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What is a memory?



What is the capital of France?



What did you do yesterday?



2+2=7
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Neural Mechanisms for Memory
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Why does a neuron “fire”?
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The four basic stages of neurotransmission
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TYPES OF NEUROTRANSMITTERS

Neurotransmitter

Function

Examples of Malfunctions

Acetylcholine (ACh)

GABA (gamma-
aminobutyric acid)

Glutamate

Enables muscle action,
learning, and memory.

Influences movement, learn-
ing, attention, and emotion.

Affects mood, hunger, sleep,
and arousal.

Helps control alertness and
arousal.

A major inhibitory neuro-
transmitter.

A major excitatory neuro-
transmitter; involved in

With Alzheimer’s disease, ACh-producing
neurons deteriorate.

Excess dopamine receptor activity linked to
schizophrenia. Starved of dopamine, the
brain produces the tremors and decreased
mobility of Parkinson’s disease.

Undersupply linked to depression; Prozac
and some other antidepressant drugs raise
serotonin levels.

Undersupply linked to seizures, tremors,
and insomnia.

Oversupply can overstimulate brain, pro-
ducing migraines or seizures (which is why
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From action potential to postsynaptic depolarization

Cell body



Action Potential?

Trigger Zone (=Hillock)
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Excitation: Depolarization
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Saltatory conduction along myelinated axons
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Action potential conduction velocities along myelinated nerve axons are node causes current to spread rapidly along the inner surface of the
much greater than along unmyelinated axons owing to the mechanism of membrane to the next node where an action potential is triggered, and so on
saltatory conduction. The insulating myelin sheath is laid down in segments along the length of the axon (i.e. the depolarization ‘jJumps’ from one node to
approximately 1 mm long, with the segments separated by nodes of Ranvier the next). This results in greatly increased conduction velocities compared

where the voltage-gated sodium channels are clustered. Depolarization at a with unmyelinated axons of the same diameter



But what is a memory?
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How does this change?



Short Term Changes: LTP
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Bliss and Lomo’s First Published LTP
Experiment




Conclusion?

A larger response from the same
stimulus.



LTP

Typical LTP experiment:
record EPSP’s in CA1 cells
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Normal mice
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LTP

LTP is input specific.
LTP is long-lasting (hours, days, weeks).

LTP results when synaptic stimulation coincides with
postsynaptic depolarization (achieved by cooperativity of
many coactive synapses during tetanus)(called
cooperativity)

The timing of the postsynaptic response relative to the
synaptic inputs is critical.

LTP has Hebbian characteristics ( “‘what fires together wires
together’, or, in this case, connects together more
strongly).

LTP may produce long terms changes?
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1 Hz (7 min)



1 Hz (7 min)



9 Hz (120 s): Tetanus



(120 s): Rest



1 Hz (every 15 min for 7 min)
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Long Term Changes: Synaptic Plasticity
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Figure 18.2 Synaptic Changes That May Store Memories (Part 1)
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Figure 18.2 Synaptic Changes That May Store Memories (Part 1)
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Figure 18.2 Synaptic Changes That May Store Memories (Part 1)
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Figure 10-18 Growth of dendritic spines
correlates with LTP. LTP is accompanied
by the formation of two new spines
(arrows) in CA1 pyramidal neurons from
a cultured hippocampal slice that was
imaged using two-photon microscopy.
Time-lapse images were taken at —10,
+30, +60 min, and +12 h relative to

the onset of LTP induction (not shown).
(From Engert F & Bonhoeffer T [1999]
Nature 399:66-70. With permission from
Macmillan Publishers Inc.)
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Eric Kandel, MD
Nobel Prize Winner




Prerequisites for a Molecular Biological Study
of Learning and Memory

Delineate a behavior capable of being modified by learning
Define, in cellular detail, the neural circuit of that behavior

Locate, within that neural circuit, the critical neurons and
interconnections modified by learning that store memory

Analyze the mechanisms of learning and memory storage
on the cellular and molecular level






The Human Brain The Aplysia Brain
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Gill withdrawal reflex using Aplysia californica sea slug:
-A mantle-covered qill is used for breathing

-A siphon is used for expelling seawater and waste
-Gill withdrawal occurs when the siphon is touched

-Defensive mechanism used
by Aplysia




Aplysia protects itself from potential harm by withdrawing its gill
when the siphon is touched
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.
.

Mantle shelf
(retracted)
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The gill and siphon with-
drawal reflex of Aplysia. A
light touch to the siphon with
a fine paintbrush (left) causes
the siphon to contract and the
gill to withdraw under the
protection of the mantle shelf,
here shown retracted for a
better view.
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Electrophysiology in Aplysia using the abdominal ganglia

Figure 24.5
The abdominal ganglion of Aplysia. The gill withdrawal reflex involves neurons within
the abdominal ganglion that can be dissected and studied electrophysiologically.
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Habituation was observed in Aplysia by EPSP recordings after
repeated siphon stimulation
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Possible mechanisms for short-term habituation

before training after training
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Habituation leads to decreased neurotransmitter release and
reduced gill withdrawal
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Long-term habituation after 4 days of training—> synaptic
depression & fewer sensorimotor synapses
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Training sessions of 10 stimuli apiece, given daily over four days to two groups of
animals, lead to long-term habituation in Aplysia that persists for more than a 500 -
week, as shown by the decrease in the duration of the behavioral withdrawal re-
sponse (top) and by the dramatic depression of synaptic effectiveness observed in —
recordings of postsynaptic potentials in the motor neurons from these animals (sec- Gzl [Hsimiad
ond from top). The time course of the synaptic depression indicated in the top his-

togram on the right parallels that of the behavioral habituation. This long-term

synaptic depression is accompanied by anatomical changes. In the habituated ani-

mal the sensory neurons retract their processes and now make fewer contacts onto

motor neurons (bottom) than do sensory neurons in control, nonhabituated animals.




In other words, Dr. Kandel observed both short
term and long term changes in memory (in this
case habituation) and also mapped the neural

circuitry.

= NOBEL PRIZE



H.M.

"Most studied
person in all of
psychology”




= |n 1953, the removal of
H.M.'s hippocampus at
age 27 ended his
seizures, but also ended
his ability to form new
explicit memories.

= H.M. could learn new
skills, procedures,
locations of objects, and
games, but had no
memory of the lessons
or the instructors. Why?

= H.M. also retained
memories from before
the surgery. What is his
condition called?

The Brain and the Two-Track Mind:
The Case of Henry Molaison (“H.M.”)

H.M., like another such patient,
“Jimmy,” could not understand
why his face looked older than 27
in the mirror. Why not?



Case of H.M.

Most studied person in psychology

Most important case study

H.M. had severe epilepsy in temporal lobes
William Scoville, neurosurgeon at

Hartford Hospital operated on HM in 1953
Removed ventral tips of temporal lobes
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Effects on HM

Recall events from childhood

Can engage In conversations

Good semantic memory

Cannot recall events that have just happened
Cannot recall any new facts

Cannot remember new faces



What is HM'’s deficit

Anterograde Amnesia for declarative
memory: fact, events, people.

No concept of amount of time that has
passed.

Still shows procedural memory: new tasks.

Some implicit memory: realizes that his
parents have died.



A large percentage of modern theory of
memory is based on the study of H.M.
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