other to have similar response properties, while neurons with slightly

greater separations tend to discourage this tendency. Orientation columns thus arise as the bi-product of

Hebbian learning coupled with the local excitatory and mid-range inhibitory interactions. Similar principles

(most importantly, the assumption the neighboring neurons in the same eye are more correlated during
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spontaneous pre-natal activity than neurons in two different eyes) result in the emergence of eye-selective

neurons and ocular dominance columns where inputs from the two eyes converge (Miller et al, 1989).

It should be noted that there is now evidence that some aspects of cortical neural organization are laid

down during early phases of development, before the developing neurons become active (Crowley & Katz,

2000). This organization may depend on chemical gradients and other mechanisms that channel axonal

growth, providing an initial coarse framework that encourages map-like spatial organization and alternating

stripes of innervation from the two eyes. Thus, by no means is it assumed that all aspects of neural

organization depend on Hebbian mechanisms. What is widely assumed is that a very basic framework

provided prior to the onset of activation is further refined and maintained by Hebbian learning mechanisms.

Insert Figure 1 about here

A particular network architecture that has proven fairly popular in models both of psychological and

biological development is shown in Figure 1. The particular network shown, based loosely based on the

proposals of Kohonen (1982), provides two two-dimensional sheets of neurons, corresponding perhaps to a

sensory surface (on the retina or the skin) called the input layer and a second layer of units called the

representation layer that receives projections from the input surface. As above, initial weak connections are

assumed to have a weak topographic bias, so that a neuron at a given location in the input layer will tend to

have slightly stronger connections to corresponding locations in the representation layer.

Within each layer, short-range excitatory connections and longer-range inhibitory connections are

assumed to enforce a scenario in which a localized blob of activity at the input layer gives rise to a

corresponding localized blob of activity at the receiving layer. (In Kohonen’s idealization of this, the

receiving unit with the strongest weighted input is simply chosen as the winning unit. It and its neighbors

are assigned activation values ranging from 1 to 0, following a Gaussian falloff with distance from the

winning unit. Similar architectures have frequently been used to model refinement of map-like cortical

representations (e.g., Goodhill, 1993).

In addition to modeling structural features of the underlying neural substrate, models similar to the
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one in Figure 1 have also been used extensively in models of development at a behavioral level. Two cases

in point are the models of category formation introduced by Schyns (1991) and the model of infant’s

sensitivity to causal even sequences introduced by Cohen, Chaput, and Cashon (2002). In both models, the

tendency of such map-like representations to group similar inputs together and to learn to respond to

patterns of coherent covariation in these inputs plays an important role in the accounts offered for

important aspects of cognitive development.

Computational Limitations of Hebbian Learning

Hebbian learning is relatively weaker than error-correcting approaches, where there is an explicit

measure of the network’s error and an explicit procedure for adjusting weights so as to minimize the error.

Such error correcting learning algorithms have been very successful in allowing networks to solve hard

problems, and in so doing to discover useful representations that aid in their solution. Networks trained

using strictly Hebbian approaches are not really constrained in this way. Thus, the computational question,

“How well do networks based on Hebbian learning work as computational systems?” is answered by many

modelers “not very well at all”. However, it may be worth noting that it is possible to guide some types of

networks that are trained with the Hebbr rule in Equation 3 to some extent. To see this, let us consider what

happens in a simple competitive network of the kind used by Rumelhart and Zipser (1985). Competitive

networks consist of two layers of units, as in the Kohonen model, but there are no lateral spread of

activation: When an input is presented, one of the representation units is chosen as the winner and is

allowed to adjust its connection weights according to Equation 3; the weights coming in to all other units

are left unchanged. In such a network, each competitive unit tends to pick out its own cluster of similar

inputs, a simple form of category formation. Each unit’s weight vector ends up positioned at the centroid of

its cluster, and the assignment of patterns to clusters tends to maximize within-cluster similarity. Thus the

approach provides a simple, input driven category-formation algorithm.

However, sometimes the similarity structure in a set of inputs isn’t a sufficient guide to their correct

categorization, as defined by environmental contingencies; at the very least, some aspects of similarity may

be more important than others, for example. Figuring out how to weight different kinds of similarity is one

of the strengths of error-correcting learning, and indeed, in such models, the similarity structure over inputs
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can sometimes be completely remapped at hidden layers using error correcting learning. The point I would

like to emphasize here, however, is that Hebbian learning mechanisms are not completely insensitive to

guidance by such things as category labeling information (or any information reliably correlated with

variable item properties). Specifically, within the Rumelhart and Zipser model, the clustering process can

be influenced by providing additional input, such as a category label, along with each pattern. The label

input is treated as just another part of the input pattern, and as such it tends to make the patterns that are

assigned the same label more similar to each other, and those assigned different labels less similar, thereby

altering the clustering of inputs. This method was used extensively to cause networks to group divergent

inputs together in the simulations of Rumelhart and Zipser (1985) and a similar approach was used by

Schyns in his Kohonen-network based model of perceptual category learning with and without labeling

information.

