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Review



People seek actions 
that increase utility 

and avoid actions that 
decrease utility

Mill, 1861

Utilitarianism



Decision Making

Our ability to process multiple alternatives and choose the 
option that maximizes utility



Expected Value = Value x Probability



Problem 1
Would you play a gamble that has a 40% chance to win $1000 or a 70% 

chance to win $600?

A Sample Problem



Decision Making

1. Always Choose the Highest Value Option
2. Exploration versus Exploitation

BUT

3. Psychological factors have to be accounted for
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EEG reflects Post Synaptic Potentials
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Cultural objects modulate reward circuitry
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Using event-related fMRIwe investigated the rewardingproperties
of cultural objects (cars) signaling wealth and social dominance. It
has been shown recently that reward mechanisms are involved in
the regulation of social relations like dominance and social rank.
Based on evolutionary considerationswehypothesized that sports
cars in contrast to other categories of cars, e.g. limousines and
small cars, are strong social reinforcers and would modulate the
dopaminergic reward circuitry.Twelve healthy male subjects were
studied with fMRI while viewing photographs of di¡erent car

classes followed by an attractivity rating. Behaviorally sports cars
were rated signi¢cantly more attractive than limousines and small
cars.Our fMRIresults revealed signi¢cantlymore activation inven-
tral striatum, orbitofrontal cortex, anterior cingulate and occipital
regions for sports cars in contrast to other categories of cars.We
could thus demonstrate that arti¢cial cultural objects associated
with wealth and social dominance elicit activation in reward-re-
lated brain areas. NeuroReport 13:2499^2503 !c 2002 Lippincott
Williams &Wilkins.

Key words: Attractivity; Cars; Emotion; Reward;Ventral striatum

INTRODUCTION
Rewards induce subjective feelings of pleasure and con-
tribute to positive emotions. They can act as positive
reinforcers by increasing the frequency and intensity of
goal-directed behavior. Objects that signal reward have a
positive motivational value and thus can elicit effortful
behavioral responses. Neurobiologically, reward is
mediated by dopaminergic systems involving the ventral
striatum in which the nucleus accumbens is located.
Drugs like amphetamine and cocaine can prolong the
dopaminergic influence on target neurons such as the
nucleus accumbens [1]. The activity of dopaminergic
neurons in the nucleus accumbens of the rat has
been shown to increase their activity by self-administration
of cocaine [2]. In monkeys, dopaminergic neurons show
phasic activation after the presentation of liquid and solid
rewards and after the presentation of stimuli predicting
reward [3,4]. Human neuroimaging studies have demon-
strated that the ventral striatum is activated by the
presentation of natural rewards such as sexual stimuli [5],
food (e.g. chocolate) [6] or mate attributes such as beautiful
faces [7]; money is the probably strongest learned reinforcer
[8,9].
Recently, it has been shown that these reward mechan-

isms are also involved in the regulation of social relation-
ships such as dominance and social rank. Macaque monkeys
differ in the number and availability of dopamine D2

receptors after 3 months of social housing in relation to their
social rank [10]. In contrast to subordinate monkeys
dominant monkeys showed an increase in the number and

availability of D2 receptors in the ventral striatum and less
cocaine self-administration.
Dominance and social rank are mediated by individual

attributes signaling wealth and superfluity. A classical
example is the peacock’s elaborate tail: this has no apparent
survival value and might actually hinder survival in making
its owner more conspicuous to its predators and too clumsy
to escape [11,12]. The tail thus fulfills no meaningful
function except to signal that its owner is obviously strong
enough to be able to invest energy in such a useless
structure. In fact, peacocks who are able to produce the most
fancy and ornamental tails are fitter in the darwinian sense;
this has been shown in a study reporting that the offspring
of those peacocks grew faster and had better survival rates
[13]. In human societies the demonstration of wealth and
superfluity is also a strong signal of social dominance. This
is seen in rural societies such as the indian tribe of the
Kwakiutl in British Columbia, where the aim of a feast
called Potlatch is to give away or to destroy more goods
than other competing chieftains. By this behavior the
chieftain demonstrates his power and wealth [14]. Based
on these evolutionary considerations, we hypothesized that
cultural objects signaling wealth and superfluity will act as
strong social reinforcers and will activate the dopaminergic
reward circuitry. Examples of such objects are sports cars.
These differ from natural reward stimuli like food, sex and
faces (mates) and do not have an intrinsic reward value. In
contrast, they are neither economically nor ecologically
appropriate, certainly not spacious for more than two
persons and often dangerous for their owners or drivers.

0959-4965!c LippincottWilliams &Wilkins Vol 13 No 18 20 December 2002 24 9 9

MOTIVATION, EMOTION, FEEDING,DRINKING NEUROREPORT

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



However, they signal high social rank, social dominance and
wealth, and can be regarded as the human equivalent to the
peacocks tail.

MATERIALS AND METHODS
Subjects: Twelve male subjects participated in the experi-
ment who were highly interested in cars according to a pre-
scan self-rating procedure (with a rating of Z 4 on a five-
point scale) and had participated at least once in a car
purchase. Mean age of the subjects was 31.47 6.9 years, and
they had no history of neurological or psychiatric illness and
no use of stimulating drugs or medicine. All subjects gave
written informed constent. The study was approved by the
local ethics committee.

Experimental design: We used different categories of cars,
i.e. sports cars, limousines and small cars, to investigate the
neural correlates of indirect social reinforcement. Our
stimuli consisted of 66 grey-scaled car photographs, 22 of
sports cars, 22 limousines and 22 small cars. All photo-
graphs were taken from the same perspective and car brand
names were eliminated (Fig. 1). We used an event-related
fMRI activation paradigm with car pictures presented for
6000ms each in randomised order, immediately followed by
an attractivity rating of the previously shown car indicated
by a five-point-scale for 1500ms in order to induce an
evaluation process. Subjects had to rate the attractiveness of
the previously seen car by button press. Interstimulus
interval was jittered between 0.7 and 2.5 TR. After the fMRI
procedure, subjects underwent a post-scan semiquantitative
interview, i.e. about their preferences and indifferences
concerning cars in general and their individual criteria for
the evaluation of a car.

Data acquisition and analysis: fMRI data were acquired
on a 1.5 T Siemens Magnetom Symphony whole-body MRI
system equipped with a head volume coil. T2* weighted
functional MR images were obtained using echo-planar
imaging in an axial orientation. Image size was 64 ! 64
pixels, with a FOV of 192mm. One volume covering the
whole brain consisted of 22 slices with 3mm slice thickness.
Volumes were obtained every 2.5 s (TE 60ms).
Data preprocessing and statistical analysis was carried

out with SPM 99 (Statistical Parametric Mapping, Wellcome
Institute of Cognitive Neurology, London, UK) and MA-
TLAB 6.1 (MathWorks, Natick, Massachusetts, USA).
Individual functional images were corrected for motion
artifacts by realignment to the first volume of each session.
All images were spatially normalized (3 ! 3 ! 3mm) to an
echo-planar image in MNI space. Volumes were resliced by
sinc interpolation. Images were spatially smoothed with an
8mm full width at half maximum (FWHM) isotropic
Gaussian kernel. For each trial the variance of every voxel
was estimated according to the general linear model. Images
were globally scaled, high frequency noise was removed
using a low pass filter (Gaussian kernel with 4.0 s FWHM)
and low frequency drifts were removed via a high pass
filter.
The evoked hemodynamic response for the different

pictures were modeled in a single subject analysis for the
different car classes as canonical hemodynamic response

function. Picture stimuli were modeled as box-car responses
convolved with the hemodynamic response function. To
account for interindividual variance a random effect group
analysis (second level analysis) was performed using the
appropriate individual statistical contrast images from
single subject analyses. Individual regionally specific effects
of conditions for each subject were compared using linear
contrasts, resulting in a t-statistic for every voxel. t-statistics
for each voxel were thresholded at po 0.001 uncorrected for
multiple comparisons. Results were extent threshold cor-
rected resulting in po 0.05 at the cluster level. All areas
were identified using the atlases of Talairach and Tournoux
[15] and Duvernoy [16].

