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Abstract

Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain
environmental conditions. In this paper, we propose a modular approach to such motor learning and control. We review the behavioral
evidence and benefits of modularity, and propose a new architecture based on multiple pairs of inverse (controller) and forward (predictor)
models. Within each pair, the inverse and forward models are tightly coupled both during their acquisition, through motor learning, and use,
during which the forward models determine the contribution of each inverse model’s output to the final motor command. This architecture
can simultaneously learn the multiple inverse models necessary for control as well as how to select the inverse models appropriate for a given
environment. Finally, we describe specific predictions of the model, which can be tested experimentally.q 1998 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Humans exhibit an enormous repertoire of motor behav-
ior which enables us to interact with many different objects
under a variety of different environments. The ability to
perform in such a varying and often uncertain environment
is a feature which is conspicuously absent from most robotic
control, as robots tend to be designed to operate within
rather limited environmental situations. In general, the
problem of control can be considered as the computational
process of determining the input to some system we wish to
control which will achieve some desired output. In human
motor control, the problem might be to select the input, i.e.
motor command, to achieve some required output, i.e.
desired sensory feedback. If we consider an example of
lifting a can to ones lips, it may be that the desired output
at a specific time is a particular acceleration of the hand as
judged by sensory feedback. However, the motor command
needed to achieve this acceleration will depend on many
variables, both internal and external to the body. Clearly,
the motor command depends on the state of the arm, i.e. its
joint angles and angular velocities. The dynamic equations
governing the system also depend on some relatively
unvarying parameters, e.g. masses, moments of inertia,

and center of masses of the upper arm and forearm. How-
ever, these parameters specific to the arm are insufficient to
determine the motor command necessary to produce the
desired hand acceleration; knowledge of the interactions
with the outside world must also be known. For example,
the geometry and inertial properties of the can will alter the
arm’s dynamics. More global environmental conditions also
contribute to the dynamics, e.g. the orientation of the body
relative to gravity and the angular acceleration of the torso
about the body. As these parameters are not directly linked
to the quantities we can measure about the arm, we will
consider them as representing the context of the movement.
As the context of the movement alters the input–output
relationship of the system under control, the motor com-
mand must be tailored to take account of the current context.

Considering the number of objects and environments, and
their possible combinations, which can influence the
dynamics of the arm (let alone the rest of the body), the
motor control system must be capable of providing appro-
priate motor commands for the multitude of distinct con-
texts that are likely to be experienced. Given the abundance
of contexts within which we must act, there are two qualita-
tively distinct strategies to motor control and learning. The
first is to use a single controller which uses all the contextual
information in an attempt to produce an appropriate control
signal. However, such a controller would demand enormous* Corresponding author. Fax: 0171-813 3107; e-mail: wolpert@hera.ucl.ac.uk
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complexity to allow for all possible scenarios. If this con-
troller were unable to encapsulate all the possible contexts,
it would need to adapt every time the context of the move-
ment changed before it could produce appropriate motor
commands—this would produce transient and possibly
large performance errors. Alternatively, a modular approach
can be used in which multiple controllers co-exist, with each
controller suitable for one or a small set of contexts. Based
on an estimate of the current context, some of the controllers
could be activated to generate the appropriate motor com-
mand. Under such a modular strategy, there would need to
be a context identification process which could choose the
appropriate controllers from the set of all possible
controllers.

In this paper, we focus on how we learn to produce effec-
tive motor control under a variety of contexts. The approach
we take is to employ a modular system to tackle the
problems of motor learning and control. We will first
describe the type of models which must be learned and
the benefits which accrue from such modularity. Experi-
mental evidence that supports the use of multiple function-
ally discrete controllers in humans is briefly reviewed. We
then focus on how such modular controllers can be learned
and selected, and propose a neural architecture based on
multiple paired forward–inverse models. Finally, we
describe specific predictions of the model which can be
tested experimentally.

2. Modularity in motor control

In this section, we describe the type of models which
must be learned in motor control, i.e. internal forward and
inverse models. We then describe the potential benefits of
learning these models in a modular fashion.

2.1. Internal models

The notion of an internal model, a system which mimics
the behavior of a natural process, has emerged as an impor-
tant theoretical concept in motor control. There are two
varieties of internal model, forward and inverse models.
Forward models capture the forward or causal relationship
between inputs to the system, e.g. the arm, and the outputs
(Ito, 1970; Kawato et al., 1987; Jordan, 1995). A forward
dynamic model of the arm, for example predicts the next
state (e.g. position and velocity) given the current state and
motor command. Such models have been proposed to be
used in motor learning (Sutton and Barto, 1981; Jordan
and Rumelhart, 1992), state estimation (Wolpert et al.,
1995b) and motor control (Ito, 1984; Miall et al., 1993;
Wolpert, 1997). In contrast, inverse models invert the
system by providing the motor command which will cause
a desired change in state. Inverse models are, therefore,
well suited to act as controllers as they can provide the
motor command necessary to achieve some desired state

transition. Even control strategies, such as feedback control,
which do not explicitly invoke an inverse model, can be
thought of as implicitly constructing an inverse model.