My point here is not to suggest that Hebbian learning is sufficient to solve all hard learning

problems. I would suggest, however, that the potential of this approach may be underestimated. Later in

the paper I will turn to other ways in which an inherently Hebbian learning process may be guided. For

now, however, I consider some characteristics of Hebbian learning which may help explain some successes

and failures of learning in experiments with human subjects.

Some Psychological Pluses and Minuses of Hebbian Learning

A key observation about Hebbian learning is that it tends to strengthen the pattern of neural response

that occurs to a particular input. When such responses are desirable, their strengthening can lead to

increased accuracy, fluency, etc., of the perception, emotion, thought or action associated with this neural

response, and this may well underlie the increased fluency of performance that occurs with practice in

many information processing tasks.

However, when the response that is evoked by an input is not desirable, its strengthening may have

deleterious consequences. One such deleterious consequence is the phenomenon of dystonia that can occur

in musicians and writers. Dystonia appears to reflect a tendency for the various digits of a person’s hand to

loose their independence and often to enter into a state of chronic activation experienced as a cramp.

Although the details are not fully clear about how these disorders develop, they do occur in individuals who



Hebbian Learning 12

persistently activate a set of muscles together, e.g. by gripping the neck of a violin or a writing implement

with several digits simultaneously. This continual co-activation of muscles (and the neurons that drive

them) could lead to Hebbian strengthening of synaptic connections among the neurons that control the

muscles, such that the intent to move any one muscle would then lead to co-activation of all of them. Once

set up, the dystonia may be very difficult to correct, especially in musicians who must continue to perform.

A second kind of deleterious consequence could occur in phobias and in racism. If you react in fear upon

seeing a snake or a person from a particular racial background, Hebbian synaptic strengthening may

increase the tendency to respond in this way, even if nothing bad actually happens. A third kind of case

may arise in persons—including scientists—who have long practiced a particular way of thinking, and are

then confronted with an entirely new and incommensurate pattern of thought. The idea that such

entrenched “habits of mind” may provide barriers to the discovery and acceptance of new scientific ideas is

discussed at length in two books by Howard Margolis (1987, 1993) a philosopher and historian of science.

For example, Margolis discusses nightmares Darwin had for years in which he was plagued by a vision of

the complex structure of the human eye. The entrenched habit of thinking of the eye as too complex to

arise without divine design was difficult apparently even for Darwin himself to shake.

In the remainder of the present article, I will provide an update on investigations of two other cases

in which Hebbian learning may provide at least part of the explanation for failures of human learning, and

where experimental evidence now suggests that procedures developed with the strengths and weaknesses of

Hebbian learning in mind can allow us to arrange conditions so that learning will be more successful. Both

puzzles arose within the context of the complementary learning systems model of McClelland,

McNaughton and O’Reilly (1995). According to this model, there is a gradual or slow learning system, in

the neocortex, which subserves the acquisition of language, conceptual knowledge, cognitive skills, and

many other sorts of cognitive abilities that are acquired gradually in the course of development. This

system is complemented by another, fast learning system, in the hippocampus and related structures in the

medial temporal lobes, that allows for the rapid formation of arbitrary associative conjunctions such as the

conjunction of a name with a face or the particular arbitrary combination of elements that together form an

experienced episode. This theory continues to provide a guiding framework for my own thinking about
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learning and memory in the brain, but a few years ago two things began to puzzle me.

Paradox of New Learning In Amnesia

One of these puzzles arose in thinking about new learning in amnesia. The amnesic syndrome, as

seen in patient HM (Scoville & Milner, 1957), results from removal or severe damage to the hippocampus

and related structures, and leaves the cortical learning system intact, which, on the theory, is capable of

gradual learning. And indeed, there is evidence of some slow learning in patients like HM. For example,

Milner et al (1968) had shown that HM was able to acquire some new declarative information. He was able

to identify John F. Kennedy from his profile on a coin, and he could report that Kennedy had been the

president and that he had been assassinated. Kennedy’s election and assassination both occurred after HM

became amnesic, so HM must have learned this information. Furthermore Gabrieli, Cohen, and Corkin

(1988) report evidence that HM learned new words that entered the language after he became amnesic.

Though his acquisition was certainly not normal, it was nevertheless clear that he had acquired the

meanings of some new words. However, in a laboratory experiment, Gabrieli et al. made absolutely no

progress in teaching HM the meanings of eight infrequent words. Several approaches were used to try to

get HM to learn the words. The main one involved showing a definition and giving HM a chance to choose

which of the eight words went with it. A response was required on every trial, and HM had to keep trying

until he chose the correct answer. The answer was then eliminated as a possibility, and the definition of

another word was then given. HM then had to choose from seven alternatives. This process iterated until a

single choice remained. HM practiced this task extensively over a several week period, but never made any

progress. At the end of the experiment he could define correctly only one of the words, a word he happened

to know before the beginning of the experiment. Other studies with HM reviewed in Milner et al (1968)

indicated that he was unable to learn even very short lists of arbitrary paired associates. I was puzzled by

these failures, because I expected HM to be able to learn new things, albeit gradually, via his largely intact

neocortical learning system, and because of the evidence that he had indeed learned some new things

during the time he was amnesic.

