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RESEARCH ARTICLE

Learning, Motor Skill, and Long-Range Correlations
D�eborah Nourrit-Lucas1, Adat�e Olivier Tossa1, Gr�egory Z�elic2, Didier Deligni�eres2
1UMR 7349; MAPMO, UFR Sciences, Orl�eans University, France. 2EA 2991 Movement to Health, Montpellier University 1,
France.

ABSTRACT. Long-range correlations have been evidenced in a
number of experiments, generally using overlearned and overprac-
ticed tasks. The authors hypothesized that long-range correlation
could represent the byproduct of learning. They analyzed the
series of periods produced by a group of expert and a group of
novices during prolonged trials on a ski simulator. Results showed
a very low variability in expert’s series, as compared to novices.
Fractal analyses showed that fluctuations were significantly more
structured and correlated in experts. These results suggest that
learning could be conceived as the progressive installation of com-
plexity in the system.

Keywords: motor skills, motor learning, 1/f noise, long-range cor-
relations, degeneracy

F ractal fluctuations have been recently evidenced in

series of performances collected in cyclical or

repetitive tasks, such as serial reaction time (Van Orden,

Holden, & Turvey, 2003), finger tapping (Gilden, Thornton,

& Mallon, 1995; Lemoine, Torre, & Deligni�eres, 2006),
circle drawing (Torre, Balasubramaniam, Rheaume,

Lemoine, & Zelaznik, 2011), forearm oscillations (Torre,

Balasubramaniam, & Deligni�eres, 2010), reciprocal aiming

(Slifkin & Eder, 2012), bimanual coordination (Torre &

Deligni�eres, 2008), walking (Hausdorff, Peng, Ladin, Wei,

& Goldberger, 1995), or running (Jordan, Challis, &

Newell, 2006).

These fluctuations are characterized by specific proper-

ties, namely self-similarity, or scale invariance, meaning

that statistical features in the series are similar whatever the

scale of observation, and long-range correlation, revealed

by the presence of positive serial correlations between suc-

cessive values, which persist over time, often over dozens,

sometimes over hundreds of observations (Diniz et al.,

2011; Eke et al., 2000).

These ubiquitous and amazing statistical properties pres-

ent a special interest for behavioral scientists, as they are

conceived as theoretically closely linked to complexity,

adaptability and health (Goldberger et al., 2002). Long-

range correlated series represent the typical output of com-

plex and healthy organisms, characterized by essential

properties of robustness and adaptability. In contrast, aging

and disease seem marked by a loss of complexity, which is

typically revealed by a decrease of long-range correlations

in output series (Hausdorff et al., 1997). These close rela-

tionships among long-range correlations, robustness, and

adaptability are of special importance here, as the two latter

represent the main properties of the skilled behavior, and

the essential by-products of learning.

Importantly, long-range correlations have been essen-

tially evidenced in overlearned tasks, such as tapping, circle

drawing, reciprocal aiming, walking, or running. In all

cases these tasks required the exercise of basic skills,

acquired from years and extensively practiced. Obviously,

seeking for long-range correlation in performance series

requires the collection of very long time series of hundreds

successive data points, supposing that participants are suffi-

ciently familiar with the task at hand. It could be hypothe-

sized, however, that the presence of such fractal fluctuation

could be related to the fact that performance is underlain by

a well-established skill.

An interesting result supporting the present claim has

been reported by Wijnants, Bosman, Hasselman, Cox, and

Van Orden (2009). They analyzed serial correlations in

series of movement times in a reciprocal aiming task. The

task was performed with the nondominant hand, and the

experimental design included five successive blocks of

1,100 trials. Results showed an increase of serial correla-

tions in the series with practice, with a clearer evidence for

1/f fluctuation in the last block.