As both forward and inverse models depend on the
dynamics of the motor system, which change throughout
life and under different contextual conditions, these models
must be adaptable. While forward models can be learned
relatively straightforwardly by supervised learning, compar-
ing the predicted consequences of an action to the actual
result, inverse models prove more problematic. If the correct
motor command was known, which could provide an appro-
priate supervised error signal, then there would be no need
for the inverse model. Three main approaches have been
used to adapt such inverse models—direct inverse modeling
(Miller, 1987; Kuperstein, 1988), distal supervised learning
(Jordan and Rumelhart, 1992) and feedback-error-learning
(Kawato, 1990). The latter two models both rely on the
ability to convert errors in the actual trajectory into errors
in the motor command. They, unlike the direct approach, are
able to acquire an accurate inverse model even for redun-
dant systems.

2.2. Benefits of modularity

While forward and inverse models could be learned by a
single module, there are three potential benefits in employ-
ing a modular approach. First, the world is essentially
modular, in that we interact with multiple qualitatively dif-
ferent objects and environments. By using multiple inverse
models, each of which might capture the motor commands
necessary when acting with a particular object or within a
particular environment, we can achieve an efficient coding
of the world. In other words, the large set of environmental
conditions in which we are required to generate movement
requires multiple behaviors or sets of motor commands,
each embodied within a module.

Second, the use of a modular system allows individual
modules to participate in motor learning without affecting
the motor behaviors already learned by other modules. Such
modularity can therefore reduce temporal crosstalk, thereby
both speeding up motor learning while retaining previously
learned behaviors.

Third, many situations which we encounter are derived
from combinations of previously experienced contexts, e.g.
novel conjoints of manipulated objects and environments.
By modulating the contribution of the outputs of the
inverse models to the final motor command, an enormous
repertoire of behaviors can be generated. With as few as
32 inverse models, in which the outputs of each model
either contribute or do not contribute to the final motor
command, we have 232 or 1010 behaviors—sufficient for a
new behavior for every second of one’s life. Therefore,
multiple internal models can be regarded conceptually as
motor primitives, which are the building blocks used to
construct intricate motor behaviors with an enormous
vocabulary.
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3. Experimental evidence for modularity

3.1. Do multiple independent controllers exist within the
CNS?

Studies of motor adaptation have suggested that we are
able to learn multiple controllers and switch between them
based on context. In general, when subjects are brought into
the laboratory to undergo a motor learning task in which
they must adapt to a visual or dynamic perturbation, they
can take many movements to adapt (Welch, 1986; Shad-
mehr and Mussa-Ivaldi, 1994). Although the time course
of adaptation can extend over hours, on removal of the
perturbation, de-adaptation is often very rapid. In some
cases, just removing the subject from the experimental
equipment is enough to restore pre-perturbation behavior.
Such asymmetry between learning and ‘‘unlearning’’ sug-
gests that learning may represent adaptation of a new
module, whereas de-adaptation represents the switching
back to a previously learned stable module.

In agreement with this interpretation is work on re-
adaptation. On repeated presentation of a visual (McGonigle
and Flook, 1978; Welch et al., 1993) or dynamic perturba-
tion (Brashers-Krug et al., 1996), subjects adapt increas-
ingly rapidly. This suggests that the retained module for
the adapted state is not destroyed by de-adaptation and,
moreover, it can be quickly switched on again in response
to its introduction.

While the adaptation or switching already described can
be attributed to performance errors or knowledge of the
consequences of one’s actions, there is evidence that a
switching process is also in operation dependent on purely
sensory components of the context. Several studies have
examined the degree to which two different perturbations
can be learned and switched between. In these experiments,
one or more perturbations are introduced, and the nature of
the perturbation is contingent either on the configuration of
the body or on some other sensory cue. For example, when
subjects are repeatedly exposed to a prismatic displacement
induced by wearing prism goggles, they eventually show
adaptive changes cued by the feel of the prism glasses with-
out any prism lenses (Kravitz, 1972; Welch, 1971; Martin et
al., 1996). Similarly, context-dependent adaptation can also
be seen if cued by gaze direction (Kohler, 1950; Hay and
Pick, 1966; Shelhamer et al., 1991), body orientation (Baker
et al., 1987), arm configuration (Gandolfo et al., 1996) or an
auditory tone (Kravitz and Yaffe, 1972). These studies sug-
gest that subjects can switch immediately between two
learned behaviors based on the context.