RESULTS
Behavioral results: As expected, behavioral results
showed that sports cars were rated significantly more
attractive than limousines and small cars. Mean attractivity
rating for sports cars was 3.797 0.14, limousines
2.467 0.09, and small cars 2.037 0.08 (F(2,33)¼ 68.299,
po 0.0001; Fig. 2). There was no effect of car category on
reaction times for attractivity rating. Mean reaction time for
sports cars was 629.57 30.27ms, limousines 602.57 27.9ms
and small cars 5827 27.7ms (F(2,33)¼ 0.69, p¼ 0.508).
Although a trend to shorter reaction times between sports
cars and small cars can be seen, this difference was not
significant.

fMRI results: fMRI data were analyzed for the three
different categories of cars. To account for interindividual
variance we performed a group analysis on a second level
using a random effects model. Compared to small cars,
sports cars elicited activation in right ventral striatum, left
orbitofrontal gyrus, left anterior cingulate, bilateral dorso-
lateral prefrontal gyrus, right fusiform gyrus and left
occipital cortex. Compared to limousines, sports cars elicit
more activation in left occipital cortex and right anterior

Sportscars Limousines Small Cars

Fig. 1. Picture stimuli. Example of photographs of sports cars, limou-
sines and small cars as used in the experiment.
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Fig. 3. Images of statistic parametric mapping for the contrast sports car4 small car projected onto sections of the standard T1-template of SPM 99
(all images: random e¡ects analysis, po 0.001uncorrected formultiple comparisons).T-values are color coded, regions are described by their respective
x, y, and z-coordinates in the standard T1-template inTable1.Bars on the right show the scaled fMRI signal intensity with s.e. not only for sports cars and
small cars but also for limousines.From above (marked in red circle): right ventral striatum, left orbitofrontal cortex, right fusiform gyrus and left lateral
occipital complex.
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cingulate (Table 1). For limousines vs small cars we found
significantly more activation in left lingual gyrus and right
dorsolateral prefrontal cortex, whereas limousines elicit
more activation in right insula and left lingual gyrus
compared with sports cars. No significant activation at our
chosen level of significance was seen for small cars
compared to limousines or sports cars.

DISCUSSION
In our study we wanted to test whether sports cars, which
as explained above signal higher reward than limousines or
small cars, elicit reward-related activations in the hypothe-
sized brain regions. We addressed this by comparing neural
responses associated with the presentation of sports cars vs
the presentation of small cars. This contrast revealed
significantly more activation for sports cars in brain regions
associated with reward and reinforcement, i.e. right ventral

striatum, left orbitofrontal cortex, left anterior cingulate and
bilateral prefrontal cortex. We also observed significant
activation in right fusiform gyrus and left lateral occipital
complex (Fig. 3).
Thus, our hypothesis of an activation of the reward

circuitry by attractive sports cars was confirmed. The
ventral striatum as well as the orbitofrontal cortex were
activated more by sports cars than by small cars. The
mean signal difference in ventral striatum for activation
elicited by limousines was lower than for sports cars
but higher than for small cars. This confirms that the
degree of attractiveness activates the above-mentioned
structures, as would be expected from their intermediate
attractivity scores. Given these results, the question
arises, why the reward circuitry would be activated by the
degree of attractiveness. Recently, it has been demonstrated
that passive viewing of female attractive faces activates
the ventral striatum in heterosexual male subjects [7].
From an evolutionary perspective there may be a good
explanation for the activation of the ventral striatum in
that attractive female faces can be regarded as a potentially
rewarding stimulus, i.e. the initiation of a social interaction.
This consideration can be supported by the recent
finding that reward anticipation leads to an increase of
ventral striatal activation [17]. It is a possibility that our
attractive car stimuli function as predictors of potential
social reward because the category of the car one owns is a
highly reliable predictor for social dominance and high
social rank [18].
We further suggest that cars are processed in a similar

way to faces. Evidence for this suggestion comes from
the fact that nearly all subjects described the headlights of
the cars as eye-like with the cars facing the observer. If
this is true, one might expect that attractive cars seen
from the back or the side would not elicit activation
in the ventral striatum. An interesting observation
supporting our suggestion is the activation of the fusiform
face area [19], especially by attractive cars in our study.
It has also been shown recently that car stimuli activate the
fusiform face area in car experts [20]. Thus, it remains open
whether activation of the fusifom face area is due to the
face-like appearance of the cars or expertise in processing
[21].

Sportscar Limousine Small Car

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Mean Attractivity Rating

Fig. 2. Mean attractivity rating. Mean rating scores of sports cars, li-
mousines and small cars as rated by the subjects during the fMRI experi-
ment. Sports cars were rated signi¢cantly more attractive than
limousines and small cars (F(2,33)¼ 68.299, po 0.0001).Mean attractivity
rating for sports cars 3.797 0.14, limousines 2.467 0.09, and small cars
2.037 0.08.

Table1. Regions activated in the random e¡ects analysis (po 0.001uncorrected) for the respective contrasts.

Contrast Region Talairach coordinates Z-score

x y z

Sports cars4 small cars L occipital gyrus "48 "78 0 4.63
R fusiform gyrus 30 "54 "15 3.78
Rventral striatum 9 3 "6 4.30
L orbitofrontal gyrus "3 33 "18 3.68
L anterior cingulate "3 45 12 3.50
R dorsolateral prefrontal cortex 45 15 30 4.08
L dorsolateral prefrontal cortex "45 3 36 4.27

Sports cars4 limousines L anterior cingulate "3 54 12 4.94
L occipital gyrus "42 "45 "6 3.44

Limousines4 sports cars R insula 33 "18 15 3.84
L lingual gyrus "6 "87 "6 3.77

Limousines4 small cars L lingual gyrus "9 "96 "15 4.86
R dorsolateral prefrontal cortex 54 15 30 4.04
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The root of all value: a neural common currency for choice
Dino J Levy and Paul W Glimcher

How do humans make choices between different types of

rewards? Economists have long argued on theoretical grounds

that humans typically make these choices as if the values of the

options they consider have been mapped to a single common

scale for comparison. Neuroimaging studies in humans have

recently begun to suggest the existence of a small group of

specific brain sites that appear to encode the subjective values

of different types of rewards on a neural common scale, almost

exactly as predicted by theory. We have conducted a meta

analysis using data from thirteen different functional magnetic

resonance imaging studies published in recent years and we

show that the principle brain area associated with this common

representation is a subregion of the ventromedial prefrontal

cortex (vmPFC)/orbitofrontal cortex (OFC). The data available

today suggest that this common valuation path is a core system

that participates in day-to-day decision making suggesting

both a neurobiological foundation for standard economic

theory and a tool for measuring preferences neurobiologically.

Perhaps even more exciting is the possibility that our emerging

understanding of the neural mechanisms for valuation and

choice may provide fundamental insights into pathological

choice behaviors like addiction, obesity and gambling.

Address
4 Washington Place, room 809, Center for Neural Science, New York
University, New York, NY 10003, United States

Corresponding author: Levy, Dino J (dino.levy@nyu.edu)
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This review comes from a themed issue on Decision making

Edited by Kenji Doya and Michael N Shadlen

For a complete overview see the Issue and the Editorial

Available online 3rd July 2012

0959-4388/$ – see front matter, # 2012 Elsevier Ltd. All rights
reserved.
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Introduction
At a neurobiological level how does a thirsty monkey
choose between one and two milliliters of water? How
does the human brain choose between one apple and two
apples? In principle this seems fairly straightforward. If
we assume that more is better under these conditions
then we simply need to represent and compare quantities.
But what happens in the brain when we need to choose
between a large amount of water and a single apple? Or a
small amount of water and two apples? The options we
face in these situations are different, and our answers

depend both on the reward types and the quantities of
each of those rewards. Just counting will not help. What
we need to do is to take into consideration many different
attributes of each option (like color, size, taste, health
benefits, our metabolic state, etc.), assess the value of
each of the attributes, and combine all of these attributes
into one coherent value representation that allows com-
parison with any other possible option. What we need, at
least in principle, is a single common currency of valua-
tion for comparing options of many different kinds. In as
much as our choices are consistent and lawful, the brain
must represent the values of many different kinds of
rewards on a common scale for comparison and choice.

Over the course of the past decade there have been a
wealth of studies suggesting that activity in small number
of brain areas encodes reward quantities during decision-
making tasks. Areas like the parietal cortex appear to
encode how many milliliters of juice an action will yield to
a thirsty monkey. Areas like the ventral striatum and the
medial prefrontal cortex appear to encode the amount of
money an option will yield. Indeed, there is now broad
consensus in the neuroscience of decision-making com-
munity that reward magnitude is represented in a small
number of well-identified areas. Here we conduct a meta
analysis using evidence from human functional magnetic
resonance imaging (fMRI) studies conducted over just
the past few years that suggests that one of these reward
magnitude encoding areas, the ventromedial prefrontal
cortex/orbital frontal cortex (vmPFC/OFC), can be
thought of as representing the value of nearly all
reward-types on a common scale that predicts behavio-
rally observed comparison and choice. Of course, this
does not mean that common currency representations
occur only in this area, but available fMRI evidence
clearly indicates the existence of a common currency
network at least in this area.

Perhaps the first common currency representation exper-
iment was conducted while recoding from monkey par-
ietal cortex [1,2!] and related work has also indicated that
the midbrain dopamine neurons employ a common cur-
rency for reward representation in monkeys [3]. For the
purposes of this review, however, we restrict ourselves to
the rapidly growing human fMRI literature on this subject
so as to focus our analysis on the structural features of the
human brain related to this class of representation.

The idea of a common currency representation at a purely
theoretical level is, of course, hardly new. The economist
Paul Samuelson [4] proved almost a century ago that any
decision-maker who is internally consistent in their

Available online at www.sciencedirect.com
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both risky (when the probabilities are known) and ambig-
uous (when the probabilities are unknown) monetary
lotteries. Again they found both of those representations
in the medial prefrontal cortex and the ventral striatum.
Basten et al. (2010) [28] even showed that when subjects
must integrate information about both monetary gains
(benefit) and monetary losses (cost), activity in this same
medial frontal area is correlated with the integrated
difference between these two properties.