While one could envision a host of reasons for the apparent discrepancy indicated here, one

possibility that occurred to me was as follows. Perhaps the discrepancy reflects a special disadvantage that
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would accrue in learning new material if a patient who is only able to learn slowly were forced to make a

response on every learning trial. According to the complementary learning systems model, residual cortical

learning is expected to be very gradual, depending on the cumulation of very slight connection adjustments

on each learning opportunity. But many experiments (including paired-associate learning tasks and the

version of the word-learning task used by Gabrieli et al) combine a test of memory with every learning

trial. Since the amnesic patient will have learned very little from the first exposure to the correct answer,

the test of memory that occurs on the second exposure is very likely to result in an incorrect response. If

this incorrect response is strengthened (as it would be under the Hebbian approach), this would tend to

work against correct elicitation of the desired association. On subsequent trials this same process would

continue. Depending on details (e.g. the likelihood of the same interfering response being repeatedly

elicited by the test, etc), this could result in a complete failure to show improvement, even though

connection strengths are being adjusted on each learning trial. Possibly, connection weights promoting both

the correct and the incorrect response would be strengthened on every learning trial. While strengthening

the weights promoting the correct response would tend to lead to improvement, strengthening the weights

promoting an error would tend to increase interference that would counteract the improvement.

Prediction and Experiment

An obvious prediction follows from this account: A procedure in which the patient is given repeated

exposure to a set of cue-target pairs without requiring any response during exposure should be more likely

to result in correct responding than a procedure that attempts to elicit a response from each cue alone, prior

to exposure to the correct response. For future reference in this article, we call the former procedure a

study-only procedure, while we call the second procedure a generate-study procedure. The standard

procedure used in paired associate learning, often called the method of anticipation is of course an example

of a generate-study procedure, and the multiple-choice procedure of Cohen et al is similar to such a

procedure in that it tends to result in the elicitation of many errors before exposure to the correct

word-definition association.

Once this prediction became apparent, I quickly discovered several studies that have reported

advantages for amnesic patients with the study-only procedure (Baddeley and Wilson, 1994; Hamman and
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Squire, 1995; Hayman et al, 1993). The Hayman et al study is perhaps the most dramatic. The investigators

tested patient KC (an individual who became profoundly amnesic due to a closed-head injury arising from

a motor-cycle accident) with what might be called amusing word definitions, similar to some crossword

puzzle cues. KC was given repeated exposure to these materials to see if he would learn the experimenter’s

target response for each clue. Two examples were “a talkative featherbrain” (parakeet) or “Marlon

Brando’s wife” (godmother). Materials were divided into those for which KC had a pre-existing (incorrect)

association and those for which he drew a blank, and half of each type were presented repeatedly using the

study-only procedure, while the other half were presented using the generate-study procedure. Items were

further subdivided into those studied once per session and those studied twice per session. When tested

after several study sessions with all of the materials, KC showed a clear study-only advantage, and the

results were most dramatic for the case in which KC had a pre-existing response. Among items presented

only once per session, KC showed no progress in the generate-study condition, and he persisted in giving

the same response he had generated himself in most cases. In contrast he learned to produce the

experimenter’s response on 67% of the cases in the corresponding study-only condition (items for which he

had a pre-existing response, presented once per session). This finding is highly consistent with the idea that

elicitation of incorrect responses results in their strengthening, thereby either blocking learning of the

correct cue target association or perhaps simply masking evidence of learning of the experimenter-defined

cue-target association by maintaining the pre-existing response at sufficient strength to compete with the

experimental target item.

The findings in the Hayman et al experiment are supportive of an important role for Hebbian

strengthening of incorrect responses. However, other studies have produced much smaller study-only

advantages compared to a generate-study condition. For example, Hamman and Squire (1995) used

cue-target materials that form meaningful (but improbable) sentence-like units, such as “Medicine cures

HICCUPS”. Here “Medicine cures” is the cue and “HICCUPS” is the to-be-learned target response. Note

that the response words were chosen to be unlikely but meaningful, and were pre-tested to ensure that they

would be generated very infrequently to the cue prior to first exposure ( � 5%). While Hamman and Squire

did find a study-only advantage in this experiment, the effect was not large. Furthermore, the size of the
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effect was correlated with the degree to which the patient exhibited signs of a frontal deficit, and thus it was

suggested that the study only advantage might not be relevant to understanding failures of learning in

relatively pure cases of amnesia.