3.2. Can we combine the output of independent controllers?

While the studies described in the previous section sug-
gest that multiple modules can be learned, they do not
address whether two modules can be appropriately activated
at the same time. Data for mixing of two new learned

modules based on prism work (Ghahramani and Wolpert,
1997) suggest a specific way that multiple modules are inte-
grated. Using a virtual reality system, a single visual target
location was remapped to two different hand positions
depending on the starting location of the movement. Such
a perturbation creates a conflict in the visuomotor map
which captures the (normally one-to-one) relation between
visually perceived and actual hand locations. One way to
resolve this conflict is to develop two separate visuomotor
maps, each appropriate for one of the two starting locations.
A separate mechanism could then combine, based on the
starting location of the movement, the outputs of the two
visuomotor maps. The internal structure of the system was
probed by investigating the generalization properties in
response to novel inputs, which in this case are the starting
locations on which it has not been trained. As predicted by a
modular architecture, subjects were able to learn both con-
flicting mappings, and to interpolate smoothly from one
visuomotor map to the other as the starting location was
varied. This provides evidence that two modules’ outputs
can be mixed, as the context is varied between the contexts
under which each was learned.

4. General methodology for multiple modules

Based on the benefits of a modular approach and the
experimental evidence for modularity, we propose that the
problem of motor learning and control is best solved using
multiple controllers, i.e. inverse models. At any one time,
one or a subset of these inverse models will contribute to the
final motor command. Such a system raises two fundamen-
tal computational problems. First, given a set of inverse
models which appropriately cover the set of contexts
which might be experienced, how is the correct subset of
inverse models selected for the particular current context—
the module selection problem. Second, how are the set of
inverse models learned to cover all the contexts which might
be experienced—the module learning problem.

4.1. Module selection problem

We first consider the module selection problem, assuming
that we already have a set of learned inverse models. How
can the outputs of the inverse models be switched on and off
appropriately in response to different behavioral contexts so
as to generate a coordinated final motor command? From
human psychophysical data, we know that such a switching
process must be driven by two distinct processes. The first
process is a feedforward adjustment in motor commands
based on purely sensory signals, e.g. the perceived size of
an object or whether a cup looks full or empty. Such adjust-
ments are made without regard to the consequences of the
action and therefore may need to be altered by a second
switching process, based on feedback of the outcome of a
movement. For example, on picking up a can which appears
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full, feedforward switching may activate modules responsi-
ble for generating a large motor impulse necessary to raise
the can to our lips. However, feedback processes, based on
contact with the can, can indicate that the can is in fact
empty, thereby switching off the inverse model for a
heavy can and activating an inverse model appropriate for
the arm in contact with a light can.

The feedforward selection process must be driven by
sensory cues alone, and learned from experience to switch
between the controller modules. The feedback switching
could be driven by a variety of signals. A natural signal to
consider would be the discrepancy between desired and
actual state, i.e. the performance error. The performance
error reflects the performance of the currently active module
and therefore its suitability for the current environment.
This signal could be used to determine, based on a perfor-
mance threshold, when it might be appropriate to switch
controls. However, it cannot provide information as to
which of the other controllers is appropriate to activate.
This is because at any one time only the active controllers
performance can be assessed and the inactive controllers
performance error could be assessed only after they are
activated.

4.2. Module learning problem

As the parameters of the motor system change drastically
during growth and under different contexts, inverse models
are not expected to be genetically inherited. The problem
therefore arises as to how they are acquired from experi-
ence. Such learning must be able to divide up the control
into appropriate modules which can be recombined to gen-
erate behaviors. The learning must also be robust to learning
new contexts, in that previously learned models must be
relatively stable while other modules are learned.

5. Multiple paired forward–inverse model

In this section, we propose a model which can solve the
module learning and selection problems in a computation-
ally coherent manner from a single principle. The basic idea
of the model is that multiple inverse models exist to control
the system and each is augmented with a corresponding
forward model. The brain therefore contains multiple pairs
of corresponding forward and inverse models. Within each
pair, the inverse and forward internal models are tightly
coupled both during their acquisition through motor learn-
ing, and use through gating of the inverse models’ outputs
dependent on the behavioral context. The key to this model
is the responsibility signals which reflect, at any given time,
the degree to which each pair of forward and inverse models
should be responsible for controlling the current behavior.
This responsibility signal is derived from the combination of
two processes. The first process uses the forward model’s
predictions. As the forward models capture distinct

dynamical behaviours of the motor system, their prediction
errors can be used during movement to determine in which
context the motor system is acting. The second process, the
responsibility predictors, use sensory contextual cues to pre-
dict the responsibility of the module and can therefore select
controllers prior to movement initiation in a feedforward
manner. This responsibility signal both couples the inverse
and forward model pairs, guides learning in each pair of the
inverse and forward models, and gates the contribution of
each inverse model’s output to the final output.