From these studies, and a host of others not described
directly, it seems clear that a subregion of the vmPFC/
OFC appears to encode subjective monetary value signals
of almost every kind. This subregion of the vmPFC/OFC
represents different kinds of monetary values and it
suggests that these different kinds of monetary values
may be represented on common scale, irrespective of task

details. But much more compelling evidence of a com-
mon currency for reward comparison would be the
demonstration that, within an individual, value repres-
entations for fundamentally different reward types arise
in exactly these same areas.

Multiple reward types in the same task
FitzGerald et al. (2009) [29!] were the first to conduct such
a study. They searched for value-related representations
of money and consumer goods like mugs, boxes of cho-
colate, and universal serial bus keys. Subjects had to
choose between receiving (or giving up) some amount
of money and receiving (or giving up) a few of these
consumer goods. As Figure 2a shows, the authors found
that activation in the vmPFC/OFC (and also in the PCC,
and the insula – which had a negative correlation, see
Table 1) was correlated with the difference between the

The root of all value: a neural common currency for choice Levy and Glimcher 1029
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(a) Common areas that coded stimulus values and action values. Adapted with permission from [25 ].
(b, c) Areas that correlated with subjective values as measured in a delayed discounting task and in a risky task. Adapted with permission from [26 ].
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subjective values of the two available options. Impor-
tantly, they showed that this was true for both gains and
losses. Soon afterwards, Chib et al. (2009) [30] made this
argument in a more fundamental way when they explored
the neural representation of three different reward types
using a within-subject design. They explored the value-
associated representation of money, snack foods and
CalTech novelty items like hats (trinkets) in single indi-
viduals. Their design was organized into two scanning
sessions. In the first, subjects chose on each trial between
a certain monetary gain and a probability of winning a
snack food or trinket. In the second session these same
kinds of choices were made, but this time between the
certain win of a fixed snack food and probability of
winning a trinket or a given amount of money. Once
again, they found that a subregion in the vmPFC/OFC
represented the subjective values of all three reward
types (Figure 2b).

In line with these studies, Kim et al. (2010) [31!]
examined brain activity while subjects made a forced
choice between visual cues associated with positive/nega-
tive amounts of money and aversive/appetitive fluids
delivered orally while in the scanner. As can be seen in
Figure 2c they found that a subregion of the vmPFC/
OFC tracked the expectation of receiving both monetary
and fluid offers. Interestingly, they also found that the
right anterior insula had a negative correlation with
increasing expected reward value for both money and
juice (Table 1).

Talmi et al., in yet another related study, examined the
interaction between monetary rewards and physical pain
[32]. Subjects in that study chose between two stimuli,
each associated with either a high or low probability (75%
and 25%, respectively) of money and a high or low
probability of pain (thus creating a 2 " 2 stimulus design).

1030 Decision making

Figure 2
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(a) Activity in a subregion of the vmPFC/OFC and PCC, which correlated with the difference between the value of money and the value of
incommensurable goods. Adapted with permission from [29!]. (b, c) Activity in a subregion of the vmPFC/OFC, which correlated with the decision
values of money, food and non-food items. Adapted with permission from [30]. (d) Activity in the vmPFC/OFC, which correlated with the expected
outcome of money and juice. (e) Activity in a subregion of the vmPFC/OFC showing the overlap response for the expected outcome of both money and
juice rewards. Adapted with permission from [31!].
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Thus when subjects faced a possible monetary gain they
had to take into consideration the ‘cost’ of receiving
possible pain when making their choices. What the authors
found was that the cost–benefit value signals converged in
an interactive manner: Activity in the insula was correlated
with the behavioral impact of the pain on their choices and
this insula activation was inversely correlated with activity
in the vmPFC/OFC. The greater the perceived cost of the
pain, the lower the activity in the vmPFC/OFC, and this
effect appeared to be modulated through the level of
activity in the insular region they examined.

Izuma et al. (2008) expanded the domain of reward studies
of this kind when they examined the neural representation
of both social and monetary rewards [33]. In their exper-
iment, subjects engaged in a monetary task and a social
reputation task. Acquiring positive reputation and gaining
monetary rewards both activated the same area in the left
striatum, suggesting that monetary rewards and social
rewards are represented in a similar manner in the striatum.
Lin et al. (2010) also examined the interaction between
monetary and social values in a probabilistic choice task
[34!]. On some trials, subjects had to choose between two
uncertain social rewards and on other trials between two
uncertain monetary rewards. Again (Figure 3a), they found
that activity in a subregion of the vmPFC/OFC correlated
with both monetary and social subjective values.

Transformation of value to common currency
representation
These studies all suggest that the vmPFC/OFC, and
perhaps the ventral striatum, represent the values of

rewards of many different, and perhaps all, kinds. But
in order to demonstrate that these representations exist
in a single common currency appropriate for computing
the trade-offs that guide choice one must also show that
the activity-level in these areas is equivalent whenever
subjects report that offers of two different kinds of
rewards are equally desirable. There are two papers that
have done that, finding that equal behavioral value
equates to equal BOLD signal in the vmPFC/OFC;
evidence for a neural common currency. The BOLD
signal, however, is not actually a direct measure of neural
activity but rather a measure of the metabolic demand,
and thus only a proxy for the actual neural activity [35].
Thus while our current understanding of fMRI strongly
indicate the existence of neural activity encoding value
in a common currency, the final proof that neural activity
encodes value on a common scale will ultimately have to
be made electrophysiologically.

The first study to provide evidence for a common currency
representation in the BOLD signal was by Smith et al.
(2010) [36!!]. In that study, male subjects performed two
tasks while being brain scanned: A forced choice task in
which subjects could either win or loose money while
watching female faces that ranged from very attractive
to very unattractive and a second task in which subjects
had to decide how much money they were willing to spend
to view a female face at a given level of attractiveness. This
allowed them to establish an explicit exchange rate be-
tween viewing female faces and money and then to scan
face/money combinations, thus establishing a common
neural representation of value for both reward types. They
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(a) Activity in a subregion of the vmPFC/OFC tracked the subjective values (SV) of both social rewards (left) and money (middle). The right column
represents the conjunction activation that tracked the subjective values for both social and monetary rewards. (b) The same as in (a) but for reward
values (R). Adapted with permission from [34 !].
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found that a specific subregion in the anterior parts of the
vmPFC/OFC tracked the subject-specific values for each
of the reward types. More importantly though, as can be
seen in Figure 4a, they found a subregion in the posterior
part of the vmPFC/OFC that predicted the exchange rate
between money and faces, established in the second task,
across subjects. This is important because their data
suggest that this particular area tracks the subject-specific
values of faces and money in a single neural currency.

The second study that used this strategy came from our lab
[37]. We had very similar results using a different task and
examined the neural representation of the value of food
items and money. In that study, hungry subjects made
choices between certain and risky rewards of money or
foods (either chocolate M&Ms or Ritz crackers) inside the
fMRI scanner. Out of the scanner we also had subjects

make choices between fixed monetary offers and probabil-
istic lotteries over foods in order to establish the exchange
rate between food and money for each subject. From this
paradigm we were able to identify, as have the many
previous studies mentioned above, that subregions of
the vmPFC/OFC and the striatum tracked the subjective
values for both money and food. We then asked whether
the activation levels of these subregions that tracked the
values of both food and money could be used to predict the
exchange rate for food and money identified behaviorally
outside of the scanner. As can be seen in Figure 4b our data
suggested that in the vmPFC/OFC region that represented
both reward types did predict the exchange rate between
money and food across our subject pool.

From these studies we can conclude a few things. First,
there is compelling evidence that a subregion of the
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(a) The posterior vmPFC showed a significant correlation between economic value and neural value. (b) A positive correlation (across subjects)
between a neural value difference (defined as neural social value – neural monetary value) and the exchange rate between money and social values
determined in behavior was found in the posterior vmPFC. A higher neurometric value difference was associated with a higher propensity to make an
economic exchange. Adapted with permission from [36 !!]. (c) A subregion of the vmPFC/OFC showed a significant correlation between behavioral and
neuronal rate of change. (d) A positive correlation (across subjects) was found between the ratio of money and food neural subjective values (marginal
BOLD) in a subregion of the vmPFC/OFC with the ratio of the scaled marginal utilities of money and food measured behaviorally using a fitted
exchanged rate between money and food. A higher neural ‘exchange rate’ was associated with a higher behavioral exchange rate. Adapted with
permission from [37 ]. Each dot represents the value of one subject and the line represents the least square fit across subjects.
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coordinates, respectively. For the left hemisphere it is
almost a mirror image of the right hemisphere: (!15)–0,
24–60, (!6)–(!21) for x,y,z MNI coordinates, respect-
ively. An additional qualitative analysis we conducted was
to calculate a weighted average of each of the three axes
of the peak voxels using all the studies described in Table
1, which had activations in the vmPFC/OFC subregion.
Note that each peak voxel was weighted-in even if in a
given study there were more the one peak voxel. We
found that for the right hemisphere it is: x = 4.27;
y = 35.18; z = !11.82 and for the left hemisphere it is:
x = !7.29; y = 38; z = !10.57.