In this context I was lucky to have the opportunity to re-visit the issue in a collaborative study (Bird,

Cipolotti, Kwok, & McClelland, 2004) of patient VC, a severely amnesic patient that has been previously

characterized by Cipolotti et al. (2001) as having severe retrograde as well as anterograde amnesia as a

result of a hypoxic incident. VC’s damage appears to be restricted to the medial temporal lobes and he

shows no signs of frontal deficits. As in the Hamman and Squire study, we used improbable but meaningful

sentence-like materials. The study phase was not presented to VC as a memory experiment; rather he was

told for the study-only (SO) items to listen to each item as it was read by the experimenter, repeat it, and

then rate it for meaningfulness. For the generate-study (GS) items he was first given the cue, asked to

produce his own completion (which could, for example, have been “INFECTION” for the “medicine cures

...” example) and then to listen to the experimenter’s version, repeat it, and provide a meaningfulness

rating. Thus our procedure ensured that a response was elicited on every generate-study trial, something

that was not done in the Hamman and Squire experiment. The 20 GS and 20 SO items were presented 8

times each in interleaved sequence (GS items alternated with SO items), and an additional 20 unstudied

control items were included only at test. It may be worth noting that there is a contrast in the framing of the

task for subjects between the Hamman and Squire experiment on the one hand and the present study (along

with Hayman et al) on the other. In Hamman and Squire, the subjects appear to have been instructed to try

to learn the experimenter’s target word, as in the standard method of anticipation used in paired-associate

learning experiments. This presumably engenders an effort to try to retrieve an episodic memory of the

previously presented cue-target pair. In contrast, our study and Hayman et al investigated incidental

learning based on repeated encounters with the cues, self-generated responses, and target materials.

Combining the findings from two runs of the experiment produced very clear-cut results: When

tested two minutes after the end of the study phase, VC produced the correct response for 45% of the

study-only items and only 15% of the generate-study items. The difference was highly reliable, and the

advantage for the generate-study condition compared to the control condition (5% correct responses) was
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not significant. This finding thus confirms that elicitation of incorrect responses leads to strengthening of

the elicited responses that can prevent or mask learning in a generate-study condition, and it is clearly

consistent with the basic Hebbian notion that we strengthen whatever response we make to a given input.

It should be noted that a study-only advantage is rarely found in normal subjects (but see Baddeley

and Wilson, 1994). Indeed, Hamman and Squire (1995) found an advantage for generate-study in several

normal control conditions, including one that equated control performance with amnesic performance

using a long delay between study and test. This may reflect the fact that in their study, normal subjects

approached the generate phase of each study trial (excluding the very first study trial, of course) as an

opportunity to recall the correct response. With the aid of their intact hippocampal system, the controls

would then have been able to reinstate the correct experimenter-defined response in many cases, thereby

reducing the likelihood of incorrect response generation, and providing the correct answer to the cortex so

that this response, rather than some other incorrect one, is strengthened by Hebbian learning. A

computational model based on these ideas has been used to simulate the results of several of the

experiments discussed in this section (Kwok, 2003).

Why Can’t Japanese Adults Learn to Distinguish /r/ and /l/?

A second puzzle that I contemplated in the context of the complementary learning system model

concerns the apparent loss of plasticity for some aspects of language learning in adulthood. The question

here was put to me by Helen Neville (personal communication): If the slow learning system in the cortex is

as generally applicable to all forms of learning as I assume it to be, and if this system remains capable of

new learning in adulthood, then why is it that acquisition of the phonology and syntax of a non-native

language appears to be so hard for adults to learn? In fact it should be noted at the outset that the facts

remain somewhat unclear on several relevant points. While some have emphasized differences in degree of

mastery of subtle syntactic and semantic aspects of a language as a function of age of arrival in the new

language context (Johnson & Newport, 1989), others have emphasized that there is in fact gradual

acquisition even of some of the most difficult aspects of second languages, and have pointed out that age of

arrival may be negatively correlated with degree of emersion in the new language culture; on this view, one

account of the difficulty of later arrivals is that they simply have less exposure. The exact extent of reduced
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plasticity for language acquisition remains unclear, and accounts other than the one below are possible (see

Seidenberg and Zevin, this volume). Nevertheless, it occurred to me that the deleterious consequences of

Hebbian learning might be a contributing factor, strengthening undesirable responses that interfere with

new learning, just as with the failure of learning under generate-study conditions in amnesia.

Consider the case of Japanese adults confronted with the need to perceive the distinction between

the English speech sounds /r/ and /l/. In their native language, Japanese speakers do not distinguish these

sounds. The do have a sound often called “the Japanese tap” that sounds to the English ear sometimes like

an /r/ or an /l/, though it also bears some similarity to the reduced form of /d/ and /t/ that occurs

intravocallically in “cider”. Suppose that Japanese speakers hear both English /r/s and /l/s as examples of

their native tap sound, and that this perception is, like that of other speech sounds, categorical, in that they

have the very same percept for sounds they treat as belonging to the same category. Then if Hebbian

learning is occurring, it may unhelpfully strengthen the tendency of /r/ and /l/ sounds to elicit this

categorical percept. Note that under this account, the mechanisms of plasticity would be completely intact,

but they would be unhelpfully working against the acquisition of a discrimination between /r/ and /l/.

