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Many everyday situations afford us a set of default behaviours and cognitive processes that 
could play out automatically in response to stimuli in our environment. Cognitive control 
enables us to modify our thoughts and actions away from those defaults in a variety of ways, 
allowing us as a species to perform great intellectual feats such as planning (D. A. Simon & 
Daw, 2011), reasoning (Christoff et  al., 2001), inhibition (Aron, 2011), and working 
memory maintenance (Goldman‐Rakic, 1987). But what is it that determines when we exert 
control, how much we do so, and what form(s) this control takes? In other words, by what 
computational and neural mechanisms is the controller itself controlled (Botvinick & Cohen, 
2015; Dayan, 2012)?

In this chapter, we address this question by framing it as a reward‐based decision‐making 
problem. This approach views the exertion of cognitive effort as being determined by the 
output of a decision that considers both the costs and benefits of mobilising cognitive control 
at a given moment. We begin by enumerating a set of factors that weigh in favour of the exer-
tion of control and those that oppose it. We then present a theoretical framework that spec-
ifies how these costs and benefits are integrated together to form a decision about whether 
and how control should be deployed. Finally, we describe the neural underpinnings of this 
decision process, with a particular focus on the role of the dorsal anterior cingulate cortex 
(dACC) in determining how best to allocate control.

Why Exert Control? The Demands for (and Benefits of) Control

As mentioned above, some behavioural situations demand control, whereas others permit a 
more automatic approach to response selection. A key question, central to research on 
cognitive control, is how the brain detects this difference. How, in other words, is a demand 
for control detected? Research has pointed to a number of signals, both internal and external, 
that appear to serve as cues or signals of demand.
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Cues to Control Demands

One straightforward way of determining how much control to allocate would be to rely 
entirely on automatic processes (e.g., habits) until the individual discovers that she has 
 performed the wrong action, for instance because she is told that this is the case or it is 
obvious as soon as the response is made (e.g., in a situation where time pressure encourages 
premature responses). After encountering an error, one type of control she can exert is to 
exercise caution in her subsequent actions (Laming, 1968; Rabbitt, 1966), which can be 
operationalised as an adjustment in her threshold for responding so as to allow for additional 
evidence accumulation (and consequently greater accuracy) at the cost of slower responding. 
This type of sequential adjustment in response to previous‐trial errors is commonly observed 
in the behavioural literature (see Danielmeier & Ullsperger, 2011 for a review, including 
discussion of inconsistencies in observations of post‐error improvements in accuracy). Other 
kinds of post‐error adjustments include reallocating attention away from a stimulus property 
that is distracting and/or towards a task‐relevant property (Danielmeier & Ullsperger, 2011; 
see Chapter 17 by Ullsperger in this volume).

Rather than relying exclusively on explicit error feedback, which is often unavailable in 
our daily activities, or expecting errors to otherwise be relatively unambiguous, one can 
instead simply look out for situations where outcomes are worse than expected (i.e., 
 negative prediction errors) as indicators that greater control is needed. Such a mechanism 
avoids relying on explicit instruction and provides a continuous rather than binary  measure 
on which to base performance adjustments (i.e., indicating not only that outcomes were 
worse than expected, but also how much worse). But valuable information can also be 
garnered from monitoring how different outcomes were from one’s predictions,  irrespective 
of the direction. Rather than informing specific adjustments in behaviour/control, these 
unsigned prediction errors (or surprise signals) can signal a demand for attending to 
the elicitor of surprise (Pearce & Hall, 1980), and more generally can act as indicators of 
 volatility/unpredictability in one’s environment (Alexander & Brown, 2011; Behrens, 
Woolrich, Walton, & Rushworth, 2007; Cavanagh & Frank, 2014). Control systems can 
improve performance in response to these changes in volatility by, for instance, adjusting 
the rate at which one’s world model is adjusted to reflect the changing outcomes, and by 
extension, the rate at which behaviours are adjusted on the basis of recent feedback 
(Behrens et al., 2007).

Still, monitoring primarily for prediction errors has the drawback that task feedback 
can occur too late to adjust control when necessary (i.e., during task performance). One 
way of avoiding this concern is to monitor for errors relative to richer sets of predictions, 
for  instance, maintaining temporally specific predictions about the occurrence of certain 
 conjunctions of responses and outcomes (Alexander & Brown, 2011). Another alternative to 
relying solely on outcome‐related feedback (whether internal or external) is to take a more 
direct and online estimate of task difficulty. One such estimate is provided by the current level 
of processing conflict (Berlyne, 1957), for instance, how much competition exists between 
different potential responses (Botvinick, Braver, Barch, Carter, & Cohen, 2001). As a proxy 
for difficulty, levels of conflict on one trial can be used as an indication that greater control 
should be allocated on a subsequent trial (by, for instance, attending more to the task‐ relevant 
stimulus dimension), resulting in lower error rates and faster response times (conflict 
adaptation; Gratton, Coles, & Donchin, 1992; see Chapter 4 by Egner in this volume). Not 
only can these conflict signals act as indicators of difficulty, they can also in certain cases 
obviate error detection altogether by providing an earlier and more sensitive index of  potential 
errors or confidence in one’s response in advance of and/or in the absence of feedback 
(Yeung, Botvinick, & Cohen, 2004).
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Cues to Control Incentives

Finally, the amount of overall reward being offered for successful performance of a controlled 
task can provide a straightforward signal indicating how beneficial it might be to increase 
control. Accordingly, a number of studies have found that individuals exert greater cognitive 
effort with higher incentives for performing a cognitive control task (review in Pessoa, 2015; 
Chapter 22 by Pessoa in this volume; Chapter 24 by Krebs & Woldorff in this volume). For 
instance, participants performing a Stroop‐like task are faster, more accurate, and less influ-
enced by both congruent and incongruent distractors when they are rewarded compared to 
when they are not rewarded (Etzel, Cole, Zacks, Kay, & Braver, in press; Padmala & Pessoa, 
2011). Similarly, participants motivated to either obtain reward or avoid loss are better able to 
detect a target face appearing against a noisy background (Engelmann, Damaraju, Padmala, & 
Pessoa, 2009; Engelmann & Pessoa, 2007).