From these data we think that a single conclusion seems
at this point relatively straightforward. There is indeed a
small subregion in the vmPFC/OFC that tracks subjec-
tive value on a common currency appropriate for guiding
choices between different kinds of rewards. Indeed, these
data seem to suggest that the average peak voxel we have
identified here can be used as a basis for constructing an
unbiased ROI for further studies of reward and valuation.
Because there are now ample data demonstrating that
areas in the vmPFC/OFC correlate with value signals, it
now seems appropriate to conclude that research can
begin to advance from using whole brain analyses of
fMRI data to a more focused approach reminiscent of
the strategy used in electrophysiological studies. This
could lead to more concrete and testable predictions
using hypothesis testing, rather than the relying on whole
brain analyses aimed only at the cerebral localization of
value. The data suggest, in essence, that fMRI studies of
value have now advanced beyond the point of whole brain
analyses driven only toward cerebral localization and to a
point where the high-resolution physiology of valuation
can become a tractable goal.

Conclusions
Quite a few studies have now demonstrated that a sub-
region of the vmPFC/OFC centered around MNI coor-
dinates in the left and right hemispheres represent
subject-specific reward value in a common neural cur-
rency, the expected subjective value of Neuroeconomic
theory [4,5]. This remarkably small area in both right
and left vmPFC/OFC that is activated in a way that
parametrically correlates with the subjective values sub-
jects attribute to nearly every kind of reward that has ever
been studied in the scanner. The data indicate that when
two disparate kinds of rewards are equally desirable to a
subject, then activity in this area will be of equal magni-
tude for these two rewards in that individual. This is
strong evidence supporting the claim that a subregion in
the vmPFC/OFC tracks subjective value in a single
common currency of the kind first described in the
abstract by economic theory hundreds of years ago. Using
the insights from the current Meta analysis combined
with additional data from many other studies we have
generated a diagram that is a suggested possible schema

for understanding the decision-making networks of the
human brain (Figure 6).

It is important to note, however, that there is no evidence
to support the claim that the neural common currency of
value arises only in this subregion of the vmPFC/OFC.
Any common currency observed in the brain must reflect
the activation of multiple brain areas. It is almost certainly
the case that other local and network activations lie
beneath the resolution of the techniques used in these
studies. Indeed, the evidence reviewed here suggests that
portions of the striatum and perhaps the insula also
participate in this process.

Before concluding, however, two potential caveats need
to be considered. First, it is important to note that all
studies, which have examined multiple reward-types
have included monetary rewards. Thus, it might be the
case that the vmPFC/OFC region translates all reward
types into monetary equivalents and that in the complete
absence of monetary tasks other brain circuits serve a
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One possible schema for understanding the decision-making networks
of the human brain. Current evidence suggests that information from
cortical and subcortical structures converges toward a single common
value representation before passing on to the choice-related motor
control circuitry. Modulatory inputs play a critical role in establishing this
final common representation with those inputs carrying signals related to
arousal, internal state (satiety, thirst, hormonal levels, etc.) and emotional
intensity. In this schema, sensory information from all modalities carries,
among other things, the identity and location of the options. We use
visual signals in this diagram to stand for information from all sensory
modalities. (1) vmPFC, (2) OFC, (3) DLPFC, (4) Insula, (5) Primary motor
cortex (M1), (6) Posterior parietal cortex, (7) frontal eye fields, (8) Visual
cortex, (9) Amygdala, (10) Striatum.
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the 48 neurons had a significant negative correlation
between these variables during the same epochs (p !
0.05). To ensure that this was not the result of a spurious
secondary correlation, we next performed a multiple
regression analysis that correlated firing rate with sac-
cade amplitude, peak velocity, latency, and the cost of
inspection variable. We then repeated our correlation
analysis on the residual variance that remained after
this multiple regression had been performed (Figure 9B,
relative desirability). During the inspection game trials,
none of these other individual regressions reached the
level of significance except the correlation between sac-
cade amplitude and firing rate during the postmotor
epoch (p ! 0.05). The residual correlation between this
estimate of relative subjective desirability and firing rateFigure 8. Influence of Changing Reward Magnitude and Reward
remained significant during the visual, delay, and cueProbability on LIP Firing Rate
epochs (p ! 0.05). Performing the same multiple regres-The target in the response fields was changed from the risky (black)
sion analysis on the instructed trial blocks showed thatto certain (gray) option across two blocks of the inspection game

when the opponent’s cost of inspection variable was fixed at 0.5. neuronal activity was also significantly correlated with
Switching targets changed both the probability and magnitude of a subjective desirability estimate under those conditions
reward while the relative subjective desirability of the target in the during the visual and cue epochs (data not shown, p !
response field remained unchanged. n " 24. 0.05). While we do not yet know how our monkeys deter-

mine the subjective desirability of each available option,
this crude estimate of that value on a trial-by-trial basis isderive a crude estimate of how the relative subjective
correlated with the trial-by-trial fluctuations in neuronaldesirability of choosing each option might fluctuate from
rate that we observed. Once again, this is exactly thetrial to trial and asked whether this estimate was corre-
observation one would expect if area LIP neurons reflectlated with the fluctuations in neuronal rate.
the relative subjective desirability of saccades.We therefore employed the algorithm developed for

use as the computer opponent to estimate how subjec-
tive desirability might be fluctuating from trial to trial. Encoding Relative versus Absolute

Subjective DesirabilityThe computer algorithm normally tracks the monkey’s
behavior and combines this with its own potential pay- Although our results have supported the notion that

neurons in area LIP represent the subjective desirabilityoffs to determine the desirability of inspecting and not
inspecting on the upcoming trial (see Experimental Pro- of saccades, they have not addressed whether this rep-

resentation is in absolute or relative terms. Nash (1950)cedures for details). We simply reversed the inputs to
this algorithm, having it analyze offline the choice behav- envisioned that the subjective desirability of each option

was represented in absolute terms and it was that optionior of the computer and the payoffs received by the
monkey throughout a block of trials to calculate the whose subjective desirability was highest that was sub-

sequently chosen. The neural instantiation of this in areasubjective desirability of choosing the risky option on
the upcoming trial. Finally, using the monkey’s behavior LIP would correspond to the firing rates of single neu-

rons being a function of the absolute subjective desir-recorded during the same experimental session, we per-
formed an optimization based on maximum likelihood ability of the option in their response fields. However,

subsequent behavioral studies (Herrnstein, 1961; Kah-methods on the variable # (see Experimental Proce-
dures, Equation 7) that determined the learning rate of neman and Tversky, 1979), coupled with our under-

standing of LIP physiology (Platt and Glimcher, 1999;the reinforcement learning algorithm. This optimization
successfully converged for 48 out of 52 neurons with a Gold and Shadlen, 2001), suggest that the subjective

desirability of options are represented in relative termsmean # of 0.27 $ 0.13. This trial-by-trial estimate of the
relative subjective desirability of the two options was during decision making.

Therefore, we wished to explicitly test the hypothesisthen correlated to the trial-by-trial measurement of LIP
activity. Note that the presence of 20% interleaved in- that LIP neurons encode the relative subjective desir-

ability of actions rather than the absolute subjectivestructed trials were not ideal for this analysis, and al-
though far from a perfect solution, these trials were desirability of actions. Monkeys performed two blocks

of the inspection game in which the cost of inspectionsimply excluded.
To see how any such correlation evolved throughout variable was fixed at 0.5 and, therefore, responses were

typically divided equally between the risky and certainthe duration of a trial, we segregated each trial into six
sequential epochs. For this neuron, there was a positive targets. Standard magnitudes of reward were used for

one block of trials, whereas the magnitudes of rewardcorrelation between our estimate of relative subjective
desirability and firing rate for two of the four epochs were doubled for all targets in the other block. If LIP

activity is sensitive to the absolute subjective desirabilityduring which the targets were visible (Figure 9A, p !
0.05, Fisher’s r to z test, during visual and delay epochs). of the saccade in the neuron’s response field, the neu-

rons should fire more for the block of inspection gameOf our 48 analyzed neurons, 23 had a significant positive
correlation between these two variables during at least trials on which the rewards are doubled. If, however,

LIP activity is sensitive only to the relative subjectiveone of the epochs (p ! 0.05). Conversely, only 6 of



Neurons in the the lateral 
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Monkey Brain

• LIP area – part of visuo-motor pathway
• Its activation is covaried with choice AND modulated by movement strength during 

motion
• not purely sensory (mistake trials);
• not purely decision oriented (modulated by strength of movement)
• LIP is where “deliberation” takes place



Three processes of choice

• Neurons in Visual cortex provide evidence for alternatives (noisy)
• Intergation takes place (in LIP), removes noise
• The choice is made once certain criterion is reached (confidence level)
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In the human brain the story is more complex. 
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Uncovering the spatio-temporal dynamics
of value-based decision-making in
the human brain: a combined
fMRI – EEG study
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of Technology, Pasadena, CA 91125, USA
2Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland

While there is a growing body of functional magnetic resonance imaging
(fMRI) evidence implicating a corpus of brain regions in value-based
decision-making in humans, the limited temporal resolution of fMRI
cannot address the relative temporal precedence of different brain regions
in decision-making. To address this question, we adopted a computational
model-based approach to electroencephalography (EEG) data acquired
during a simple binary choice task. fMRI data were also acquired from
the same participants for source localization. Post-decision value signals
emerged 200 ms post-stimulus in a predominantly posterior source in the
vicinity of the intraparietal sulcus and posterior temporal lobe cortex, along-
side a weaker anterior locus. The signal then shifted to a predominantly
anterior locus 850 ms following the trial onset, localized to the ventromedial
prefrontal cortex and lateral prefrontal cortex. Comparison signals between
unchosen and chosen options emerged late in the trial at 1050 ms in dor-
somedial prefrontal cortex, suggesting that such comparison signals may
not be directly associated with the decision itself but rather may play a
role in post-decision action selection. Taken together, these results provide
us new insights into the temporal dynamics of decision-making in the
brain, suggesting that for a simple binary choice task, decisions may be
encoded predominantly in posterior areas such as intraparietal sulcus,
before shifting anteriorly.