My collaborators and I have developed two computational models illustrating how this process may

work, using a Hebb-like learning rule like the one in Equation 3. The first of these (McClelland et al, 1999)

uses a Kohonen network architecture like the one shown in Figure 1, while the second (Vallabha and

McClelland, 2004) uses a three-layer recurrent neural network with attractor dynamics. The second model

has several advantages over the first, but basically illustrates the same process in action. The second model

has also been used to provide a simulation of many aspects of the data we obtained from an experiment

designed to explore the implications of this Hebbian account for methods that might help us teach Japanese

adults to hear the difference between the English /r/ and /l/ sounds. The studies partially supported the

Hebbian account but also indicated that it is incomplete in its simplest form, so I consider the experiments

before returning to further discussions of the modeling work.

Implications for Teaching /r/-/l/ Discrimination

Our experiments (McCandliss et al, 2002) revolved around the following simple idea: If the Hebbian

explanation is correct, it should be possible to help Japanese adults learn to distinguish /r/ and /l/ using
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versions of /r/ and /l/ stimuli that exaggerate the distinctions between them to the point that they will elicit

distinct percepts for Japanese listeners. Hebbian learning would then operate to strengthen the tendency of

each input to elicit a distinct percept. We might then be able to gradually reduce the difference between the

stimuli, as long as we continue to ensure that they generally elicit distinct percepts, so that gradually, the

listeners would come to perceive natural, unexaggerated tokens of /r/ and /l/ as different. Note that, from a

Hebbian perspective, no outcome information should be necessary to allow listeners to learn to hear the /r/

and /l/ stimuli differently. Thus no information was given about response accuracy in our first experiment.

Insert Figure 2 about here

To construct the stimuli for our studies, we took two minimal pairs — “road-load” and “rock-lock”

— and used them to construct 60-step stimulus continua ranging from an exaggerated /r/ to an exaggerated

/l/ (See Figure 2). A male native English speaker produced each word carefully several times, and

examples of each pair were chosen such that the articulations could be aligned to each other over time. For

each continuum, the shared word body (“ oad” or “ ock”) was the same for all members of the continuum.

The onset of each item was constructed from the set of coefficients obtained by linear predictive coding of

the the natural /l/ and /r/ stimuli. Both continua were pre-tested with native English speakers to ensure that

exaggerated stimuli were still identifiable as /l/ and /r/ and to determine the position of the boundary

between the /l/ and /r/ percepts and also to identify the edges of the gray zone between the /r/ and /l/

categories for English speakers.

For our first experiment, we contrasted an adaptive training procedure that started with initially

exaggerated /l/ and /r/ stimuli with a fixed training procedure using the stimuli just at the edge of the gray

zone between the /l/ and /r/ percepts for native English speakers (See Figure 2). In the adaptive condition,

training began with exaggerated stimuli falling outside the native English range and spaced an equal

number of steps on either side of the native category boundary. Eight Japanese adults received training in

each condition. Only subjects performing below 70% correct in a pretest of their ability to correctly

identify the fixed training stimuli were included in the experiment. Half of subjects in each group received
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training with “rock-lock”; the other half received training with “road-load”.

The training procedure was very simple. One each trial, the /r/ or the /l/ stimulus from the training

continuum was presented. Subjects responded by pressing a key to choose /r/ or /l/. No accuracy feedback

was given. In the adaptive condition only, stimuli were adjusted between trials based on the subject’s

performance. After each error, one of the two stimuli was replaced by the next easier (more exaggerated)

token, alternating which item was adjusted to maintain symmetry around the native boundary. After eight

successive correct responses, one of the two stimuli was replaced by the next harder token, again

alternating to maintain symmetry. Training took place over three 20-minute sessions, each involving 480

training trials and 50 probe trials (with the fixed training stimuli, so that performance of the two groups

could be directly compared). Half of subjects in each group continued for three additional sessions.

Insert Figure 3 about here

The results of the experiment were very clear-cut, and consistent with the Hebbian analysis

(Figure 3, top panels). All eight subjects in the adaptive condition showed an improvement in their

identification of the stimuli on the trained continuum after three sessions of training (top left panel). There

was only a slight improvement for the fixed training group overall (top right), and the amount of

improvement was no larger than that seen in a control group (not shown in the figure) of eight additional

subjects who received the same pre- and post-testing separated by the same number of days as the adaptive

and fixed training groups, but had no training between tests.

The findings of our first study suggest that there is considerable residual plasticity in the

phonological systems of Japanese adults. Their failure to learn under normal conditions may reflect not so

much a loss of plasticity as a tendency for the mechanisms of learning to maintain strongly established

perceptual tendencies, as expected under the Hebbian analysis.