Why Not Exert Control?

There are clearly a number of sources of information that an individual can draw on to deter-
mine that there is a demand for greater control. And it seems intuitive that control recruit-
ment should be based on such cues to task difficulty and reward. But this intuition hides a 
thorny problem: Why does control need to be ‘recruited’ at all? Why must the engagement 
of control be calibrated to task demands and rewards? Why is control not maximally engaged 
under all circumstances? Why, in other words, do people not exert maximal mental effort on 
everything, all the time?

Consider the study by Padmala & Pessoa (2011) cited above. Participants performed a 
selective attention task in which they had to classify an image while disregarding words that 
were either unrelated to the image category, or were related and either congruent or incon-
gruent with the classification. Importantly, when a cue indicated that correct performance on 
the current trial would lead to rewards, performance improved (i.e., reaction times, error 
rates, and interference effects were reduced). An even more striking example of this effect was 
provided by Duckworth, Quinn, Lynam, Loeber, and Stouthamer‐Loeber (2011), who 
showed that laboratory participants performing standardised intelligence tests scored more 
than half a standard deviation higher when performance was incentivised. These findings sug-
gest that performance in the non‐incentivised conditions in these studies was marked by 
less‐than‐maximal control exertion.

Why did people not exert the maximal amount of cognitive control to improve performance 
on these tasks? One intuitive answer focuses on the possibility that there is an intrinsic cost 
attached to the exertion of mental effort. That is, seemingly suboptimal exertion of cognitive 
control might be the normative result of a rational cost‐benefit analysis, weighing the poten-
tial rewards of each option against its anticipated costs (Anderson, 1990; H. A. Simon, 1956; 
Stephens & Krebs, 1986).

Analogous Costs in the Domain of Physical Effort

A similar notion is widely accepted in research on physical‐effort‐based decision making, 
where it is assumed that, all else being equal, actions are selected to minimise demands for 
physical labour. This idea was famously formulated in Hull’s (1943) Law of Less Work: all 
else being equal, agents will prefer lines of action with the smallest demands for physical 
effort. This basic notion has held currency since at least the 1920s (for a review, see Solomon, 
1948) and remains widely influential in modern studies on the neural mechanisms underlying 
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cost‐benefit analyses involving physical costs (Salamone, Correa, Farrar, & Mingote, 2007; 
Walton, Kennerley, Bannerman, Phillips, & Rushworth, 2006). The law of least work is 
supported by extensive empirical evidence. The most frequent and direct approach has been 
to place subjects (animals or humans) in situations where they must choose between two 
courses of action associated with different exertional demands. When rewards are equated, a 
bias is typically observed towards the less demanding course of action (Solomon, 1948; 
Thompson, 1944).

Evidence for Cognitive Effort Avoidance

Many psychologists have posited that an analogous law is at work in situations that involve 
demands for cognitive processing, that is, that mental effort inheres costs just as physical 
effort does. For example, Allport (1954) famously explained social prejudice as the product 
of avoidance of effortful controlled processes required for accurate social judgement. Similar 
assertions have been made in connection with the fields of behavioural economics (Bonner & 
Sprinkle, 2002; Camerer & Hogarth, 1999), judgement and decision making (Shah & 
Oppenheimer, 2008; Smith & Walker, 1993), and executive functioning (De Jong, 2000; 
Engelmann et al., 2009; Westbrook, Kester, & Braver, 2013). In all of these works, the idea 
that mental effort is costly has been treated as an explanatory principle. However, until very 
recently, the existence of control costs had not been subjected to a direct empirical test.

Initial progress towards validating the idea of effort costs was made by Kool, McGuire, 
Rosen, and Botvinick (2010), who introduced the demand‐selection task (DST) to test the 
hypothesis that people avoid the exertion of mental effort. In the DST, participants face a 
recurring choice between two alternative lines of action, associated with different levels of 
demands for cognitive control. The most often‐used version of the DST manipulates control 
demands by varying the frequency of shifts between parity and magnitude judgements of 
numerical digits. Across several versions of this task (using multiple cognitive control tasks), 
participants are found to consistently favour the option that commits them to fewer demands 
for cognitive control (Kool et al., 2010; Kool, McGuire, Wang, & Botvinick, 2013; McGuire & 
Botvinick, 2010; Schouppe, Ridderinkhof, Verguts, & Notebaert, 2014). Follow‐up analyses 
confirmed that this behavioural tendency could not be fully explained by a motivation to 
avoid errors, or to minimise time on task. The results appear consistent with a law of least 
mental effort, the idea that, all else being equal, actions tend to be selected to minimise 
cognitive demand.