1. Introduction
Considerable progress has been made in uncovering the brain systems involved
in encoding predictions about future rewards and in using those predictions
to guide behaviour [1–5]. Studies in both humans and other animals have
identified contributions for a number of brain regions in valuation, learning
and choice. Within the cortex, three regions that have received particular atten-
tion are the ventromedial prefrontal cortex (vmPFC) composed of medial
orbital and adjacent medial prefrontal cortex, the lateral intraparietal sulcus
(LIP) and the dorsomedial prefrontal cortex (dmPFC) extending from the anterior
cingulate cortex dorsally along the medial wall. These regions have been found to
encode value signals for decision options and actions [6–8], as well as signals cor-
responding to the difference in value between actions and/or options that are
ultimately chosen versus those that are not [9–11]. However, the precise func-
tions of these regions in the decision-making process remain controversial,
particularly as regards where value signals from different options are ultimately
compared in order to generate a choice. One possibility that has been proposed is
that the vmPFC is involved in comparing stimulus values in order to generate a
decision in at least certain types of choice processes [12]. Another viewpoint
suggests that the comparison between the values of possible actions in order to
yield a decision over which action to ultimately select is mediated within LIP

& 2014 The Author(s) Published by the Royal Society. All rights reserved.
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[6,13], whereas yet another viewpoint has implicated the
dmPFC in the choice process [10,11].

Distinguishing between these different possible accounts is
challenging. One way to potentially address this question
would be to determine when these different brain areas
become engaged during the evolving temporal dynamics of
the choice process. More specifically, if computational signals
related to the choice process can be found to emerge earlier in
one region than the other, this might provide relevant infor-
mation about which brain region is initially involved in
computing the choice. When using functional magnetic reson-
ance imaging (fMRI), it is not feasible to determine reliable
information about the relative timing of decision signals because
of the relatively poor temporal resolution of the blood-oxygen-
level dependent signal alongside confounding variability in
neurohaemodynamic coupling between regions. Techniques
such as electroencephalography (EEG, and magnetoencephalo-
graphy, MEG) offer much better temporal resolution, and are
therefore better candidates for non-invasive measurement of
the temporal sequencing of decision-related signals [13–15].
However, such methods suffer from poor spatial resolution aris-
ing from pervasive difficulties in ascertaining the location of the
underlying neural sources. One way to potentially resolve
the spatial localization weakness of EEG is to combine this
method with fMRI, and acquire both types of data in the same
participants, using the spatial evidence acquired from the
fMRI data to constrain the source localization of the EEG data,
while acquiring the necessary evidence about the timing of
neural processes from the EEG measurements.

In the present study, we use a computational model-based
approach in combination with EEG measurements acquired
from a group of participants performing a simple binary
choice task to detect computational signals pertaining to the
decision-process with sufficient temporal resolution to deter-
mine when these signals emerge in different brain areas.
Furthermore, we used fMRI data acquired in the same group
of participants to inform the spatial localization of the EEG
data. Previous fMRI evidence from our own group found that
the dmPFC showed evidence of value comparison signals that
could underpin the decision process itself, whereas the
vmPFC and LIP showed evidence of chosen value signals corre-
sponding to the value of the option that is ultimately chosen
[10,11]. On the basis of this fMRI evidence, we hypothesized
that we would find evidence for similar signals in our EEG
data, and that moreover these signals would emerge at different
times in the choice process. The value comparison signal was
predicted to emerge earlier in timewithin a trial, after the partici-
pant is presented with the options available but before the
participant makes a behavioural choice, because this signal is
a putative correlate of the actual choice process itself, whereas
the chosen value signal was predicted to emerge later in the
trial as such a signal reflects the consequence of the choice pro-
cess. We further hypothesized on the basis of our prior fMRI
evidence that the value comparison and chosen value signals
would be differentially localized to the dmPFC and the
vmPFC and LIP, respectively.

2. Methods
(a) Participants
Forty-one right-handed participants (19 males, average age 22)
participated in the EEG experiment. The experiments were

conducted at Trinity College Institute of Neuroscience, Trinity
College Dublin, Ireland. Of those EEG participants, 35
(16 males) also participated in an fMRI study using exactly the
same task. Nineteen of the 41 participants took part in the EEG
experiment first, whereas the other 22 took part in the
fMRI experiment first. The gap between the EEG and fMRI
experiments was 13–15 days for most participants; however,
for six participants, it was 20–21 days, and for two participants,
it was 5 weeks.

(b) Task description
On each trial (figure 1), the participant is presented with two easily
distinguishable decision options (coloured circles on black back-
ground), one on each side of a monitor, and is tasked with
making a choice between them in order to obtain monetary
rewards. To reduce the possibility that the participant makes a
decision in advance of the options being presented on a particular
trial, three decision options were used in total, two of which are
then selected at random on a given trial. Thus, a participant
does not know in advance which two decision options will be
presented in advance of the onset of a particular decision trial.

On each particular trial, the decision options presented on
that trial are randomly presented on either the left or the right
of the screen, so as to enable value signals to the decision options
per se to be disambiguated from value signals pertaining to par-
ticular actions. For the purpose of obtaining a neutral baseline,
on 25% of the trials, a single white target was presented,
followed by non-rewarding outcome.

Each decision option has a drifting probability of reward inde-
pendent of the others. To ensure that the underlying reward
distributions attached to each decision option are distinguishable
enough for the participants to learn independently, three sets of
three drifting probabilities (one set per block of trials) were cre-
ated as noisy sine waves with a period between p and 2p, and
with starting points distributed evenly (for an example set, see
figure 2a). The participant indicates his/her choice by pressing a
button with their left or right hand. Left choices were made
with the left hand, right choices with the right hand.

(a)

(b)

(c)

(d )

you have won
0.37  

you have won
0  

(e)

Figure 1. Task illustration. For both choice trials (left) and neutral no-choice
trials (right) one trial of the task consists of four phases. (a,e) Intertrial inter-
val (ITI) of 2 – 9 s uniformly distributed. (b) Choice(s) displayed on screen for
maximum 2 s. (c) Participants make their choice and the choice is displayed
for 2.5 s. (d ) The outcome of the trial is displayed for 1 s with the winning
amount in euros and a picture of either euro coins (win), euro coins crossed
out (no win) or a scrambled image (no-choice trials). (2-Reaction time) (2-RT)
seconds are added to the ITI to ensure mean trial time is 11 s. One block of
trials consists of 72 choice trials and 24 no-choice trials totalling 17.6 min.
Participants complete three blocks of trials. (Online version in colour.)
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([224, 246, 64], z ¼ 3.58, figure 6 top), middle temporal gyrus
([64, 220, 2], z ¼ 3.90), lateral prefrontal cortex ([48, 36, 6],
z ¼ 4.23) and vmPFC ([26, 62,4], z ¼ 5.18, figure 6 bottom).

(iii) Value difference
Next, we tested for EEG signals correlating with the difference
in values between the options that are chosen and not-chosen
on each trial. In previous studies by our group, we have found
neural correlates of the difference between the unchosen and
chosen value in a region of dmPFC, which we suggested rep-
resented the output of the decision process as predicted by
models of decision-making such as the drift–diffusion
model [10,11]. Consequently, we aimed to test for the presence
of such a signal in the EEG data across electrodes and time
post-trial onset. We found that this signal appears to emerge
predominantly 1050–1200 ms after trial onset in a central
scalp location (figures 7 and 8). The source localization of the
unchosen minus chosen value (figure 9) revealed significant
effects of the value difference in dmPFC, most strongly in a
more posterior part of the dmPFC ([8, 16, 62], z ¼ 5.93),
but also extending more anteriorly ([224, 54, 22], z ¼ 4.12).
There are two very important features of these value difference
results. First, the timing: this value difference signal appears to
emerge substantially later in time than does the value chosen
signal (approx. 850 ms later). Given that the value chosen
signal can only emerge as a consequence and not as a precursor
of the decision process, the decision clearly must be made sub-
stantially earlier within the trial before the emergence of the
value difference signal. As a consequence, it appears that this
signal may not be critically related to the formation or immedi-
ate aftermath of the decision process itself, but instead must
relate to some post-decision process. Second, the localization
of the value difference most prominently to the dmPFC in
the fMRI-constrained EEG data, is strongly consistent with
the results of a number of previous fMRI studies that have
localized this signal to the same region of dmPFC [10,11].