Here, we consider a motor system which we wish to
control acted upon by motor commandut at time t (for
simplicity we will consider a discrete time system, although
an equivalent continuous time formulation could be consid-
ered). The resulting (actual) movement trajectory,xt, is
determined by Eq. (1), which describes the causal relation-
ship between the motor command and the movement gov-
erned by the functionf which describes the forward
dynamics of the motor apparatus.

xt þ 1 ¼ f (xt,ut) (1)

The aim of the control is to produce a system which can
generate an appropriate motor commandut given the
desired state,xtþ1

* , (in generalg need not be unique or
exist for all xtþ1

* ; such conditions do not affect the model’s
formulation):

ut ¼ g(xp
t þ 1,xt) (2)

so thatg and f have an inverse relationship

xp
t þ 1 ¼ f (xt,g(xp

t þ 1, xt)): (3)

However, we assume that the dynamics of the systemf are
not fixed over time but can take on a possibly infinite num-
ber of different forms. These different forms correspond to
the context of the movement and include such factors as
interactions with objects or changes in the environment.
This can either be parameterized by assuming there is a
set of system dynamicsf i with i ¼ 1, 2,…, n or by including
a context parameterc as part of the dynamics

xt þ 1 ¼ f (xt,ut,ct) (4)

wherect encapsulates the context of the movement at timet.
The aim of the overall controller is to learn to control the
system under different and unknown contexts.

In the next two sections, we describe how switching can
be guided during movement, and in Section 5.3, we describe
how this mechanism can be modified to include pre-
movement switching.

5.1. Multiple forward models—dividing up experience

Central to the multiple paired forward–inverse model is
the notion of dividing up experience using predictive for-
ward models. Under different contexts,ct , the consequence
of performing the same motor commandut from the same
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statext will be different. Therefore, a single predictor which
has access only to the state and motor command will be
unable to predict the consequences of performed actions
under different contexts. We propose that multiple predic-
tors exist with at least one able to provide an accurate pre-
diction of the next state of the system given any context.

To generate such a set of predictors, we propose that the
forward models learn to partition experience by competitive
self-supervised learning (Fig. 1). We consider a set of undif-
ferentiated forward models which each receive the current
state and motor command as inputs. The outputs of the
forward models,̂x1

t þ 1, x̂2
t þ 1, …, x̂n

t þ 1, represent the predic-
tions, at timet, of the next state made by the 1st, 2nd,…, and
n-th forward model, respectively. Therefore, each forward
model attempts to predict the next state of the system given
the current state and motor command. The output of thei-th
forward model at timet is given asx̂i

t þ 1 where:

x̂i
t þ 1 ¼ f(wi

t, xt, ut) (5)

wherewt
i are the parameters of a function approximatorf

(e.g. neural network weights) used to model the forward
dynamics. These predicted next states could then be

compared to the actual next state to provide a signal suitable
for supervised learning. To ensure that the forward models
learn to competitively divide up the experienced relation-
ships, the training signal for each forward model is gated by
a responsibility signall t

i . This responsibility signal repre-
sents the extent to which each forward model presently
accounts for the behavior of the system. Based on the
prediction errors of the forward models, the responsibility
signal,i t , for the i-th forward–inverse model pair is calcu-
lated by the soft-max

li
t ¼

e¹ jxt ¹ x̂i
t j

2=j2

∑n

j ¼ 1
e¹ jxt ¹ x̂j

t j
2=j2

(6)

wherext is the true state of the system andj is a scaling
constant. The soft-max transforms the errors using the expo-
nential function and then normalizes these values, within the
responsibility estimator (Fig. 1), across the modules so that
the responsibilities have the property that they lie between 0
and 1, and the responsibility summed over the models is 1.
These responsibilities can be thought of as a measure of the

Fig. 1. Multiple forward models dividing up experience. The forward model component of the full model is shown. Each forward model predicts the next state
based on the motor command and current state. This prediction is delayed and compared with the actual next state. The prediction errors are used to assign
responsibility to each module which determines the learning (dotted line) as well as the contribution each model’s prediction makes to the final prediction. The
responsibility estimator normalizes the transformed error signals e¹ err2=j2

. The responsibilities are therefore produced using the soft-max function on the
prediction errors.
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probability that thei-th module captures the behavior. Those
forward models which capture the current behavior, and
therefore have low errors, will have high responsibilities.
The responsibilities are then used to control the learning
within the forward models, with those models with high
responsibilities receiving proportionally more of their
error signals than modules with low responsibility. The
final prediction is made by modulating the contribution of
each forward models’ output to the final prediction of state
x̂t þ 1

x̂t þ 1 ¼
∑n

i ¼ 1
li

t x̂i
t þ 1 ¼

∑n

i ¼ 1
li

tf(wi
t,xt,ut) (7)

Based on this prediction, a gradient descent learning rule is
given by

Dwi
t ¼ eli

t
dfi

dwi
t
(xt ¹ x̂i

t) ¼ e
dx̂i

t

dwi
t
li

t(xt ¹ x̂i
t) (8)

Over time, the forward model will learn to divide up the
system dynamics experienced, and the responsibilities will
reflect the extent to which each forward model captures the
current dynamics of the system.