It could be interesting here to clearly distinguish between

learning and practice. Learning can be defined as the acqui-

sition of a new skill, which is not initially present in the rep-

ertoire of the individual (Nourrit, Deligni�eres, Caillou,

Deschamps, & Lauriot, 2003; Teulier & Deligni�eres, 2007;
Teulier, Nourrit, & Deligni�eres, 2006). In contrast, practice

refers to the repeated exercise of a task, leading to a refine-

ment of an existing skill, but not necessarily to the adoption

of a qualitatively modified behavior. Practice is essential

for learning, but extensive practice is often required for an

effective learning to occur, especially in complex tasks

(Nourrit et al., 2003). From this point of view, the afore-

mentioned results seem more related to the effects of prac-

tice than to those of effective learning.

Practice and learning, however, often produce similar

and related effects, such as the decrease of performance

variability, an enhancement of efficiency, a better robust-

ness facing external perturbations, and a better adaptation

to related tasks (Schmidt & Lee, 2005). Thus, long-range

correlations should also be a logical byproduct of learning.

In the present experiment, we analyzed performance

series collected in novice and expert participants in a

Correspondence address: D. Nourrit-Lucas, UMR. 7349
“Math�ematiques-Analyse, Probabilit�es, Mod�elisation-Orl�eans”,
D�epartement de Math�ematiques, Universit�e d’Orl�eans, Rue de
Chartres, B. P. 6759-F-45067, Orl�eans cedex 2, France. e-mail:
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complex task. We hypothesized that there would be evi-

dence of stronger long-range correlations in experts, sug-

gesting that the expert behavior was characterized by a

higher level of complexity than the initial, novice behavior.

Method

Participants

Nine volunteered participants (two females, seven

males) participated in this study. There were separated in

two experimental groups. The expert group included one

female and three males (M age D 39.2 § 6.3 years; M

weight D 73.2 § 8.46 kg; M height D 179.6 § 3.5 cm).

These participants were previously involved in a series of

experiments on the ski simulator. More than 10 years ago,

they were involved in a first longitudinal experiment

including 390 1-min trials across 13 weeks, and were

proven to have adopted a skilled behavior, qualitatively

different than their initial behavior on the task (Nourrit

et al., 2003). They were also involved in two retention

tests, the first one five months after the completion of the

learning protocol (Deschamps, Nourrit, Caillou, &

Deligni�eres, 2004), and the second 10 years after (Nourrit-

Lucas, Zelic, Deschamps, Hilpron, & Deligni�eres, 2013).
In both cases the retention tests evidenced the persistence

of the skilled behavior initially acquired by participants.

The present experiment was performed six months after

the second retention test.

The novice group (one woman, four men; M age D
23.2 § 2.5 years; M weight D 70.5 § 4.2 kg; M height D
1.80 § 5.8 cm) was composed of occasional skiers (with an

average of three days of practice per year), but none had

specific training on the ski simulator. All participants

signed a consent form, and were not paid for their

participation.

Experimental Device

The task was performed on a ski simulator (Skier’s Edge

Co., Park City, UT), which consisted of a platform on

wheels, which moved back and forth on two bowed, paral-

lel metal rails (Figure 1). We used a modified version of

the simulator by replacing the two independent feet sup-

ports of the original apparatus with a 30-cm-wide board, in

unstable balance over a sagittal rotation axis (for more

details, see Nourrit et al., 2003).

Procedure

Participants were instructed to make cyclical sideways

movements on the ski simulator, as ample and frequent as

possible. They had to keep their hands behind their back at

all times, and to fix their eyes on a point located on the

floor, 3 m in front of the apparatus. They performed a

unique session of 10 min, allowing the performance of

approximately 550 complete oscillations on the apparatus.

Data Collection

A passive marker was fixed in the front of the simulator

platform. The displacement of this marker was recorded in

three dimensions by a VICON motion analyzer (manufac-

tured by Biometrics, France) with seven cameras (100 Hz).

Analyses focused on the series of positions of the platform,

along the transverse axis, computed from the collected 3-D

data.

The position time series were filtered with a dual-pass

Butterworth filter with a cutoff frequency of 10 Hz. A

peak-finding algorithm was used to localize the left reversal

points of the platform motion and the period was calculated

for each oscillation as the time interval between two succes-

sive reversal points. We retained for analysis the 512 last

points of the series, for each participant.