5. Discussion
In the present study, we used computational model-based EEG
analysis in combination with model-based fMRI data acquired

from an overlapping group of participants in order to ascertain
the timing and localization of decision-related variables as
estimated through a reinforcement-learning model.

In the present study, we used a very simple type of
reinforcement-learning algorithm (SARSA) to estimate
trial-by-trial value signals [19]. We note that this class of
‘model-free’ algorithm does have limitations, in particular
when it comes to situations where a decision problem has
higher-order structure, or where the value of an outcome
to an agent changes across time [20,21]. A number of other
types of algorithm have been proposed for this situation,
including model-based reinforcement learning and Bayesian
models [20–23]. However, in the present situation, the task
was designed so that value signals could be adequately
captured with even a simple reinforcement-learning model,
because the reward distributions associated with each
action were kept independent, and can thus be learned
relatively efficiently by means of a ‘model-free’ reward pre-
diction error. Furthermore, model-based and model-free
RL algorithms will likely make very similar trial-by-trial pre-
dictions in the present case. Future extensions of this work
could involve using more complex tasks in order to dis-
tinguish the temporal signatures of ‘model-based’ and
‘model-free’ value signals.

The results of this study provide several important new
insights into how simple binary value-related decisions are
made in the human brain. Specifically, we show that
chosen value signals, which are by definition a consequence
of the decision process [5,10], appear to initially emerge pre-
dominantly in a posterior location in the brain, with a
weaker signal present also at an anterior locus. Using
fMRI-informed source localization, we found that the
posterior signal was localized to the vicinity of the lateral–
intraparietal cortex and posterior lateral temporal lobe
cortex. Such signals emerge as soon as 200 ms after
the trial onset, suggesting that the decision itself may be
computed very early on in the trial. The predominantly pos-
teriorly localized chosen value signal then appears to
propagate more anteriorly over the course of several

x = –24 y = –46

x = –6 y = 62

Figure 6. fMRI-informed source localization of chosen value with threshold
set at p , 0.0005 (unc). (Online version in colour.)
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Figure 7. Results from the analysis of the value difference between unchosen
and chosen options. Each row in the result map represents an electrode, and
each column a 50 ms time bin. Electrodes are ordered according to anterior
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When we make decisions, the benefits of an option often need to
be weighed against accompanying costs. Little is known, however,
about the neural systems underlying such cost–benefit computa-
tions. Using functional magnetic resonance imaging and choice
modeling, we show that decision making based on cost–benefit
comparison can be explained as a stochastic accumulation of cost–
benefit difference. Model-driven functional MRI shows that ventro-
medial and left dorsolateral prefrontal cortex compare costs and
benefits by computing the difference between neural signatures of
anticipated benefits and costs from the ventral striatum and amyg-
dala, respectively. Moreover, changes in blood oxygen level depen-
dent (BOLD) signal in the bilateral middle intraparietal sulcus reflect
theaccumulationof thedifference signal fromventromedial prefron-
tal cortex. In sum, we show that a neurophysiological mechanism
previously established for perceptual decision making, that is, the
difference-based accumulation of evidence, is fundamental also in
value-based decisions. The brain, thus, weighs costs against benefits
by combiningneural benefit and cost signals into a single, difference-
based neural representation of net value, which is accumulated over
time until the individual decides to accept or reject an option.

cost–benefit integration | valuation | diffusion model | model-based
functional MRI

When we make decisions, the benefits of a decision option
often need to be weighed against accompanying costs.

Cost–benefit integration, thus, is an important aspect of decision
making. However, value-based decision making is typically in-
vestigated in the context of decision uncertainty (1–3), so little is
known about the neural mechanisms underlying the integration of
costs and benefits as such.
Cost–benefit-based decisionmaking involves the binary decision

to either accept or reject a choice option based on two competing
attributes—the option’s expected rewards and losses. Such binary
accept-versus-reject decisions bear a strong resemblance to two-
alternative choices in perceptual decision making (4, 5). For ex-
ample, when monkeys performed a direction-of-motion discrimi-
nation task in which they had to decide whether a noisy field of dots
wasmoving in one direction or its opposite direction (e.g., leftward
or rightward) and indicated their choice with a quick eye move-
ment to the target on the respective side, motion-sensitive neurons
in middle temporal visual area MT either respond to leftward
motion or to rightward motion. Prefrontal and parietal neurons, in
contrast, form a decision by accumulating the difference in the
activities of populations of neurons in area MT that code for op-
posite directions of motion. The monkey’s saccade response is
faster when more dots are moving in one direction, and this effect
is predicted by the strength of the accumulated neuronal differ-
ence signal (6). A difference-based decision mechanism has also
been identified in the human dorsolateral prefrontal cortex
(DLPFC) during perceptual face-house decisions (4, 7). Thus, we
hypothesized that cost–benefit decisions involve an analogous
decisionmechanism, that is, the computation of a decision variable
that is based on the difference of neural reward and loss antici-

pation signals (cf. ref. 8 for a similar proposal in the context of
neurophysiological data).
In perceptual decision making, both monkeys’ behavior and

neural activity were accounted for by sequential sampling models
of decision making. Specifically, monkeys’ behavior shows
a speed–accuracy tradeoff, and neurons in the lateral intraparietal
cortex (area LIP) accumulate evidence in favor of a particular
decision alternative until a decision boundary is reached (9, 10).
Evidence accumulation toward a decision boundary is also the key
feature of sequential sampling models. Diffusion models, a pop-
ular type of sequential sampling models, assume a single directed
drift process Σ that accumulates noisy information over time and
moves with a rate μ toward one of two decision boundaries (Fig.
1A; cf. ref. 11). Importantly, sequential sampling models not only
describe accuracy and response time in perceptual and memory
tasks but can also describe value-based decisions (12, 13).
We hypothesized that weighing costs against benefits involves

the accumulation of the difference between stimulus-associated
benefits and costs over time. The benefits and costs related to the
decision are, according to this hypothesis, associated with com-
peting behavioral tendencies, that is, to either approach or avoid
the stimulus. The cognitive process of cost–benefit integration,
thus, is modeled as a drift toward either an upper (accept) or lower
(reject) decision boundary. At the brain level, we hypothesized that
the decision process involves separate representations of expected
reward and loss, in the ventral striatum (1) and amygdala (14, 15),
respectively, from which a comparison signal is computed. A
neural representation of the resulting cost–benefit difference sig-
nal, in turn, should be accumulated in parietal or prefrontal cortex
(cf. refs. 8, 16).
Diffusion models do not predict whether the cost–benefit dif-

ference is computed before or during the accumulation process,
and neurophysiological data from perceptual decision making so
far provide only indirect evidence as to the brain regions imple-
menting this comparison process. However, a number of func-
tional magnetic resonance imaging (fMRI) studies suggest that
ventromedial prefrontal cortex (VMPFC) represents a global
valuation signal (2, 17, 18), and lesion studies highlight VMPFC as
a necessary basis for value-based decision making (19, 20). We
thus hypothesized that VMPFC functions as a comparator region
computing the difference between neural reward and loss signals,
akin to the computation of perceptual difference signals in
DLPFC (6, 7). According to the diffusion model, blood oxygen
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level dependent (BOLD) signals in comparator regions should be
driven by the neural cost–benefit difference signal, and this effect
should be greater for participants who are more efficient in cost–
benefit integration (Fig. 1A). To test this hypothesis, we examined
which brain regions are functionally coupled to the difference of
neural reward and loss signal.
We furthermore hypothesized that brain regions that accumu-

late the cost–benefit difference over time (accumulator regions)
should be functionally distinct from comparator regions. Com-
parator regions should show greatest and weakest activity for large
positive and negative differences, respectively. In contrast, accu-
mulator regions should show greater activity for harder than for
easier decisions (16). The last prediction derives directly from the
comparison of high versus low drift rates in Fig. 1A and from the
fact that accumulation-related activity is a function of the area
under the accumulation,

Ð
Σ (16) (see also below): In response-time

paradigms (where participants respond as soon as they know the
answer), more difficult trials have a lower drift rate μ and a pro-
longed accumulation process Σ, which results in an increase in the
area under the accumulation process

Ð
Σ for harder trials. Given

that we hypothesized that comparator regions feed their output
into accumulator regions, and given that we further assumed that
decision making depends on the efficiency of the connection be-
tween comparator regions and accumulator regions (21), we pre-
dicted (i) that accumulator regions are negatively correlated with
the unsigned and normalized comparator region activity, such that

accumulators are more strongly activated for hard trials in-
dependent of whether they have a net positive or net negative cost–
benefit difference, (ii) that this effect depends on the individual
efficiency of cost–benefit comparison, and (iii) that accumulator
regions additionally show greater activation for harder trials.
To test these hypotheses, we measured functional brain acti-

vations while 19 participants decided to either accept or reject
a series of single visual stimuli, each characterized by two visual
attributes: color and shape (Fig. 1B; Fig. S1). In a preceding
training session (Fig. 1C), participants had learned that different
colors were associated with different monetary costs and different
shapes with different monetary benefits, or vice versa (balanced
across participants). Deciding whether or not to collect a stimulus
thus required that subjects compared stimulus-associated costs
against stimulus-associated benefits. Net outcomes of accepted
stimuli were added over the course of the experiment and paid out
afterward. We modeled behavioral data with a power-rate diffu-
sion model (22), with the aim of quantitatively relating the drift
parameter μ of the decision process to neural mechanisms mea-
sured with fMRI.