5.2. Multiple inverse models—controlling the system

Based on the multiple forward models’ ability to divide
up experience, we suggest that for each behavior captured
by a forward model we would wish to learn a control strat-
egy, i.e. an inverse model. Therefore, for each forward
model there would be a paired inverse model. Each inverse
model would have as input the desired next statextþ1

* and
would produce a motor commandut

i as output (Fig. 2).
Therefore, each inverse model produces a motor output
with u1

t , ut
2, …, ut

n denoting the outputs from the 1st, 2nd,
…, n-th inverse models. The aim is that each inverse model
learns to provide suitable control signals under the context
for which its paired forward model provides good predic-
tions. Thei-th inverse model would produce a motor output
ut

i based on the desired statext
*:

ui
t ¼w(ai

t, xp
t þ 1) (9)

wherea t
i are the parameters of some function approximator

w. For simplicity, here we assume that the motor command
of each module is calculated purely in a feedforward
fashion from the desired trajectory, but it is straightforward
to extend this to also include the feedback of the current

Fig. 2. Multiple inverse models for control. The inverse model component of the full model is shown. Each inverse model produces a feedforward motor
command and receives as error the feedback motor command (see Section 6) weighted by the responsibility estimate of its paired forward model. This ensures
that the inverse model learns the appropriate control for the context under which its paired forward model makes accurate predictions. The responsibility
signals also weight the contribution of each inverse modules’ output to the final feedforward motor command. The dotted lines passing through the models is
the training signal for learning.
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state. The total motor command generated by the whole set
of n inverse models is given as the summation of outputs
from these inverse models

ut ¼
∑n

i ¼ 1
li

tu
i
t ¼

∑n

i ¼ 1
li

tw(ai
t,x

p
t þ 1) (10)

once again using the responsibilities,l i
t , to weight the con-

tributions. Again the responsibilities would be used to
weight the learning of each inverse model (here we assume
the desired motor commandut

* is known but in a later sec-
tion we show how this assumption can be relaxed)

Dai
t ¼ eli

t
dwi

dai
t
(up

t ¹ ui
t) ¼ e

dui
t

dai
t
li

t(up
t ¹ ui

t) (11)

Therefore, the responsibility signals are used in three
ways—first to gate the learning of the forward models
(Eq. (8)), second to gate the learning of the inverse models
(Eq. (11)), and third to gate the contribution of the inverse
models to the final motor command (Eq. (10)). In summary,
each forward model receives the total motor command, and
each models’ prediction is compared with the true outcome.
Only those forward models with small errors should adapt
and those with large errors should learn little. This is
mediated through the responsibilitiesl t

i . Conceptually
speaking, if one forward model’s prediction is good, its
corresponding inverse model receives the major part of
the motor error signal and its output contributes significantly
to the final motor command. On the other hand, if the for-
ward model’s prediction is poor, its corresponding inverse
model does not receive the full error and its output contri-
butes less.

5.3. Multiple responsibility predictors—sensory contextual
cues

While the system described so far can learn multiple
controllers and switch between them based on prediction
errors, it cannot provide switching before a motor command
has been generated and the consequences of this action
evaluated. To allow the system to switch controllers based
on purely contextual information, cued by sensory signals,
e.g. a tone or color, or endogenously generated by long term
behavioral plans, we propose a third model, the responsi-
bility predictor (RP). The input to this module,yt, contains
sensory information and cognitive plans (Fig. 3). Each RP
produces a prediction of its modules responsibility

l̂i
t ¼ h(gi

t,yt) (12)

whereg t
i are the parameter of a function approximatorh

(e.g. neural network weights). These estimated responsi-
bilities can then be compared to the actual responsibilities
generated from the responsibility estimator. These error
signals can be used to update the weights of the RP by
supervised learning.

For example, objects which look metallic are usually

heavier than wooden objects. Therefore, when picking up
metal objects the RP would learn to predict a high respon-
sibility for the module suitable for picking up heavy objects
based on the sensory cues which determine whether an
object looks metallic. Eventually, the RP would produce
this high responsibility estimate based purely on the sensory
signals before the feedback mechanism could make the
actual responsibility of the module high.