Statistical Analysis

We first characterized series in terms of descriptive sta-

tistics (mean and standard deviation). We then applied three

analyses aiming at evidencing and measuring serial correla-

tion in the series.

Autocorrelation function. Autocorrelation functions

were computed up to lag 30. We extracted from these

FIGURE 1. The ski simulator.
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function two variables of interest: the lag-one autocorrela-

tion [ACF(1)], and the average autocorrelation for lags

comprised between 10 and 30 [<ACF>(10–30)]. As long-

range correlated series are characterized by the persistence

of correlations over time, <ACF>(10–30) was expected to

be significantly higher in the expert group.

Detrended fluctuation analysis. Detrended fluctuation

analysis is a widely used method that allows quantification

of a correlation in time series (Peng et al., 1993). The series

x(t) is first integrated, by computing for each t the accumu-

lated departure from the mean of the whole series:

X .t/D
Xt

iD 1

x.i/¡ x½ � (1)

This integrated series of length N is divided into k non-

overlapping intervals of length n. The last N-(kn) data

points are excluded from analysis. In each interval, a least

squares line is fit to the data (representing the trend in the

interval). The series X(t) is then locally detrended by sub-

stracting the theoretical values Xn(t) given by the regres-

sion. For a given interval length n, the characteristic size of

fluctuation for this integrated and detrended series is calcu-

lated by

F.n/D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N ¡ .kn/

XN ¡ kn

tD 1

X .t/¡Xn.t/½ �2
vuut (2)

This computation is repeated over all possible interval

lengths. Typically, F increases with interval length n. A

power law is expected, as

F.n// na (3)

a is expressed as the slope of the double logarithmic plot of

F(n) as a function of n. The value a D .5 indicates the

absence of correlations (white noise), a > .5 indicates per-

sistent long-range correlations, meaning that large (small)

values are more likely to be followed by large (small)

values.

We considered interval lengths ranging from n D 10 to n

D N/2. In order to avoid any bias due to the logarithmic dis-

tributions of the points in the diffusion plots, we divided the

abscissa into intervals of 0.1(log10Dt), and computed the

average points within each interval (13 points were

obtained for an initial series length of 512 data points).

Finally, to control for the effects of noisy perturbations that

mainly affect short-term fluctuations and tend to flatten the

diffusion plot, we focused on the long-term slope (i.e., the

six last points; Deligni�eres & Marmelat, 2014).

Power spectral density analysis. This method works on

the basis of the periodogram obtained by the fast Fourier

transform algorithm. In the frequency domain, long-range

correlated series are characterized by the following scaling

law:

S.f // 1=f b (4)

where f is the frequency and S(f) the correspondent squared

amplitude. b is estimated by calculating the negative slope

(-b) of the line relating log(S(f)) to log f.

We also used the improved version of power spectral

density (PSD) proposed by Eke et al. (2000), which uses a

combination of preprocessing operations: First, the mean of

the series is subtracted from each value. Second, a parabolic

window is applied, where each value in the series is multi-

plied by the following function:

W .j/D 1¡ 2j

N C 1
¡ 1

� �2

for jD 1; 2; . . . ;N : (5)

Third, a bridge detrending is performed by subtracting

from the data the line connecting the first and last point of

the series. Finally the fitting of b excludes the high-fre-

quency power estimates (f > 1/8 of maximal frequency).

This method was proven to provide more reliable estimates

of the spectral index b, and was designated as lowPSDwe.

Group Comparisons

Considering the low sample sizes and the strong inhomo-

geneity of variances, we used nonparametric Mann-Whit-

ney U tests for comparing central tendencies between

groups. The significance threshold was set at .05.

Results

Descriptive Statistics

We present in Figure 2 two example series obtained with

a novice (top panel) and an expert (bottom panel). The sam-

ples of mean periods were as follows: novices: {0.87, 1.13,

1.02, 0.96, 0.81}; experts: {0.82, 0.93, 0.87, 0.84}. There

was no difference between the two groups (experts: 0.87 §
0.04 s; novices: 0.96 § 0.13 s; U D 6; Z D .098; p D .327;

exact p D .413).