Results
Participants successfully learned stimulus-reward associations
(see details in SI Methods). Average performance-dependent
earnings in the experiment were 22.27 Euro (€) and, as expected,
participants were faster in trials with larger cost–benefit differ-
ences (Fig. 2 A–C; SI Results).

The Diffusion Model Accounts for Cost–Benefit Decisions. We used
the power-rate diffusion model (22) to estimate participants’ drift
rates. Fig. 2 C and D shows examples of fitted chronometric and
psychometric functions for four representative subjects, and illus-
trates that the model describes behavior well (see Fig. S2 for all
individual plots). To test the validity of fitting the power-rate dif-
fusion model, we applied two different response-time criteria to
different participants (1,700 ms vs. 1,250 ms; Methods). As expec-
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with high (blue) and low (green) drift rates, in which the difference of
benefits minus costs drifts toward either an accept response (upper
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sions are interpreted as errors, because benefits outweigh costs. Response-
time distributions show that lower drift rates are associated with slower
accumulation processes (as the blue distribution is shifted nearer to the
starting point than the green one) and higher error rates (as the green
distribution has a larger mass in the rejections/errors). (B) Task paradigm
with color/shape stimuli that are associated with different ranges of mon-
etary benefits and losses. For example, a yellow square might be associated
with a reward between 2 and 2.4 € and a loss between 0.4 and 0.8 € (see Fig.
S1 for more details). Successful cost–benefit integration would lead partic-
ipants to accept this stimulus. Null trials are variable intertrial intervals. (C)
Training (SI Methods) involved three blocks each for colors (Left) and shapes
(Right), each of which comprised 56 stimulus pairs. Participants first com-
pared the presented pairs and then received feedback as shown, thus im-
plicitly learning the value ranges associated with colors and shapes. The last
two blocks were terminated when a criterion (95% correct) was reached, but
never before 25 trials were completed. (D) Accuracy for the training session,
displayed according to training block (x axis) and reward (green) versus loss
(red) condition. Error bars represent SEM.
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ted, varying the response-time criterion modulated the decision
boundary a [t(18)= 3.2,P=0.005, JZS-BF=0.11] but not the drift
rate μ [t(18) =−0.82, P= 0.426, JZS-BF= 2.4]. JZS-BF is a Bayes
factor and estimates how much more likely the null hypothesis is
than the alternative hypothesis (23).
Given that we intended to test the hypothesis that the brain

implements cost–benefit integration as described in diffusion
models of decision making, we predicted that brain processes
implementing cost–benefit comparison and evidence accumula-
tion should be modulated by participants’ individual drift rates.
We therefore calculated, for each participant separately, the
median drift rate across all experimental conditions as an index of
decision-making efficiency (see Table S1 for individual data).
Median drift rates varied considerably (minimum = 0.56; maxi-
mum = 2.42; median = 0.89; mean = 0.97; SD = 0.45) and were
subsequently entered as a predictor into individual-difference
group analyses of fMRI data.

Neural Representations of Reward and Loss Expectation Signals. We
first identified brain regions representing anticipated costs and
benefits, because we hypothesized that these function as input to
the subsequent cost–benefit comparison in VMPFC. Importantly,
benefits (i.e., monetary reward) and costs (i.e., monetary loss)
associated with each stimulus were independent of each other
(r = −0.22; P > 0.2) and of the absolute value of the cost–benefit
difference (both r= 0). Thus, “pure” cost and benefit signals were
identified by modeling brain activation, across all trials, with
separate parametric predictors reflecting the amount of reward
and the amount of loss coded in each stimulus.
A neural signature of anticipated monetary reward was iden-

tified in several regions (Table S2), including the hypothesized left
ventral striatum. Given that the ventral striatum was consistently
associated with reward anticipation in previous literature (1),

we extracted the time course tvStr of this region (MNI coordinates
x = −10, y = 10, z = −6; P < 0.005; k = 30 voxels; Fig. 3A) for the
subsequent analysis of a cost–benefit difference signal. Also
consistent with earlier reports (14, 15), we found a correlation of
monetary loss with right amygdala (18,−2,−20; P < 0.005; k = 38;
Fig. 3B) and extracted time course tAmyg from this region. Note
that the neural representations of expected benefits and costs
were not significantly correlated with participants’ drift rates
(ventral striatum: Tmax = 0.285, r = 0.07, JZS-BF = 5.5; amyg-
dala: Tmax = 0.124, r = 0.03, JZS-BF = 5.7).

Prefrontal Comparator Regions Compute Cost–Benefit Difference.
We conducted a psychophysiological interaction analysis (PPI)
(24) to identify comparator regions computing the cost–benefit
difference (CBD) based on the identified neural reward and loss
signals. The physiological predictor was the difference Dneural of
the standardized time series extracted from above-defined
amygdalar and striatal regions of interest (i.e., Dneural = tvStr –
tAmyg). The psychological predictor P coded whenever a stimulus
was presented. Therefore, the expected correlation between the
neural cost–benefit signal and BOLD signals from comparator
regions was restricted to decision-related activity. The critical
component of this analysis was the psychophysiological in-
teraction term PPICBD = Dneural × P. Due to its physiological re-
gressor Dneural, PPICBD identifies brain regions computing net
values of the stimuli by subtracting stimulus-associated neural cost
signals from neural signatures of expected monetary benefit. To
ensure that we identified brain regions implementing the cogni-
tive process as modeled with the diffusion model, we additionally
required that comparator regions correlating with PPICBD do so to
a greater extent for the more efficient decision makers with higher
average participant-specific drift rates μ.
Prefrontal comparator regions defined in this way were found

in VMPFC (−4,60,−6; cluster size k = 417, Tmax = 6.12), ante-
romedial prefrontal cortex (AMPFC; 12,50,8; k = 586, Tmax =
6.72), and in the posterior part of the dorsolateral prefrontal
cortex (left posterior superior frontal sulcus; −22,18,44; k = 106,
Tmax = 7.15 ; Fig. 3C). Table S3 lists results outside prefrontal
cortex. Fig. 3C visualizes those brain regions that show a modu-
lation of the PPICBD effect by drift rate and illustrates that the
dependency of the VMPFC signal on the neural cost–benefit
difference signal was larger for participants with higher drift
rates. Thus, as predicted, VMPFC is driven by the neural cost–
benefit signal, and this effect is stronger in more efficient cost–
benefit decision makers.

Accumulation of the Cost–Benefit Difference. We had further hy-
pothesized that the amount of accumulated information

Ð
Σ

should be greater the longer the integration process takes, in-
dependent of the net result of the integration process (Fig. 4A).
Accumulator regions were accordingly defined by three criteria.
First, BOLD signals in accumulator regions, taccumulator, should
be negatively correlated with the normalized, absolute activation
strength of comparison region VMPFC (i.e., taccumulator ≈
−| tVMPFC |), as accumulation should produce greater

Ð
Σ in

conditions characterized by a small cost–benefit difference.
Second, this inverse coupling of comparator and accumulator
regions should be greater for subjects with higher median drift
rate μ. This assumes that less efficient decision making is par-
tially caused by a noisier connection between comparator regions
and accumulator regions (21). A PPI analysis (Methods) was
implemented to jointly test these two criteria and revealed three
clusters in the middle intraparietal sulcus (mIPS; left: −40,
−40,42, k = 59, Tmax = 4.59 and −28,−66,38, k = 111, Tmax =
4.69; right: 32,−52,40; k = 69; Tmax = 4.5). Third, BOLD signal
in accumulator regions should also be greater for harder trials, as
defined by the absolute difference of the true stimulus-associated
costs and benefits (16). We tested for this additional criterion by
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creating a conjunction map showing where the first two criteria
are fulfilled and where, at the same time, the BOLD signal was
greater for harder than for easier trials (Methods). This analysis
identified the left (78 voxels) and right (38 voxels) mIPS as
plausible neural accumulator regions (Fig. 4B).

Discussion
Decision making often involves weighing the benefits of an option
against the costs of an option. Little is known, however, about the
neural systems underlying such cost–benefit computations. Using
fMRI and choice modeling, we tested the hypothesis that cost–
benefit comparisons can be described by an accumulation process
as postulated in sequential sampling models of decision making
(9–13, 22). More specifically, we hypothesized a neural decision
mechanism that accumulates information from a neural repre-
sentation of the cost–benefit difference of a choice option until
a decision boundary for accepting or rejecting the options is
reached and the choice is executed. Consistent with theoretical
proposals and behavioral modeling results (3, 4, 8, 12, 13), we
hypothesized that the same basic brain mechanisms that were
successfully used to explain perceptual decision making can also
explain value-based decision making. Consistent with this hy-
pothesis, our fMRI results indicate that this decision is imple-
mented by a comparison of cost and benefit signals from amygdala
and ventral striatum, respectively, in (among other regions) the

ventromedial prefrontal cortex. Our results further suggest that
the result of this difference-based computation is accumulated
toward a decision threshold in parietal cortex (Fig. 4C).