Finally, a mechanism is required whereby the responsi-
bility estimates emanating from the responsibility estimator
are determined by both the responsibility estimate of the
feedforward RP and feedback forward model. We determine
the final value of responsibility by multiplying the trans-
formed feedback errors by the feedforward responsibility
l̂i

te
¹ jxt ¹ x̂i

t j
2=j2

and then normalizing across the modules
within the responsibility estimator (Fig. 3).

5.4. Probabilistic interpretation of responsibility estimation

The multiple paired forward–inverse model has a natural
probabilistic interpretation. The estimates of the responsi-
bilities produced by the RP can be considered as prior prob-
abilities because they are computed before the movement
execution based only on extrinsic signals and do not rely on
knowing the consequences of the action. Once an action
takes place, the responsibility calculated from the forward
models’ errors can be determined and this can be thought of
as the likelihood after the movement execution based on
knowledge of the result of the movement. The final respon-
sibility which is the product of the prior and likelihood,
normalized across the modules, represents the posterior.
Adaptation of the RP ensures that the prior probability
becomes closer to the posterior probability.

6. Physiologically plausible learning

The model described above assumes that the desired
motor command is available to train multiple inverse
models. This assumption is implausible for biological
motor learning, and a more sophisticated physiological
computational model involves using the feedback-error-
learning model (Kawato et al., 1987; Kawato and Gomi,
1992) with the above simple model.

ut ¼ uff
t þ ufb

t (13)

ufb
t ¼ g(xp

t ¹ xt) (14)

Dai
t ¼ eli

t
dwi

dai
t
ufb

t ¼ e
dui

dai
t
li

tu
fb
t (15)

The total motor command fed to the motor apparatus is the
summation of the total feed-forward motor commandut

ff and
the feedback motor commandut

fb. The feedback motor com-
mand can be calculated from the difference between the
desired movement patternxt

* and the actual movement
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patternxt through an appropriate functiong (usually a PID
controller or PAD controller is assumed appropriate). In the
learning (Eq. (15)), the feedback motor command is used as
the error signal for the motor command.

A schematic of the inputs and outputs and internal struc-
ture within a module is shown in Fig. 4.

7. Comparison with other modular systems

We now compare the current model with the previous
computational model in which multiple modules can be
acquired through learning. Narendra et al. (1995) and
Narendra and Balakrishnan (1997) have proposed multiple
models, each of which describes a different environment,
with switching for control. There are several major differences
between Narendra’s framework and ours, although they
seem quite similar at first sight. In their approach, the

identification errors for forward models were used to deter-
mine switching and the controller was chosen for which the
identification error was smallest. Therefore, only one con-
troller could be active at any given time as opposed to the
blending approach we have chosen and which we believe is
a fundamental component of skilled motor control. Their
model had no learning of the controllers and little in the
forward model, and can only switch based on execution
and not based on purely sensory cues. In contrast, our multi-
ple paired model can learn both internal models from a
naive state and can switch control based on purely sensory
cues, mediated by the RP. These differences come from
essential differences in backgrounds and research objec-
tives. The former architecture is intended to be of practical
use in control, and the latter for biological motor learning
and control. The latter starts from scratch, which is out of
the question with regard to stability, safety and other engi-
neering requirements in the former approach. So, the

Fig. 3. Multiple responsibility predictors for sensory switching. The responsibility predictor (RP) component of the full model is shown. Each RP model
produces an estimate of the module’s responsibility based on the sensory input. The responsibility estimate is used as a training signal for the RP model. The
estimate from the RP is multiplied by the transformed error from its paired forward model. The responsibility estimator normalizes these values to produce the
responsibility for the module based on the feedforward RP and feedback forward model signals. The dotted lines passing through the models is the training
signal for learning.
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existence of a set of appropriate controllers is assumed,
and blending outputs from a number of controllers is not
considered. The former has much utility in current applica-
tion in engineering but not in biology. The latter is a bio-
logical model and should show much utility in future
applications.

Based on the principle of divide-and-conquer, a general
computational strategy for designing modular learning sys-
tems is to treat the problem as one of combining multiple
models, each of which is defined over a local region of the
input space. Such a strategy has been introduced in the
‘‘mixture of experts’’ architecture for supervised learning
(Jacobs et al., 1991b; Jordan and Jacobs, 1994; Cacciatore
and Nowlan, 1994). The architecture involves a set of func-
tion approximators known as expert networks or modules
(usually neural networks) that are combined by a classifier
known as a gating network. These networks are trained
simultaneously so as to split the input space into regions
where particular experts can specialize. The gating network
uses soft splits of the input data, thereby allowing data to be