Results of our experiment are also consistent with the predictions of a Hebbian account of perceptual

learning: Successful learning can occur without outcome information. If stimuli are exaggerated so that

distinct percepts are produced, learning occurs. Learning is far less successful using the fixed training



Hebbian Learning 21

stimuli. However, it should be noted that several of the subjects in the fixed training condition did

eventually begin to learn the /r/–/l/ distinction. It should also be noted that there were very large individual

differences in the learning progress of subjects in the adaptive training condition. One thought about this,

based on an analysis of learning in the recent model of Vallabha and McClelland (2004), revolves around

the idea that the subjects should be viewed as falling on a continuum in terms of their initial tendency to

hear the /r/ and /l/ stimuli as the same or different. This tendency occurs in the model because the

perceptual representations formed in the model are patterns of activity that exhibit attractor-like properties

that are essentially continuous or graded in nature. The representation of two different sounds tends to

overlap, with the degree of overlap dependent on where the inputs lie within the attractor structure encoded

in the weights in the network. When the overlap is initially very high, adaptive training proceeds slowly

and fixed training does not progress at all. For those subjects for whom the overlap is initially lower,

adaptive training proceeds very quickly and there is also progress in the fixed training condition.

Incorporating a role for outcome information into Hebbian models of learning

While the results thus far suggest that we can go some distance in understanding the conditions

under which human subjects succeed and fail to learn, relying only on the principle of Hebbian learning, it

is also crucial to consider how other factors might shape the learning process. There are many studies in

the literature indicating that mere exposure to stimuli that might elicit distinct percepts is not always

enough to induce plasticity. An example from the extensive body of relevant work of Michael Merzenich

and his associates will help illustrate this point. In one study (Recanzone et al, 1992a, Recanzone et al,

1992b) monkeys received vibratory stimulation when the surface of the middle finger of one hand was

stimulated with a vibrating stylus. Monkeys who were required to discriminate different frequencies of

vibration to obtain rewards showed improvement in their discrimination ability over training as well as

dramatic reorganization of the sensory map representation for the stimulated hand, while monkeys who

received yoked presentations of stimuli, but who were required to pay attention instead to other inputs,

showed no reorganization.
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Insert Figure 4 about here

With such results in mind, my collaborators and I wondered whether accuracy feedback might

influence our Japanese listener’s ability to learn the /r/-/l/ discrimination. To address this issue, we repeated

our first experiment using fixed and adaptive training, but with the addition of visual feedback presented

immediately after each response. Subjects received a row of three green checks if correct, or a row of three

red x’s if incorrect. The results of the experiment indeed confirmed that accuracy information can play a

powerful role in enhancing learning: subjects in both the fixed and the adaptive group showed clear signs

of learning (Figure 3, bottom panels), and both groups now showed clear signs of transfer of what they had

learned to the untrained continuum. To our surprise, we found that with feedback, learning was fastest in

the fixed, and not the adaptive training condition (Figure 4). Subjects in the fixed-with-feedback condition

showed marked performance improvements at the outset of training, although there was some decline in

performance between sessions, and showed very sharp identification functions after three days of training.

These subjects also showed strong generalization to the untrained continuum and a sharp peak at the

boundary between the /r/ and /l/ categories, consistent with the establishment of distinct categories or

perceptual magnets for the /r/ and /l/ categories. Subjects in the adaptive-with-feedback condition did

nearly as well, and overall slightly better than their counterparts in the adaptive-without-feedback

conditions.

Integrating Outcome Information into Hebbian Learning Mechanisms

Our findings on the role of accuracy feedback provide one of many indications that there is

something more to learning than the simple strengthening of synaptic connections among neurons that fire

together. Yet our first experiment clearly indicates that outcome information is not always necessary for

learning. This finding, together with the extensive support for Hebb-like learning mechanisms from LTP

research, and the success of models using Hebbian mechanisms of learning in map-like neural structures to

account for aspects of neural and cognitive development, suggests an important role for Hebbian learning
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mechanisms, or at least, some learning process that can operate to strengthen neural and behavioral

responses in the absence of outcome information. Thus, my own inclination has been to consider ways in

which a learning mechanism that operates according to Hebbian principles might be augmented by

additional sources of information. Here I will briefly consider a few different possibilities. Note that this

section is quite speculative in nature, but relates our work to that of others and raises points of general

relevance to the possibility that a basically Hebbian mechanism is at work at the neural basis of learning

and thus seems worth presenting in the present context.

One very simple proposal that can have dramatic effects within map-like representations is to

modulate Hebbian learning as a function of attention. In fact, simply allowing attention to regulate neural

activity per se provides one possible account for findings such as those of Recanzone et al above, in which

there is massive reorganization of representations of attended, task-relevant stimuli. If the extent of neural

activity itself is attention-dependent, and if (as many indications suggest) strong neural activity is needed to

gate Hebbian plasticity, then the effects of task-related attention can be accommodated without any special

regulation of learning based on outcome information per se.