The idea that demand registers as a cost predicts, additionally, that people should be more 
willing to exert effort when appropriate incentives are provided. Evidence for this prediction 
has come from multiple sources. Kool et al. (2010) introduced a new demand‐selection par-
adigm in which participants tended to avoid an effortful task switch, even if this would lead 
to increased task completion time. However, when monetary incentives were supplied for 
each completed trial, participants’ propensity to avoid task switches disappeared. This finding 
suggests that the exertional cost of task options is weighed against associated rewards in a 
cost‐benefit analysis. In a series of convergent studies, Westbrook et al. (2013) presented par-
ticipants with a series of choices between performing a low‐demand working memory task for 
a certain reward and a more demanding task for a higher wage. The latter payment was 
titrated until an indifference point was reached between the two tasks. Importantly, across 
participants, at this indifference point, the pay for the high‐demand task was consistently 
higher than the pay for the low‐demand task. As discussed before, other data consistent with 
this idea shows that performance on attention‐demanding tasks is higher in the face of appro-
priate incentives (Aarts et al., 2010; Engelmann et al., 2009; Engelmann & Pessoa, 2007; 
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see also Chapter 24 by Krebs & Woldorff in this volume). Together, these studies suggest 
that people discount the value of reward by the amount of cognitive effort that needs to be 
exerted (see also Dixon & Christoff, 2012; Vassena et al., 2014).

Why Is Control Costly?

So far, we have explored the question of why people do not exert maximal control all of the 
time. The research that we reviewed provides a straightforward answer to this question, 
namely, that there is an intrinsic cost associated with the expenditure of mental effort. However, 
this observation in turn raises a new question: Why is the exertion of cognitive control costly? 
Over the last decades, several researchers have attempted to answer this question from at least 
two broad perspectives, one focussing on potential limits on control resources, and the other 
focussing on the opportunity costs associated with the exertion of cognitive control.

Resource Limits

One class of theories that helps address why cognitive effort appears to be underutilised 
proposes that the exertion of cognitive control depends on a limited resource, and that the 
amount of available resource determines to what degree control can be implemented 
(Baumeister, Bratslavsky, Muraven, & Tice, 1998; Bijleveld, Custers, & Aarts, 2009; 
Kahneman, 1973; Navon & Gopher, 1979). This theory has been supported by a collec-
tion of experiments showing that people are less inclined towards controlled behaviour 
after they have already engaged in a control‐demanding activity, a phenomenon referred to 
as ‘ego depletion’ (see Hagger, Wood, Stiff, & Chatzisarantis, 2010; but see also Carter, 
Kofler, Forster, & McCullough, 2015; Blain, Hollard, & Pessiglione, 2016; Hagger & 
Chatzisarantis, 2016). According to this framework, control can be viewed as costly insofar 
as it  depletes a resource that could otherwise be conserved or husbanded (Muraven, 
Shmueli, & Burkley, 2006).

However, recent research on self‐control has initiated a trend away from this resource‐
based account of control, focussing instead on motivational explanations (Inzlicht & 
Schmeichel, 2012; Job, Dweck, & Walton, 2010). This trend has been supported by, among 
other things, findings suggesting that depletion effects disappear in the face of increased 
incentives (e.g., Muraven & Slessareva, 2003). These results place doubt on its potential as a 
mechanistic explanation and cast doubt on the conservation hypothesis more generally (but 
see also Holroyd, in press).

Opportunity Costs

In an attempt to offer an alternative to resource‐based accounts, Kurzban, Duckworth, Kable, 
and Myers (2013) have recently proposed an alternative account according to which the cost 
of effort depends directly on the foregone reward from other options. In their opportunity 
cost framework, the cost of control is directly attached to the presence of task options that are 
more valuable than the current task. In other words, effort is the perceived output of ongoing 
cost/benefit computations that monitor for more profitable lines of actions and is not directly 
linked to the amount of top‐down control that is demanded to successfully encode task repre-
sentations. The opportunity cost framework proposes that the evolutionary purpose of this 
mechanism is to signal when to engage in adaptive alternative mental activities in order to gain 
maximal net benefit from the environment (see also Hockey, 1997).
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Feng, Schwemmer, Gershman, and Cohen (2014) have used a computational modelling 
approach to formulate an alternate version of this idea. They argue that the cost of control 
may arise from cross‐talk that occurs when multiple tasks are performed simultaneously. 
Assuming that these tasks rely on shared rather non‐overlapping neural representations (an 
approach that leads to maximal flexibility and efficiency), they show that even relatively small 
levels of cross‐talk in such a system can lead to large performance decrements. In this context, 
one can imagine that the cost of control serves as a penalty militating against this level of 
multitasking to avoid such decrements, while promoting efficient and flexible processing.

Putting It All Together: A Cost‐Benefit Trade‐Off 
in Cognitive Control

The work reviewed above suggests that control allocation is jointly determined by the payoffs 
and the intrinsic costs associated with cognitive control. However, it leaves open the question 
of how these factors are combined to produce effort‐based decisions about control alloca-
tion. There clearly needs to be a principled way of integrating these two factors to determine 
when and how much to adjust control.

The Overall Expected Value of Control

We recently proposed a normative account of control allocation that adapts approaches from 
computational reinforcement learning for optimal action selection to the goal of determining 
the value of exerting control (Shenhav, Botvinick, & Cohen, 2013). Specifically, our theory 
suggests that we select the amount of cognitive control at a given moment that maximises 
a quantity we refer to as the overall expected value of control (EVC). The EVC represents a 
combination of the two factors we described earlier: the expected payoff and the cost of control 
(Figures 10.1 and 10.3). Payoffs consist of both positive and negative outcomes experienced 
after implementing a given setting of control signals. Positive outcomes that can result from 
control allocation include intrinsic rewards associated with task performance (Cacioppo & 
Petty, 1982; Eisenberger, 1992) and extrinsic rewards like money or social approval. Negative 
outcomes include monetary losses, physical pain, negative peer evaluations, and other states 
that we may experience as aversive (e.g., conditions of increased uncertainty or conflict; 
Fritz & Dreisbach, 2013; Inzlicht, Bartholow, & Hirsh, 2015). The salience of both types 
of outcome could additionally be modulated by the time required to obtain the outcome, 
as has been found in the sensitivity of humans and other animals to reward rate (i.e., rewards 
normalised by time to reward receipt) rather than simply rewards per se (Niv, Daw, & Dayan, 
2006; Simen et al., 2009). In other words, individuals tend to maximise their net reward 
per unit time.