processed by multiple experts. The contribution of each is
modulated by the gating module’s estimate of the probabil-
ity that each expert is the appropriate one to use. Each expert
is assumed to be responsible for a Gaussian region of input
space which leads to the gating unit using a multinomial
logit model to partition the input space. This model has
been proposed for high-level vision (Jacobs et al., 1991a)
and for the role of the basal ganglia during sensorimotor
learning (Graybiel et al., 1994). The mixture of experts
approach has been extended to a recursively-defined hier-
archical mixture of experts (HME) architecture in which a
tree of gating networks combines the expert networks into
successively larger groupings that are defined over nested
regions of the input space (Jordan and Jacobs, 1992). A
maximum likelihood learning algorithm for the HME
architecture has been derived (Jordan and Jacobs, 1994)
based on the Expectation-Maximization (EM) principle
from statistics (Dempster et al., 1977). The multiple
experts model has been extended to deal with unsupervised
learning in which the experts learn to partition time

Fig. 4. A single module within the multiple paired internal model. The thick dashed line shows the central role of the responsibility estimators’ signals. Dotted
lines passing through models are training signals for learning. The exponential transform of the errors has been replaced by a more general likelihood model.

1325D.M. Wolpert, M. Kawato / Neural Networks 11 (1998) 1317–1329



series into components, with each component captured by
an expert (Pawelzik et al., 1996; Ghahramani and Hinton,
1998).

Gomi and Kawato (1993) combined the feedback-error-
learning approach and the mixture-of-experts modular
architecture to learn multiple inverse models for multiple
manipulated objects. They used both the visual signal of
manipulated objects and internal signals, e.g. somatosen-
sory feedback and efference copy of the motor command.
It proved quite difficult to acquire multiple inverse models
using this architecture and many parameters had to be
carefully chosen. On the other hand, using the multiple
paired forward–inverse model approach, the same task is
easily solved (Haruno, Wolpert and Kawato, personal
communication).

The essential difference between the mixture-of-experts
architecture and ours is whether the one gigantic central
processor or a set of parallelly-distributed small processors
are used for calculating responsibility signals or ‘‘gating’’
signals. We believe that for any real world problem, calcu-
lating responsibility signals by a single gating network
amounts to dividing very high dimensional state space
with highly non-linear and complicated boundaries. This
is a formidable and hopeless task. The other essential dif-
ference is the distinction between the inputs to the gating
network and the inputs to our forward model and the RP.
Although the gating network receives both the contextual
and intrinsic signals to compute the gating signal, our for-
ward model receives only intrinsic signals and the RP
receives only the contextual signal. Thus, the notion of
prior and likelihood probability is more physical and con-
crete. The prior is before the movement execution and the
likelihood is after the movement execution.

One of the major reasons why the two approaches are
very different comes from the objectives of the architecture.
Although the mixture-of-experts architecture is intended to
be very general as a universal tool for a function approxi-
mation, ours is intended to be a scheme for sensory-motor
control. In general function approximation, it does not make
sense to divide the input variables into contextual and inter-
nal ones. Moreover, using forward functions and their
inverses does not generally help to solve the problem.

8. Model predictions

In this section, we will consider the specific, but as yet
untested, predictions of the multiple paired forward–inverse
model. We first focus on possible psychophysical experi-
ments before briefly discussing the neurophysiological
predictions.

8.1. Separation of forward and inverse models

The multiple paired forward–inverse model is based on a
fundamental separation of the mappings into inverse and

forward models. One prediction is that the forward models
have a primary role in motor learning. Therefore, during
motor learning, the forward model will learn to predict
before the inverse model learns to control. This could be
tested in a number of ways. While the accuracy of the
inverse model can be assessed by examining the change in
performance errors during learning of a novel task, testing
the forward model requires one of a number of indirect
approaches. The first is to use a system which is known to
require predictive forward models for its achievement. Such
a system is seen in grip-force modulation, in which grip
force is modulated, in an anticipatory fashion to the
expected load force generated by the hand (Johansson and
Westling, 1984). When the object is changed in a novel way,
such modulation has to be re-learned (Flanagan and Wing,
1997) and this time-course can be used to estimate the
changes in performance of the forward model. Alterna-
tively, the predictions of the consequences of a motor com-
mand on the hand can be assessed by examining
coordinative behavior. For example, when the eye tracks
the hand in the dark it does so with no lag, showing that
the eye is able to anticipate or predict the motion of the
hand. It would be expected that under a perturbation to
the hand, the eye would learn to re-follow the hand only
when the new forward dynamics had been learned. A com-
parison of the learning rates of the forward and inverse
model could therefore be used to test the primacy of the
forward models.

8.2. Switching depends on prediction rather than control
error

A fundamental aspect of the model is that switching
should be based on prediction errors rather than perfor-
mance errors. Experimentally, the two errors can be disso-
ciated using altered visual feedback paradigms (Wolpert
et al., 1995a). This allows control of the relationship
between a target location and the perceived hand location
(performance error), and the relationship between the per-
ceived hand and actual hand location (which will affect the
prediction error) to be dissociated. By maintaining the pre-
diction error while the actual context changes, it should be
possible to delay switching and new learning appropriately.
Similarly, by maintaining the performance error but altering
the prediction error, switching to an inappropriate control
strategy should be seen.