This figure, however, suggests evident differences in

terms of variance. Indeed, the samples of standard devia-

tions were the following: novices:{0.17, 0.24, 0.39, 0.10,

0.25}; experts: {0.02, 0.04, 0.04, 0.03}. There was a statis-

tical difference between the two groups (experts: 0.03 §
0.01 s; novices: 0.23 § 0.11 s; U D 0; Z D –2.45; p D .014;

exact p D .016). As expected, experts performed the task

with a very low variability, as compared with novices.

D. Nourrit-Lucas, A. O. Tossa, G. Z�elic, & D. Deligni�eres
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Autocorrelation Functions

We present in Figure 3 the point-by-point average auto-

correlation functions for the two groups. There were evi-

dent graphical differences between these two average

functions. In the novice group, the autocorrelation function

presents just significant values for the three first lags, and

then reaches very quickly values close to zero. This kind of

autocorrelation function is typical of short-range correlated

processes (Box & Jenkins, 1976). In contrast, the average

autocorrelation function of the expert group present

presents a very slow decay, with significant values up to the

30th lag. This kind of auto-correlation function corresponds

to those obtained with long-range correlated series.

The following values were observed for ACF(1): novi-

ces: {0.38, 0.03, 0.28, 0.11, 0.07}; experts: {0.40, 0.27,

0.38, 0.23}. There was no difference between the two

groups, however, because of the large variability in the nov-

ice group (experts: 0.32 § 0.08; novices: 0.17 § 0.15; U D
4; Z D –1.47; p D .142; exact p D .190).

<ACF>(10–30) values were the following: novices:

{0.01, 0.02, 0.03, 0.00, 0.00}; experts: {0.31, 0.09, 0.24,

0.04}. There was a significant difference between the two

groups (experts: 0.17 § 0.12; novices: 0.01 § 0.01; U D 0;

Z D –2.45; p D .014; exact p D .016).

Detrended Fluctuation Analysis

We present in Figure 4 the point-by-point average diffu-

sion plots, for the two groups. In both cases, the diffusion

plots present a global linear shape. A clear flattening

appears for the Expert group, suggesting the influence of a

white noise component in the series. This influence is less

apparent for the novice group, essentially because the

global slope is close to that expected for white noise pro-

cesses (a D .5).

The individual values were the following: novices: {0.69,

0.63, 0.65, 0.53, 0.45}; experts: {1.30, 0.69, 1.16, 1.08}.

There was a significant difference between the two groups

FIGURE 2. Example period series. Top: novice participant; Bottom: expert participant.
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(experts: 1.06 § 0.26; novices: 0.59 § 0.10; U D 0; Z D
–2.45; p D .014; exact p D .016).

Power Spectral Density Analysis

We present in Figure 5 the point-by-point average bilo-

garithmic power spectra, for the two groups. The flattening

of the spectra in the high-frequency region revealed for

both groups the influence of a white noise component. The

individual values of the b exponents, computed over the

low-frequency region, were the following: novices: {–0.16,

0.24, 0.74, 0.14, 0.17}; experts: {1.57, 1.04, 1.55, 1.14}.

There was a significant difference between groups (experts:

1.32 § 0.28; novices: 0.23 § 0.33; Z D –2.45; p D .014;

exact p D .016).

Discussion

Motor learning has been classically assumed to be char-

acterized by the selection of the most efficient behavioral

solutions, a decrease of performance variability, and an

increase of smoothness in movement trajectories (Schmidt

& Lee, 2005). This point of view tends to induce the idea

that learning yields a kind of simplification of the system,

through the selection of proper procedures and the elimina-

tion of errors.

The present results confirm these classical assumptions,

and especially the very low variability of cyclical perfor-

mance in experts. The most important result, however, is

the increase of serial correlations in experts, with regards to

the levels observed in novices. Expert performance seems

characterized by a more complex and structured dynamics

than that of novices.