While the above seems very likely to play some role in regulating the degree of learning, two

specific points should be born clearly in mind. First, there are clearly signs of learning in experiments in

which subjects are simply exposed to interesting stimuli, even when these are just presented in the

background without any task (Saffran, Newport, and Aslin, 1996; Gomez, this volume). Of course it is not

always clear in such studies whether subjects allocate covert attention to the stimuli, but the findings do

suggest we need not assume that explicit task relevance and strong motivation to attend are always

necessary for learning to occur. Second, it is not clear that a strictly attentional account provides a full basis

for understanding the role of accuracy feedback within experiments where task demands are at least

nominally held constant, as they are in the McCandliss et al experiments. All subjects in these experiments

were attempting to learn to discriminate the /l/ and /r/ sounds we used. Accuracy feedback may well help to

keep subjects motivated and thereby keep their attention focused, so we cannot rule out some role for a

simple attentional effect, but it seems likely that some additional role for specific feedback is operative,

over and above any such global effect.
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There are several ways to use accuracy feedback to augment Hebbian learning. One possibility,

based on O’Reilly’s LEABRA learning rule (O’Reilly, 1996; O’Reilly, this volume), is simply to combine

error-correcting and Hebbian learning. In LEABRA, the signal that drives the connection weight combines

the Hebbr learning rule of Equation 3 with an error-correcting term. If we were to apply this suggestion to

capture the role of accuracy feedback in our /l/-/r/ learning experiment, we would need to imagine that the

listener is able to translate the feedback signal into an indication of which response is correct, and then use

this as the source of the correct target information required in standard error correcting learning, which

then augments the Hebbian part of the learning when accuracy feedback is available.

The LEABRA approach is certainly worth exploring, but does introduce some processing

complexity that has led me to consider other alternatives. To compute the error-correction component of

the weight update, LEABRA uses a second pass through the activation settling process with the teaching

input provided, after the first pass of activation in the absence of the teaching input. O’Reilly and I are

currently at work on a successor to the LEABRA algorithm that attempts to eliminate the separate second

pass. In the meantime, the two proposals considered below are perhaps mechanistically simpler than the

existing version of LEABRA, and have thus been the focus of the modeling effort by Vallabha and

McClelland (2004).

The first of the two ideas is to use the feedback signal to produce a reward signal I will call R
�
F � ,

and then use this to modulate Hebbian learning:

∆wrs
� εR
�
F � fr
�
ar � fs
�
as � (4)

To apply this idea to the results of the experiments reviewed above, in which we see evidence of

learning without any feedback, we would require that R
�
F � have some positive value in the absence of any

accuracy feedback. Feedback indicating that the response is correct could then increase the value of the

R
�
F � above its baseline value, and feedback indicating that the response is incorrect could reduce it below

baseline, or potentially (as in many applications of reward-driven or reinforcement learning, c.f. Barto,

1992) reverse its sign. The second idea is to use the accuracy feedback signal to derive the identity of the

correct response, and use this to adjust the activation of the output unit before applying Hebbr rule of
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Equation 3. This approach treats the accuracy feedback as simply providing a source of activation to units

representing the response alternatives.

In simulations, we have found that both of these approaches work fairly well to allow us to model

the effects of accuracy feedback in the McCandliss et al (2002) experiments, and at present we have little

basis for choosing among them. There are a few advantages to the reward-modulated learning approach,

however, that may be worth mentioning. First, the mechanism requires only a global modulation of the

extent of synaptic change, which from a neuro-mechanistic point of view is consistent with the fact that the

reward signal comes with a slight delay after the convergent pre- and post-synaptic activity. Second, it is

consistent with recent findings from a brain imaging study Tricomi, McClelland, and Fiez (2004)

indicating that Japanese adults may treat accuracy feedback on their identification responses to /r/ and /l/

stimuli the same way subjects treat monetary reward (positive and negative monetary outcomes): Similar

brain areas are activated with similar time courses for /r/-/l/ responses receiving positive feedback and for

positive monetary reward provided for correct guesses in a random guessing task, and similar areas and

time courses are also observed for incorrect /r/-/l/ responses and negative extrinsic reward in the random

guessing task. The findings suggest that the subjects find accuracy feedback rewarding, and are consistent

with the possibility that positive feedback gates the release of a global reward signal (e.g. dopamine) that

could modulate synaptic plasticity (for a discussion of the role of dopamine as a reward signal, see Tricomi

et al, 2004).

Summary and Conclusion

I have considered the idea of approaching human (and neural network) learning from an essentially

Hebbian perspective. I have reviewed evidence from LTP studies and considered a range of computational

models that incorporate Hebbian learning, and I have described experimental studies consistent with the

idea, which seems to follow from a Hebbian approach, that there are processes at work strengthening the

response a person makes to an input, either when this is incorrect, as in the apparent undesirable

strengthening of incorrect associative responses in amnesia, or when there is no feedback, as in the

adaptive-no-feedback condition of our experiment teaching Japanese adults to differentiate between /l/ and

/r/. Hebbian learning can provide a basis for thinking about how we may learn from our own responses to
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things, in the absence of external teaching information, and such a process may also explain many cases of

failures of learning, if circumstances conspire such that incorrect or unhelpful responses are elicited instead

of correct or helpful ones. Based on these points, it seems likely that it will be worthwhile to consider the

possible role of a Hebbian learning mechanisms in other cases of successes and failures of learning and

development besides those considered in the present article.