Deciding How Much Control to Exert

According to the EVC framework, an increase in the intensity of control has two simulta-
neous effects. The first is to change the probabilities of performance outcomes (success, 
failure, or more graded intermediate levels of outcome quality). This, in turn, can lead 
to  greater expected payoffs without necessarily influencing the payoffs themselves. For 
 instance, attending more or less to colour naming in the Stroop task influences the likelihood 
of giving a correct response, but not the rewards associated with giving such a response 
(versus an incorrect response). Control can also influence how long it takes you to arrive at 
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that state (i.e., the denominator in the reward rate calculation), for instance, by modulating 
response times. Accordingly, it is important to separate the outcomes described above (e.g., 
amount of reward for correct and loss for incorrect) from the factors that govern the relation-
ship between control investment and the likelihood of obtaining a given outcome. These 
latter factors are typically what is referred to by the term cognitive demand. Signals of task 
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Figure 10.1 Weighing cognitive demands and payoff in the allocation of control. The expected 
value of control (EVC; blue) reflects the difference between expected payoffs (green) and intrinsic costs 
(red) associated with increasing control intensity, assuming a task in which the individual makes a binary 
choice. Control intensity can be selected on the basis of the maximum of the EVC curve. Panel a pro-
vides an example of increasing task difficulty (e.g., 3‐back rather than 2‐back), operationalised as a 
reduction in the efficacy of a given control intensity at achieving a correct response, resulting in a right-
ward shift of the payoff curve (dashed to solid lines). Panel b provides an analogous example of an 
increase in the payoff for a correct response. These examples show how both manipulations can, under 
certain conditions, lead to a decision to increase control. Source: Shenhav 2013. Reproduced with per-
mission of Elsevier.
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difficulty, like errors or amount of conflict, presage the likelihood of reaching a rewarding 
state given the current allocation of control, versus a situation in which one increases or 
decreases their control allocation (e.g., on the next trial).

The second consequence of intensifying control is to produce a subjective ‘effort‐like’ cost 
for the individual. We assume that this cost increases monotonically with the amount of con-
trol being allocated. While the exact function relating these two is still a matter of specula-
tion, there is reason to believe that cost may increase nonlinearly (e.g., exponentially) with 
control intensity (Fudenberg & Levine, 2006, 2011), as has been observed in research on 
physical effort (Klein‐Flügge, Kennerley, Saraiva, Penny, & Bestmann, 2015).

Because both the payoffs and the costs for control are a function of the intensity of control, 
one can ascertain the EVC of a given intensity of control by taking the difference between 
these two quantities (see Figure 10.1 for illustrative examples of this cost‐benefit analysis). 
The optimal set of control signals are those that maximise this difference, that is, that maxi-
mise the EVC. Because the EVC integrates both payoffs and costs, those factors that indicate 
increased demand for control (e.g., error feedback, conflict) can lead to greater control allo-
cation but only up to a point (Figure 10.1a), and likewise for factors that indicate increasing 
reward for successful task performance (Figure 10.1b).

Deciding How Long to Exert Control

The cost‐benefit analysis just described focuses primarily on how intensely to exert control. 
However, many effort allocation problems incorporate another crucial dimension, namely, 
how to allocate control over periods of time. Imagine, for example, a graduate student sitting 
in her office on a weekday. Across time, the student has to repeatedly make a choice between 
two categories of tasks. She can spend time on activities that will further her research, or she 
can take a break to daydream or peruse social media networks. The decision here is not just 
related to intensity of control, but can also be characterised as a graded and time‐based choice 
between cognitive labour and cognitive leisure, or mental work and mental rest. In recent 
work, we tested a formal framework for understanding such temporal allocation problems. 
This work draws upon a model from labour economics that addresses the question of how 
workers choose to allocate time between labour and leisure.

The model, labour supply theory (LST), was originally formulated to account for how 
workers choose to allocate time between labour and leisure (for an introduction, see Nicholson 
& Snyder, 2008). Here, the benefits from work (i.e., wage) are weighed against its intrinsic 
costs in a nonlinear fashion, such that the more hours one is working, the more costly each 
additional unit of work becomes (Figure 10.2). Through this feature of the model, optimal‐
effort‐based decision making results in time allocations that reflect a balance between the 
payoffs of work, and the intrinsic value of leisure (i.e., the intrinsic cost of work). LST has 
been validated in numerous experimental and field studies on labour markets (Charness & 
Kuhn, 2010; Dickinson, 1999; Fehr & Goette, 2007), and has been extended to decision 
making based on physical effort in animal learning research (Chen, Lakshminarayanan, & 
Santos, 2006; Conover & Shizgal, 2005; Kagel, Battalio, & Green, 1995).

We recently provided evidence that LST can be applied to decisions involving allocation 
of cognitive effort over extended periods (Kool & Botvinick, 2014). In these studies, par-
ticipants divided their time between a mentally demanding task (labour) and a trivially easy 
task (leisure) within each of a series of experimental sessions. By varying the incentive 
structure across sessions, we tested a set of critical predictions from LST and found 
that these held in the case of cognitive effort. The results mirror findings in real‐life labour 
markets and reveal that the cost of mental effort scales in a nonlinear fashion with time 
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spent exerting control. This nonlinearity has the effect of motivating individuals to strike a 
balance between mental labour and leisure.