Model-Driven Functional MRI Analysis. The present results dem-
onstrate the power of model-driven fMRI analysis, as the ap-
plication of models such as the diffusion model allows quantifying
well-defined decision mechanisms and stringently identifying
their neural bases (25). Whereas the application of sequential
sampling models to electrophysiological data can exploit the high
temporal resolution of single-cell data (e.g., 10), our model-based
approach exploits individual differences in an important decision
parameter, that is, the efficiency of information accumulation
(26). In the present study, this approach supports the hypothesis
that analogous computational mechanisms are involved in per-
ceptual and reward-based decision making. Tying neural activa-
tion data to model parameters may also help to clarify questions
concerning the nature of neural effects observed. Brain activation
effects suggestive of accumulator regions may, at least partly, also
be due to postdecision processes such as confidence in the de-
cision. However, our identification of decision-making regions
from model-based PPI analyses links them closely to the hy-
pothesized decision processes, making it unlikely that they rep-
resent postdecision processes.
Our results also shed light on the neurobiological causes for in-

dividual differences in reward-baseddecisionmaking.Thedrift rate
as a measure of participants’ decision-making efficiency correlated
with how well people compared the neural signatures of monetary
costs and benefits, and with how well the cost–benefit difference is
read out into the accumulations process. In contrast, the drift rate
did not correlate with the neural representations of costs and
benefits as such, suggesting that less efficient decision makers had
cost and benefit signals of the same quality but that they were worse
at integrating this information. Hence, the paradigm we used here
could be a useful tool to investigate decision-making deficiencies in
clinical populations in the brain on a process level (19, 27).

Neural Mechanisms Underlying Cost–Benefit Comparisons. Our
results suggest the VMPFC, as well as AMPFC and left DLPFC,
as candidate regions for cost–benefit comparison. Critically,
changes in fMRI signals in these neural comparison regions were
not due to decision difficulty. Rather, the task-related correlation
with the difference of ventral striatal benefit signal and amygdalar
cost signal implies that prefrontal comparison regions represent
the value of the cost–benefit difference. We suggest that the
positive correlation with the neural difference signal identifies
plausible comparator regions that compute expected reward by
trading off costs and benefits. This conclusion is considerably
strengthened by our finding that the correlation between the
neural cost–benefit difference signal and activity in prefrontal
comparison regions such as VMPFC is modulated by participants’
drift rate. This correlation provides a crucial link between de-
cision variables estimated from behavioral and neuronal data.
The VMPFC is a highly plausible candidate region for a neural

mechanism of cost–benefit integration. For example, patients
with VMPFC lesions have problems in determining the relative
values of decision alternatives (20) and provide inconsistent
judgments of subjective preferences in simple pairwise compar-
isons (28). Moreover, a number of fMRI studies have implicated
VMPFC in representing expected rewards (e.g., 17, 18, 29), al-
though the precise mechanisms of this value computation are still
unclear (2). Given the converging evidence of earlier fMRI and
lesion studies and our present study showing that VMPFC com-
pares amygdalar and striatal reward signals, we conclude that the
VMPFC is critical for the comparison of costs and benefits.

Neural Accumulation of Cost–Benefit Difference Information. Accord-
ing to our criteria outlined above, activation in parietal accumu-
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Ð
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21770 | www.pnas.org/cgi/doi/10.1073/pnas.0908104107 Basten et al.



But…



Author's personal copy

which forms the core of the critic, evaluates whether or not
ongoing events predict future reward (or punishment), for
example, by indicating that accelerating at the red light
constitutes maladaptive behavior [27–29]. Third, DLPFC
provides top-down biasing signals to the dorsal striatum
(and other brain areas) that facilitate execution of the
current policy [14]; these signals are most important when
the appropriate policy has not been learned by the dorsal
striatum or is inconsistent with past behavior, such as
when driving on the wrong side of the road in a foreign
country. Finally, orbitofrontal cortex provides the ventral
striatum with information related to abstract goals, con-
sistent with its role in contextually based action and
reward evaluation [30,31]; this information affords the
basal ganglia flexibility to learn not only about primary
rewards and punishments (such as the pain resulting from
a car accident) but also about goal-related outcomes (such
as stopping at a red light).

This neurocomputational architecture, which underlies
several popular models of cognitive control, RL and deci-

sion making [25,27,28], leaves several important issues
unaddressed. First, although the model provides a role for
the basal ganglia in learning about and executing simple
stimulus–response mappings, it falls short of describing
how the system can do so efficiently for complex sequences
of actions – such as driving to the supermarket and return-
ing home with a bag of groceries – because the computa-
tional load on the system increases nonlinearly with the
number of steps comprising the action sequence [25]. Sec-
ond, the architecture does not specify what task DLPFC
should implement nor what goal orbitofrontal cortex
should take as appropriate for the current task context.
Third, the framework leaves undetermined the degree of
vigor with which the task should be executed.

We argue that ACC, in its role in selecting and main-
taining options according to principles of HRL, provides
the solution to these problems. By design, the HRL frame-
work alleviates the computational burden on systems such
as the basal ganglia that are responsible for learning about
primitive actions (Box 2). Second, ACC learns to associate
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Figure 1. Proposed implementation of the hierarchical reinforcement learning mechanism. (a) Abstract function associated with each component. The option selection
mechanism sits at the apex of a standard actor–critic architecture for reinforcement learning: it determines the appropriate task to implement given the state of the external
environment and specifies the goal-state defining successful task completion. The selected option-specific policy is communicated to the actor, which implements the
policy via two interacting modules. A high-level module implements the task set by biasing the activity of a low-level module, which in turn executes behaviors appropriate
to the policy given the current state of the environment (not shown). In parallel, a high-level module within the critic associates the termination state of the option with a
subgoal, providing pseudo-rewards and contextual information to a low-level critic module that evaluates the progress of the actor towards the option termination state.
The critic outputs a slowly changing signal related to average reward and a fast reward prediction error signal indicating when events are better or worse than expected.
The option mechanism utilizes these signals, together with information related to experienced costs (not shown), for learning the value of options, for selecting options for
execution, and for maintaining the system on-task after an option is selected. Also not shown are additional connections to the actor and critic modules that carry reward-
related information from the critic and state-related information from the external environment. (b) Proposed neural implementation of the hierarchy. (c) An illustrative
example. The agent is at home fixing a macaroni and cheese dinner only to find that he missing a key ingredient: cheese. Confronted with this obstacle, ACC selects and
coordinates a sequence of options for driving to a nearby market, purchasing the ingredient, and returning home (as opposed to an alternative sequence of options such as
ordering the same meal at a local diner). The DLPFC manages the individual policies associated with each option, including driving to the market, by biasing neural activity
in the dorsal striatum and in other motor structures that implement the particular steps of the sequence, such as accelerating at green lights. Note that the DLPFC and dorsal
striatum work together to execute the policy, but DLPFC input is especially important for tasks that are incompatible with overlearned behaviors, for example, for driving on
the wrong side of the road in a foreign country. Meanwhile, the orbitofrontal cortex represents the termination state of the option – arriving safely at the market – as the goal
of the action sequence, and the ventral striatum utilizes this contextual information to determine whether or not the individual actions are consistent with the goal. Finally,
the dopamine system indicates to ACC whether or not the current state of the task is associated with high predictive value (tonic dopamine) and when events are suddenly
better or worse than predicted (phasic dopamine). Thus, if on a long drive the DLPFC momentarily loses control over the desired task set, such that the motor system turns
onto the wrong side of the road, the critic can alert ACC via decreased dopamine levels that the action is inconsistent with the goal, which would in turn boost activation of
the appropriate task set in DLPFC and correct for the error. ACC, anterior cingulate cortex; AR, average reward; DA, midbrain dopamine system; DLPFC, dorsolateral
prefrontal cortex; DS, dorsal striatum; OFC, orbitofrontal cortex; RPE, reward prediction error; VS, ventral striatum.
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Figure 1

Stimulus value is reflected in VMPFC activity. (a) The overlay map shows the peak activations in mOFC/ACC for three fMRI studies of goal-directed
decision-making. The peak from a study by Chib et al. [72] investigating decisions using consumer goods, food, and monetary rewards is shown in red.
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Summary of three study all agree on the role of
Prefrontal Cortex in Decision-Making
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19 subjects, random effect analysis P<0.002 P<0.0001 

R L 

ACC / MPFC 

caudate posterior 
cingulate amygdala 



Subjective value under risk 

19 subjects, random effect analysis P<0.01 P<0.001 
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Summary



We know that…
1. Parts of the brain encode expected values
2. Parts of the brain are sensitive to actual 

decision point
3. Factors that impact decision-making (risk, 

uncertainty) are encoded as well
4. Parts of the brain mitigate the explore – exploit 

dilemma 