This result could be interestingly related to a recent

work that linked long-range correlation and degeneracy

(Deligni�eres & Marmelat, 2013). Degeneracy is a design

principle of complex systems, which has been proposed for

explaining the coexistence of the a priori paradoxical prop-

erties of robustness and evolvability (Whitacre, 2010).

Robustness refers to the capacity to maintain a function

despite internal or external perturbations, and evolvability

to the capacity to adapt to perturbations by adopting new

behavior and functions. The concept of degeneracy refers to

a partial overlap in the functions of the multiple components

within the system. In degenerate systems, structurally differ-

ent components can perform similar functions under certain

conditions, but can also assume distinct roles in others con-

ditions (Edelman & Gally, 2001; Whitacre & Bender, 2010).

FIGURE 3. Mean autocorrelation functions. Top: novice group (n D 5); Bottom: expert group (n D 4). The dashed line represents
the level of significance (p < .05).
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Deligni�eres and Marmelat (2013) proposed a model of

degenerate neural network composed of a chain of partially

overlapping pathways. They manipulated degeneracy

through the number of alternative pathways in the model. A

simulation study showed that (a) such a degenerate model

produces long-range correlated series, (b) the strength of

correlations in the output depends on the level of degener-

acy in the model, and (c) a minimal threshold in degeneracy

is necessary for producing long-range correlations.

The present experiment suggests that learning could be

understood as the progressive installation of degeneracy in

the system. Learning is not the selection of the most appro-

priate solution, but the coordination of a complex network

composed of multiple, alternative, and overlapping path-

ways for producing a given outcome. Learning can then be

conceived as an increase in complexity of the neural net-

works that underlie performance, and the overlapping

between alternative pathways explains the presence of

long-range correlations in output series. This enrichment of

neural networks could explain the property of robustness of

motor skills, essentially revealed in retention tests, but also

the properties of generalizability and transfer, which are

considered essential for the completeness of learning

(Schmidt & Lee, 2005).

Sch€ollhorn, Hegen, and Davids (2012) recently devel-

oped innovative ideas about learning that could be in reso-

nance with the previous finding. They proposed a

differential learning approach that explicitly aimed to

exploit the system’s complexity by its confrontation to

complex and changeable environments and constraints. It is

noteworthy to note, however, that this enrichment in com-

plexity also occurs during the practice of very close and

simple tasks, such as the reciprocal aiming task used by

Wijnants et al. (2009).

Degeneracy is not the only hypothesis that could be

evoked for explaining the emergence of long-range correla-

tions. Other network properties, such as small-world pat-

terns (Watts & Strogatz, 1998), are also known to produce

long-range correlated outcomes. Multiplicative Cascade

dynamics has been recently proposed as a nomothetic prin-

ciple that could underlie this phenomenon (Ihlen &

Vereijken, 2010). All these hypotheses, while focusing on

different properties of complex systems, emphasize the

essential role of connectivity within networks, are

FIGURE 4. Mean detrended fluctuation analysis diffusion plots for the novice (gray) and expert (white) groups. Dashed lines rep-
resent the mean slopes of the long-term region of the diffusion plots.
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consistent with the interaction-dominant perspective devel-

oped by Van Orden et al. (2003). We consider, however,

that degeneracy affords a maybe more intuitive way than

former hypotheses for understanding the effects of com-

plexity on essential properties such as robustness and adapt-

ability (Deligni�eres & Marmelat, 2013).

In contrast, the present result tends to question other

hypotheses, and especially the regime-switching model pro-

posed by Wagenmakers, Farrell, and Ratcliff (2004). This

model assumes that participants change the strategy they

use to complete the task during the course of the experi-

ment, and such regime switching is supposed to be able to

mimic long-range fluctuations. However, most experiments

on motor learning, and especially learning on the ski simu-

lator (Nourrit et al., 2003; Vereijken, 1991) showed a clear

decrease of cycle-to-cycle variability, with a very reproduc-

ible and consistent oscillatory behavior throughout each tri-

als. So the regime switching would imply rather a decrease

in correlations with learning, which is clearly not the case.
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