Deciding What Kinds of Control to Exert

Note that in this last example, the individual is faced with a decision not only over how 
much control to exert but also to which task or tasks to allocate this control. This high-
lights a  crucial dimension of control that must be selected simultaneously with the 
amount of  control: the type of control that needs adjusting (e.g., attention to different 
tasks, locations, or  stimulus properties; threshold for sampling from episodic memory; 
affective responses to downre gulate). We refer to these as the identity and intensity of 
potential control signals, which are the basic unit over which value is maximised within 
the EVC model described earlier (Figure  10.3). By operationalising cognitive control 
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Figure  10.2 The utility function of labour supply theory (LST). As discussed by Kool and 
Botvinick (2014), LST is a theory of how workers should allocate time between work and leisure. Work 
is valuable because it yields income via a wage (w). Leisure, on the other hand, carries inherent value. 
Note that this value can also be viewed as the utility of avoiding the effort costs associated with work. 
Each combination of income and leisure corresponds to a point on the surface at the top, and is associ-
ated with one of the iso‐utility contours in the bottom of the figure. Allocation decisions are constrained 
by a time budget, or the total interval of time (T) available for the two activities. This time budget is 
represented by the grey plane that intersects the utility surface in the top part of the figure top, and the 
diagonal line segment in the lower part. LST assumes that the iso‐utility curves of the utility function are 
convex to the origin, resulting in the inverted‐u shaped function on top. The optimal time allocation 
decision maximises utility over the time budget line. Because the utility is convex to the origin, LST 
predicts a preference for combinations of income and leisure that balance between the two extreme 
 allocations. Source: Adapted from Kool 2014. Reproduced with permission of APA. Abbreviations: 
T, maximum time available for leisure; wT, maximum attainable income.
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adjustments in this way, the EVC  framework is able to extend beyond simple models of 
reinforcement learning and draw explicit connections to the field of optimal control 
theory, an area of engineering focused on how to simultaneously optimise the settings of 
multiple control variables within a dynamical system (e.g., gears and steering‐wheel posi-
tions on a car) on the basis of feedback from the environment (Kirk, 2012; Wolpert & 
Landy, 2012).

Because the EVC is simultaneously maximised over the intensities of multiple potential 
control signal identities, as EVC‐relevant variables like difficulty and payoff change, optimal 
control adaptations can occur within as well as between control signals. For example, 
increasing difficulty within a certain range may encourage greater engagement of one control 
signal (e.g., greater attention to task‐relevant stimuli), but further increasing task difficulty 
may lead to engaging a different control signal entirely (e.g., adjustment of decision threshold, 
or attending to an alternate task).

Under the Hood: Neural Circuitry for Control 
Evaluation and Specification

According to the EVC framework, describing the mechanisms for control requires delin-
eating (at least) three distinct functions related to control: monitoring, specification, and 
regulation. Monitoring refers to the process of detecting and signalling control‐relevant 
changes in the environment, including changes in the control demands described earlier 
(e.g., payoff, difficulty). Specification refers to the process of integrating these monitored‐for 
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Figure 10.3 Specifying the optimal identity and intensity of control. EVC is simultaneously maxi-
mised across possible intensity settings (right) of available control identities (left), for instance, when 
deciding how much to attend to the colour versus word form when performing the Stroop task. Vertical 
arrows between gauges and feedback denote likelihoods of obtaining a given outcome under a given 
control setting. Source: Adapted from Shenhav 2013. Reproduced with permission of Elsevier.
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quantities into a determination of which control signals currently maximise the EVC. 
Regulation refers to the process of implementing these control signals. These three functions 
therefore roughly correspond to the inputs to control decision making (monitoring), the 
decision making itself (specification), and execution of control (regulation). A fourth relevant 
function can be described upstream of monitoring, related to valuation of individual events 
and objects or states in one’s environment.

On the basis of this taxonomy, we have recently proposed that the dorsal ACC sits at the 
intersection of monitoring and specification functions of control, a proposal that resonates 
with a wide array of theories of the dorsal ACC (Cavanagh & Frank, 2014; Holroyd & 
Yeung, 2012; Kouneiher, Charron, & Koechlin, 2009; O’Reilly, 2010; Ullsperger, 
Danielmeier, & Jocham, 2014; see also Chapter 15 by Brown in this volume). Specifically, we 
suggest that the dACC is responsible for evaluating how best to allocate control (i.e., calcu-
lating the EVC) and that it signals the output of this decision (i.e., the set of control signals 
that maximises the EVC) to downstream regions (Shenhav et al., 2013). As we discuss later, 
this latter function can be seen as effectively licensing or ‘motivating’ the optimal allocation 
of control. This account draws on a number of lines of converging evidence surrounding the 
dACC’s role in cognitive control and in the broader neuroscientific literature, the broad 
strokes of which will be summarised next.

