ASHI636: Advanced Topics in Neuroscience Dr. Olav E. Krigolson

> Lecture 1 Learning

Our Course

- Jan 28th Learning
- Feb 4th Decision-Making
- Feb 11th Executive Control
- Feb 18th NO CLASS (READING BREAK)
- Feb 25th Emotion, Good, and Evil
- Mar 3rd Consciousness
- Mar 10th Computational Neuroscience OR Neuroscience Laboratory Experience

Disclaimers

 Scope of course Eric Kandel Principles of Neuroscience 67 Chapters, 7 Appendices, 1720 pages

- 2. Level of detail Background Time
- 3. Medicine

4. What having a PhD really means

Quick Review

What is Neuroscience? Cellular Level Neuron Level Systems Level

What did we cover in Introductory Neuroscience?

Animals ranked by total number of neurons in the brain Number of neurons

Human		86.06 billion
Baboon	10.95	
Pig	2.23	
Raven	2.17	
Grey parrot	1.57	
Owl monkey	1.48	
Emu	1.34	
Barn owl	0.69	
Starling	0.483	
Squirrel	0.479	
Blackbird	0.38	
Goldcrest	0.16	
Mouse	0.07	

So what happens when we learn?

Increased neurotransmitter release Increase receptors Structural changes

In practice, we talk about the strength of a connection in terms of a "weight" or a "value".

1. Before conditioning

Food

response

Unconditioned stimulus

Salivation

Unconditioned response

Rescorla - Wagner

Expectancy

Expectancy

Expectancy

Prediction Error

When the actual outcome is different than the expected outcome

Value

Vpunishment

States

Current State

Previous State

Current State

Prediction Error

The difference in VALUE between the current state and preceding state

$$\mathsf{PE} = (\mathsf{V}_{\mathsf{reward}} - \mathsf{V}_{\mathsf{cue}})$$

 $PE = (V_{current state} - V_{preceding state})$

Learning IS ALWAYS a two step process.

At each point in time we:

Calculate a prediction error
Update the previous value

$V_{\text{cue new}} = V_{\text{cue old}} + PE$

$V_{tone} = 0$ $V_{reward} = 100$

PE = (100 - 0)PE = 100

$V_{cue new} = V_{cue old} + PE$ $V_{cue new} = 0 + 100$

$V_{tone} = 100$ $V_{reward} = 100$

PE = (100 - 100)PE = 0

$V_{cue new} = V_{cue old} + PE$ $V_{cue new} = 100 + 0$

Learning Rates

 $V_{\text{cue new}} = V_{\text{cue old}} + PE * LR$ $V_{\text{cue new}} = 0 + 100 * 0.2$ $V_{\text{cue new}} = 0 + 20$

Trial	V _{cue}	V _{reward}	PE	PE x LR
1	0	100	100	20
2	20	100	80	16
3	36	100	64	12.8
4	48.8	100	51.2	10.24
5	59.04	100	40.96	8.192

V_{reward}

V_{cue}

Prediction Error x Learning Rate

Another Example...

This also applies to motor skills!

Recall that a skill is a collection of neurons being activated.

PE's can be used in principle to strengthen the connections between these neurons to "learn" the correct movement pattern.

$$PE = V_{outcome} - V_{action}$$
$$PE = +$$

$$V_{action} = V_{action} + PE * LR$$
$$V_{action} \uparrow$$

Thus, we choose the top set of neurons because this choice has a higher VALUE

This is a basic principle of decision making – always choose the highest value option

Part II

Olds & Milner, 1954 Routtenberg & Malsbury, 1969 Crow, 1972

Correct trials (reward)

Classical Conditioning

Classical Conditioning

Thorndike's Law of Effect

Actions that are followed by feelings of satisfaction have a greater likelihood of being generated again in the future, whereas actions that are followed by feelings of dissatisfaction have a lesser likelihood of being generated again in the future.

Early in learning, $V_S = 0$ Thus, when juice is given: $\delta(t) = r(t) + \gamma V(t) - V(t - 1)$ $\delta(t) = 1 + 0 - 0$

After learning, $V_S > 0$ Thus, when juice is given: $\delta(t) = r(t) + \gamma V(t) - V(t - 1)$ $\delta(t) = 1 + 0 - 1$ $\delta(t) = 0.0$

However, when the
stimulus is encounteredSR $V_{S-1} = 0$

 $\delta(t) = r(t) + \gamma V(t) - V(t - 1)$

$$\delta(t) = 0 + 1 - 0$$

 $\delta(t) = 1.0$

And when a predicted reward does not occur:

$$\delta(t) = r(t) + \gamma V(t) - V(t - 1)$$

$$\delta(t) = 0 + 0 - 1.0$$

$$\delta(t) = -1.0$$

Part III

+

$\mathbf{H} \, \mathbf{H} \, \mathbf{H} \, \mathbf{H} \, \mathbf{H}$

+

HHSHH

The Error-Related Negativity

+

Beep!

+

Correct!

The Feedback Related Negativity

Miltner et al., 1997; Holroyd et al., 1998

Anterior Cingulate Cortex is the probable source of the ERN

EEG: Debener et al., 2005; Holroyd et al., 2004 Monkey: Ito et al., 2003

(Holroyd & Coles, 2002)

(Holroyd & Coles, 2002)

(Holroyd & Coles, 2002)

Holroyd & Krigolson, 2007

The Role of Medial-Frontal System in the Acquisition of Perceptual Expertise

Krigolson, Pierce, Tanaka, & Holroyd, 2009

+

+

Correct!

Correct!

Propagation of the Prediction Error

Before Learning

Learned Stimulus/ Reward Mapping

Krigolson et al., In press

+

Krigolson et al., 2014

Behavioral Accuracy

Choice Presentation

Reward Delivery

DATA

MODEL

+

+

Win!