Clearly, though, Hebb’s proposal by itself is insufficient to address all aspects of human learning and

memory. If such a process operates at all, it must be subject to extensive regulation and/or supplementation

with other processes. Furthermore, the process operates within an organized network of interacting brain

structures that play important roles in guiding processing toward correct outcomes. More work is necessary

to understand these regulatory and/or supplemental processes, and to fully understand how interactions

among brain regions, particularly medial temporal structures and neocortical learning systems, work

together to achieve a system that functions successfully as an integrated whole.
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Table 1. Effect of input correlation on connection weights.

event a1 a2 a3 ar ara1 ara2 aras

a 1 1 0 .20 .20 .20 0

b 0 0 1 .10 0 0 .10

sum of co-products .20 .20 .10

decay -.15 -.15 -.15

net change to weight .05 .05 -.05

Effect of correlation of input activations on Hebbian learning. Two events are illustrated, one in which input

units 1 and 2 are both active, and one in which input unit 3 is active alone. In the first case, the resulting

activation of the receiving unit is greater than in the second case, so the Hebbian co-products (aras) are

larger in the first case than the second case. For this case we are assuming ar
� Σsaswrs and wrs

��� 1
for all s before either event is presented. Note that the co-products are all positive. The value chosen for

weight decay determines how strong the sum of the co-products must be for the change in weight to be

positive. Note also that changes in the weights will influence the activation of the receiving unit if the inputs

are presented again; this tends to amplify the effect of the correlation in the inputs still further. Based on

Linsker (1996a).
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Figure Captions

Figure 1. A simple map-formation network similar to the architecture proposed by Kohonen (1982). Units

are represented by tiles within each layer, and the activation of each unit is indicated by shading (white =

1.0; black = 0). The network is shown with a blob of activation centered just to the left of the middle of the

input layer. This in turn has produced a blob of activation centered on the middle unit of the representation

layer. Connections from the center unit on the representation layer to the units on the input layer are

illustrated, with thicker lines indicating stronger connections. These connections were established through

learning; before learning, the connections were largely random, with only a weak tendency for connections

from a particular input unit to project more strongly to the corresponding unit in the representation layer.

Reprinted from Figure 1 of McClelland et al. (1999), permission pending.

Figure 2. Mean categorization functions of 12 native English speakers for synthesized speech stimuli from

each of the two continua used in the experiments. The X axis represents the position on the stimulus in

relation to the anchor stimuli, which are resynthesized versions of naturally spoken stimuli without

exaggeration or interpolation. Percentages of trials eliciting R responses are plotted on the Y axis for each

stimulus. Large empty circles represent the anchor stimuli resynthesized from the recorded base stimuli.

Data points between the anchor stimuli are responses to stimuli interpolated between these anchors, and

data points in the peripheral regions represent responses to extrapolated speech stimuli. Stimuli used for

the fixed training condition are indicated with large filled circles. Triangles point to the positions of the

initial stimuli used in the adaptive training condition. Reprinted from Figure 1, p. 92 in B.D McCandliss,

J.A. Fiez, A. Protopapas, M. Conway, & J. L. McClelland, Success and failure in teaching the /r/-/l/

contrast to Japanese adults: Test of a Hebbian model of plasticity and stabilization in spoken language

perception. Cognitive Affective, and Behavioral Neuroscience, 2002, 2, 89-108. Permission Pending.

Figure 3. Mean categorization functions (with standard error bars) for four groups of Japanese subjects

(n=8) before and after three twenty-minute training sessions in the four training conditions of the

experiment. Pre- and post-test results are shown on the continuum used in training and on the other

continuum used to assess transfer. Adapted from Figure 2, p. 95, and Figure 6, p. 99, in B.D McCandliss,
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J.A. Fiez, A. Protopapas, M. Conway, & J. L. McClelland, Success and failure in teaching the /r/-/l/

contrast to Japanese adults: Test of a Hebbian model of plasticity and stabilization in spoken language

perception. Cognitive Affective, and Behavioral Neuroscience, 2002, 2, 89-108. Permission Pending.

Figure 4. Mean percent correct on probe trials for subjects in each of the four training conditions over the

course of training. Each data point is based on 10 probe trials per subject and encompasses 100 training

trials. Data from two subjects in the fixed/no feedback condition have been excluded due to a data

recording error on day 3. Their data were typical of the group on days 1 and 2. Reprinted from Figure 9, p.

102, in B.D McCandliss, J.A. Fiez, A. Protopapas, M. Conway, & J. L. McClelland, Success and failure in

teaching the /r/-/l/ contrast to Japanese adults: Test of a Hebbian model of plasticity and stabilization in

spoken language perception. Cognitive Affective, and Behavioral Neuroscience, 2002, 2, 89-108.

Permission Pending.
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