dACC and Monitoring

A number of lines of evidence support our proposed role for the dACC. First, dACC activity 
has been shown to track each of the variables relevant to evaluating potential control signals 
within one’s current state. This region differentiates between available states and control 
 signals, such as rules (Durstewitz, Vittoz, Floresco, & Seamans, 2010; Johnston, Levin, 
Koval, & Everling, 2007; Matsuzaka, Akiyama, Tanji, & Mushiake, 2012; Womelsdorf, 
Johnston, Vinck, & Everling, 2010), actions (Cai & Padoa‐Schioppa, 2012; Hayden & Platt, 
2010; Isomura, Ito, Akazawa, Nambu, & Takada, 2003; Morecraft & Tanji, 2009), and task 
sets (Forstmann, Brass, Koch, & Von Cramon, 2006; Momennejad & Haynes, 2013; 
Wisniewski, Reverberi, Tusche, & Haynes, 2015). Moreover, the dACC tracks a variety of 
sources of cognitive demands (Cavanagh & Frank, 2014; Duncan, 2010; Paus, Koski, 
Caramanos, & Westbury, 1998; Venkatraman & Huettel, 2012), from errors (Emeric et al., 
2008; Holroyd & Coles, 2002; Ito, Stuphorn, Brown, & Schall, 2003) to conflict (Botvinick 
et al., 2001; Ebitz & Platt, 2015; Sheth et al., 2012) to signals indicating increased surprise 
or unpredictability in one’s environment (Behrens et  al., 2007; Bryden, Johnson, Tobia, 
Kashtelyan, & Roesch, 2011; Cavanagh & Frank, 2014; Wessel, Danielmeier, Morton, & 
Ullsperger, 2012). dACC activity has also been found to anticipate and/or mark the occur-
rence of positive outcomes like juice or monetary gain (Bartra, McGuire, & Kable, 2013; 
Kouneiher et al., 2009; Wallis & Kennerley, 2011) as well as negative outcomes like electric 
shock or monetary loss (Botvinick, 2007; Shackman et al., 2011), though it should be noted 
that it is not always easy to distinguish these activations from signals related to salience or 
prediction error (Bartra et al., 2013; Cavanagh & Frank, 2014; Engelmann et al., 2009; 
Litt, Plassmann, Shiv, & Rangel, 2011) and therefore may sometimes reflect attentional 
demands rather than  outcomes per se.

Importantly, feedback‐related signals in the dACC (e.g., errors, reward) have properties 
that suggest that they are in some way tied to control requirements rather than simply being 
part of an all‐purpose mechanism for learning about states in the environment. First, the 
presence and strength of feedback‐related dACC signals is influenced by the amount of 
information that can be gained as well as the effort required of the task. When monkeys 
(Quilodran, Rothé, & Procyk, 2008) or humans (Amiez, Sallet, Procyk, & Petrides, 2012) 
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perform a task involving phases of exploration (attempting to discover the correct response) 
versus exploitation (repeating this response until it ceases to provide correct feedback), dACC 
activity is greatest when the feedback indicates discovery of the correct response or a need to 
explore once again, and is lowest in response to correct feedback during the exploit phase 
(Khamassi et  al., 2010). These findings are consistent with the observation that reward‐
related activity in the rodent dACC is also diminished when no effort is required to obtain 
that reward (Hillman & Bilkey, 2010).

Moreover, although a number of findings tie the dACC to levels of surprise or unpredict-
ability, it has also been shown that these surprise signals depend critically on the relevance of 
the surprising outcome to future control states. For instance, O’Reilly and colleagues (2013) 
asked participants to saccade to a target that would tend to occur in a constrained region of 
the screen, with that region changing over the course of the experiment. They found that the 
dACC was more active when the target appeared in an unexpected location and the target’s 
colour indicated a general shift in possible future target locations, but not when the colour of 
that surprising target indicated that this trial had no predictive power. In other words, dACC 
responses to equally unexpected events are modulated by the degree to which that event sig-
nalled the need for an update of an internal model (see also Grundy & Shedden, 2014). In 
further support of our account of dACC monitoring for the purpose of adjusting relevant 
control signals, the monkey dACC has been found not only to contain separate and overlap-
ping neuronal populations that track positive and negative outcomes (including errors and 
now also conflict; see below), but this region further distinguishes between different sources 
of errors. For instance, Shen and colleagues (2015) found that error signals in the dACC dif-
ferentiated between errors that occurred during different stages of a task trial—related to 
putative failures in sustaining attention, in inhibiting distractors, or in execution of the incor-
rect response—consistent with a potential role in assigning credit to the appropriate control 
signal(s) that need to be adjusted (see also Quilodran et al., 2008).

Although some of these findings might simply argue for a role for the dACC in learning 
and/or selecting between the values of actions (e.g., Hare, Schultz, Camerer, O’Doherty, & 
Rangel, 2011), recent findings place limitations on such an account. Despite substantial evi-
dence for action values in the dACC, recent studies suggest that the types and timing of 
value‐related responses in the dACC may make this region better suited for post‐choice eval-
uation and control than for direct comparison between action values. For instance, Cai and 
Padoa‐Schioppa (2012) found that during economic choice, dACC action values tend to 
reflect post‐decision variables (e.g., the value of a chosen option or action) rather than pre‐
decision variables (e.g., the value of the offered options, which are encoded earlier in the 
orbitofrontal cortex [OFC]). Similarly, Blanchard and Hayden (2014) found that dACC 
activity in a sequential foraging‐like task signalled one post‐decision variable (the value of the 
unchosen option) and one putatively pre‐decision variable (the ratio of the offered reward to 
the delay to reward receipt), but its encoding of the latter interacted with the choice that was 
made (accept or reject). In other words, the findings support a role for the dACC in using 
the outcome of a previous decision to modify future strategies and/or control (see also 
Cowen, Davis, & Nitz, 2012).

Finally, in addition to studies linking the dACC to the encoding of physical effort demands 
(Hillman & Bilkey, 2010; Hosokawa, Kennerley, Sloan, & Wallis, 2013; Prévost, Pessiglione, 
Météreau, Cléry‐Melin, & Dreher, 2010; Wallis & Kennerley, 2011) and correlates of 
cognitive demands discussed above, other findings suggest that the dACC may also track the 
subjective costs associated with exerting cognitive effort (Botvinick, 2007). For example, in 
one study, Botvinick, Huffstetler, and McGuire (2009) showed that ventral striatal (vStr) 
responses to both positive and negative feedback were diminished after completing a more 
rather than less cognitively demanding block of trials (i.e., one that required more rather than 
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less task switching), and that the vStr response to feedback on high‐demand blocks was 
smaller the greater the dACC responded while performing the task for that block. In a follow‐
up study, McGuire and Botvinick (2010) found that activity in the dACC and the lateral PFC 
predicted preferences for avoiding a similarly demanding block of an experimental session 
(again, involving task switching), though in the dACC this association could be explained in 
terms of objective performance on the task (i.e., RT, error rate; see also Magno, Foxe, 
Molholm, Robertson, & Garavan, 2006).

dACC and Control Specification

The aforementioned evidence points to a role for the dACC in evaluating (or at least having 
access to) quantities relevant to control allocation, and suggests that this region is particularly 
responsive to those values when they are most relevant. A wide literature further implicates 
this region in exerting an influence on ongoing control on the basis of these monitored sig-
nals (see also Chapter 5 by Brown in this volume).

First, several studies have found overlapping representations in the dACC of specific tasks 
or rules to be attended (i.e., potential targets of control allocation) and their associated 
values. This includes the rewards associated with specific saccade directions (Cai & Padoa‐
Schioppa, 2012; Hayden & Platt, 2010) and with targets of covert attention allocation 
(Kaping, Vinck, Hutchison, Everling, & Womelsdorf, 2011). Cowen and colleagues (2012) 
found similar overlaps between the encoding of specific paths along a track and their associ-
ated effort demands in the rat dACC (though these responses appeared to be involved in 
regulating chosen actions rather than planning/choosing). Similarly, while participants per-
formed a task that allowed them to choose which of three task sets to engage on a given trial, 
and the difficulty of those tasks varied over time (a chosen task grew more difficult over time 
while the unchosen tasks grew easier), Wisniewski and colleagues (2015) found overlapping 
regions of the dACC encoded the identities of potential tasks during the choice phase and 
encoded the difficulty of the chosen task during task performance.

Moreover, changes in dACC activity are associated with and often anticipate changes in 
task performance. Indirect evidence for this comes from a large body of findings showing 
that the dACC’s responses to salient task events predict subsequent adjustments in con-
trol. For instance, the dACC has been implicated in error adaptation, predicting post‐
error adjustments on the following trial such as slowing (Cavanagh & Frank, 2014; 
Danielmeier, Eichele, Forstmann, Tittgemeyer, & Ullsperger, 2011; Narayanan, Cavanagh, 
Frank, & Laubach, 2013; Narayanan & Laubach, 2008) and reallocation of attention bet-
ween low‐level regions representing task‐relevant versus task‐irrelevant stimulus prop-
erties (Danielmeier et  al., 2011; King, Korb, von Cramon, & Ullsperger, 2010). The 
dACC has also been implicated in conflict adaptation, for instance, predicting more effi-
cient resolution of conflict within a high‐conflict trial (Sohn, Albert, Jung, Carter, & 
Anderson, 2007) or on a trial that follows (Forster, Carter, Cohen, & Cho, 2011; Horga 
et al., 2011; Kerns et al., 2004; Oehrn et al., 2014), often through its connectivity with 
the lateral PFC. In the first demonstration of conflict‐related signals in the monkey dACC, 
Ebitz and Platt (2015) found that dACC signals reflecting either errors or high‐conflict 
stimuli (distractors that were either incongruent or congruent with a target stimulus 
direction, evoking what they refer to as task conflict) predicted pupillary adjustments on 
subsequent trials that were separately associated with reduced distractor interference on 
those trials (Shenhav & Botvinick, 2015; see also Amemori & Graybiel, 2012). Other 
studies have further linked dACC activity to subsequent choice reversals (Boorman, 
Rushworth, & Behrens, 2013; Shenhav & Buckner, 2014), changes in learning rate 
(Behrens et al., 2007; Bryden et al., 2011), and both within‐ and between‐trial  adjustments 
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in decision threshold in reaction not only to errors (as described above) but to increased 
choice conflict as well (Cavanagh & Frank, 2014; Cavanagh et al., 2011).

Tying the findings above to specific representations of control signals in the dACC, some 
studies have explicitly decoded representations of different task rules from neural activity in 
this region and examined the relationship between the strength of those representations and 
performance on a task. For instance, Johnston and colleagues (2007) showed that neuronal 
activity in the dACC could be classified on the basis of the current task rule (pro‐ or anti‐ 
saccade) and that the accuracy of these classifications predicted accuracy during the task (see 
also Rothé, Quilodran, Sallet, & Procyk, 2011; Womelsdorf et  al., 2010): When dACC 
activity in preparation of engaging a given task rule was less selective for the correct rule, an 
error was more likely.

These findings collectively support the idea that the dACC has the representational 
capacity that would be expected of a region that maps states and potential control signals to 
their associated value. It also provides correlational evidence that such representations in the 
dACC are associated with downstream adjustments in control states. In addition to this, 
there is also mounting causal evidence that the dACC exerts an influence on control. For 
instance, patients with lesions in (anterior regions) of the dACC are impaired at tasks that 
require shifting between different task sets but not, for instance, at a value‐based decision‐
making task (Gläscher et al., 2012). dACC lesions have also been found to impair sequential 
adaptation in response to control‐relevant stimuli. Sheth and colleagues (2012) found that 
patients who had undergone cingulotomy showed diminished conflict adaptation following 
their surgery (relative to pre‐lesion performance), while Newman, Creer, and McGaughy 
(2015) found analogous impairments in conflict adaptation in ACC‐lesioned rats (but see 
also Mansouri, Tanaka, & Buckley, 2009). Narayanan and colleagues (2013) found that 
dACC‐inactivated rats exhibited analogous impairments in adapting (i.e., slowing) to an 
error on the previous trial.

dACC lesions have more generally been found to impair behavioural adjustment to 
recent reversals in reinforcement (Kennerley, Walton, Behrens, Buckley, & Rushworth, 
2006) and to produce motivational deficits such as global response slowing (Stuss & 
Alexander, 2007) and reduced willingness to overcome effortful obstacles (i.e., increased 
effort discounting; Walton et  al., 2006). Far more dramatic consequences of lesioning 
dACC and surrounding regions of the medial prefrontal cortex (especially the supplementary 
motor area) include disorders like abulia, anergia, and akinetic mutism, with which patients 
are technically able to perform effortful behaviours but lack the motivation or drive/energy 
to engage in such activities (Stuss, 2011; Stuss & Alexander, 2007). Such findings are 
broadly consistent with our proposed role for this region in specifying the EVC‐maximising 
control (akin to a motivational or ‘willingness to pay’ signal; see also Holroyd & Yeung, 
2012; Kouneiher et al., 2009).

Our account of the dACC as overseeing the decision to engage control, and outputting the 
quantity of control deemed worthwhile, has also been borne out by a few studies that employ 
the opposite causal approach, stimulating rather than inhibiting the dACC. Parvizi, Rangarajan, 
Shirer, Desai, and Greicius (2013) used depth electrodes to electrically stimulate the dACC in 
two awake human patients as those patients verbalised their subjective experiences. A common 
feature of their reports was a feeling of an increased ‘willingness to persevere’ in the face of per-
ceived environmental challenges. Using noninvasive methods (transcranial direct current stim-
ulation [tDCS]) in healthy participants, Reinhart and Woodman (2014) were similarly able to 
provide evidence consistent with our account. They found that excitatory stimulation (anodal 
tDCS) of the dACC and surrounding regions on the medial surface (including SMA) increased 
monitoring‐related ERPs (error‐ and feedback‐related negativities) and led to improved overall 
accuracy, faster learning, and greater post‐error slowing on a stop‐signal target discrimination 
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task, relative to sham controls. The opposite pattern was observed when this region was instead 
inhibited (cathodal tDCS; see also Reinhart & Woodman, 2015; Rollnik et al., 2004).

By focussing so far on the dACC’s role in evaluating and specifying control, we have failed 
to emphasise a key point, which is that the dACC is central but by no means singular in its 
involvement in control decision making. A number of structures are presumed to play critical 
roles in supporting the valuation of control‐relevant processes (acting as inputs to the dACC) 
and in executing control itself (performing the output functions specified by the dACC). At 
the intersection of valuation and monitoring functions lie regions that include the insula, ven-
tral striatum, orbitofrontal cortex, and ventromedial PFC (Craig, 2009; Haber & Knutson, 
2010). On the output end, the regions that implement the necessary control signals vary 
according to the type and specificity of control required, for instance, whether it involves 
attention to particular rules or task sets (e.g., by LPFC; Miller & Cohen, 2001; Oehrn et al., 
2014; Rothé et al., 2011; Shen et al., 2015); adjustments to decision thresholds to behave 
more cautiously (e.g., by the subthalamic nucleus; Aron & Poldrack, 2006; Cavanagh et al., 
2011; Jahfari et al., 2011); or a change in exploratory versus exploitative modes (e.g., by the 
locus coeruleus; Aston‐Jones & Cohen, 2005).

Conclusions

Throughout this chapter, we have reviewed a number of important domains that encompass 
the intersection between decision making and cognitive control. At the core of this overlap lies 
the observation that there are several motivational factors, such as performance‐contingent 
rewards, that have been shown to modulate the degree to which mental effort is deployed 
(Botvinick & Braver, 2015; Padmala & Pessoa, 2011; Shenhav et al., 2013). This observation 
suggests that people are reluctant to exert cognitive control, a claim supported by data we 
reviewed above (Kool et al., 2010; Schouppe et al., 2014). We have also reviewed a decision‐
making framework that proposes a set of computational and neural mechanisms by which the 
costs and benefits of control are integrated in order to decide whether and how cognitive 
control should be deployed.

These findings have obvious ties with other areas of research in which reward‐based 
decision making and executive functioning are implicated. Research on self‐control, the 
important though fallible ability to resist immediate pleasures in favour of longer‐term goals 
(Mischel, Shoda, & Rodriguez, 1989), seems to fit this description. In fact, recent findings 
suggest that the ability for self‐control is related to the cost for cognitive activity (Kool et al., 
2013; Westbrook et al., 2013), and recruits the same neural circuitry that is typically associ-
ated with cognitive control (Hare, Camerer, & Rangel, 2009; Heatherton, 2011; McClure, 
Laibson, Loewenstein, & Cohen, 2004). Other fields of research that could benefit from the 
current approach include the study of voluntary task selection (Arrington & Logan, 2004; 
Orr & Weissman, 2011) and perseverance towards goals over longer time scales (i.e., ‘grit’; 
Duckworth, Peterson, Matthews, & Kelly, 2007; Duckworth & Seligman, 2005).

In order to gain traction in these related fields, and to facilitate communication across 
them, there needs to be a common language for describing the computational mechanisms 
that underlie the evaluation of tasks in terms of their demands for cognitive control. 
Throughout this chapter, we have provided a broad framework and particular implementa-
tions for such an analysis. Understanding cognitive control requires understanding the 
particular costs and benefits associated with this process. One way to do this is by employing 
the kinds of tasks reviewed in this chapter that can be used to measure and test the size of cost 
for cognitive control (DSTs; Kool & Botvinick, 2014; Kool et al., 2010; Westbrook et al., 2013). 
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Another way is to establish a comprehensive and empirical comparison of the different models 
that have been offered on how effort‐based cost‐benefit analyses are implemented (Holroyd & 
McClure, 2015; Kurzban et  al., 2013; Shenhav et  al., 2013; Silvetti, Alexander, Verguts, & 
Brown, 2014). With these and related opportunities at hand, we foresee a period of rapid 
progress towards understanding the connections between motivation and cognitive control.
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