8.3. Learning multiple modules

The model also predicts that it should be possible to learn
multiple behavioral tasks and that the further apart the con-
texts are the easier it should be to learn them. For example, it
has been shown that after learning one task, learning a sec-
ond one can overwrite the first-this known as retrograde
interference (Brashers-Krug et al., 1996). However, in
these studies no context was given to the movement, and
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the context of interacting with a robot may have caused the
same module to be used for both tasks. This interference
decreased as the duration between the learning phases was
increased. Allowing time to pass may allow the context to
change, as time is likely to play a factor in the context,
thereby allowing new learning. The prediction of the multi-
ple paired forward–inverse model is that if the contexts of
the movements were made sufficiently different then the
fields should not interfere with each other. Although it has
been shown that simple lights do not perform such a func-
tion (Gandolfo et al., 1996), these are perhaps too behavior-
ally insignificant to cause separate learning. Learning to
pick up objects with novel dynamics, in which the objects
are indistinguishable or highly different, could be used to
examine these possibilities.

8.4. Mixing multiple modules

Another important prediction is that having learned a set
of modules, their outputs should be able to be appropriately
combined based on prior or posterior cues. This could be
achieved by having subjects make movements in multiple
simple force fields generated by a force feedback system.
For example, having learned to move on two fields A and B,
the model predicts that subjects should perform better on
linear combinations of fields A and B compared to fields
which have similar complexity but are unrelated to A and B.
This could be used to test whether the motor learning system
is capable of combining compact representations into more
complex behaviors.

8.5. Decomposition of learning

One prediction of the model is that the CNS should be
able to extract compact representations of motor primitives
during a learning task. Subjects could be exposed to differ-
ent visuomotor perturbations which, unknown to them, will
be constructed from a set of primitives. For example, the
presented perturbations might be combinations of three pri-
mitives A, B and C. Subjects will be exposed to combined
perturbations such as B, C, Aþ B, B þ C, A þ C, A þ B þ

C, and the null perturbation, but never A in isolation. An
efficient coding of these perturbations would be to represent
the three primitives and switch them on or off appropriately.
This hypothesis could be assessed by examining whether A
has been learned having excluded its isolated presentation
from the learning process.

8.6. Neurophysiological predictions

In principle, multiple paired forward and inverse models
could be located anywhere in the brain. However, many
lines of investigation, both theoretical and experimental,
suggest that the cerebellum is a very promising candidate
(Ito, 1970; Kawato et al., 1987; Miall et al., 1993; Kawato
and Gomi, 1992; Kawato and Gomi, 1993; Miall and

Wolpert, 1996). Wolpert et al. (1998) in a recent review
summarized behavioral, anatomical and physiological data
which directly and indirectly support the existence of both
inverse models and forward models in the cerebellum.

Some imaging studies also indirectly support our hypoth-
esis. For example, mental motor imagery is known to acti-
vate the cerebellum (Decety et al., 1990). Both forward
models and inverse models are expected to be utilized in
mental simulation of the movement. Forward models would
be used, in place of the motor apparatus, to simulate the
results of non-performed actions on an imaginary controlled
object, and inverse models would be required to generate the
motor command.

In a motor learning study using fMRI, Imamizu et al.
(1997) demonstrated activation spots in the lateral posterior
part of the cerebellum which persisted after learning to use a
new tool was accomplished, even though the motor perfor-
mance errors had returned to the levels of the baseline scan-
ning periods. Although we cannot tell whether forward or
inverse models are learned and reflected in these activation
spots, the data certainly suggest that some kind of internal
model of an external tool is acquired after motor learning in
the cerebellum.

If multiple paired forward–inverse models are located in
the cerebellum, we can at least make two predictions for
imaging studies. The first involves subjects learning to use
multiple tools or perform under multiple visuo-motor trans-
formations. After learning, the cerebellum would be
scanned under at least two different conditions using
different tools or visuomotor transformations. The predic-
tion is that two different areas, or sets of areas, of the
cerebellum should be activated under these two different
conditions.

A second prediction is that different areas of the cerebel-
lum would be activated when either the prediction error or
control error are independently manipulated. Such a study
would use the methodology described in Section 8.2 to dis-
sociate the control error and prediction error. During a
motor task, e.g. tool use or a visuo-motor transformation,
which activates some regions of the cerebellum, we predict
that only a subset of these activated regions will be vigor-
ously activated when the prediction error is artificially
increased by experimental manipulation. This activated
locus corresponds to the forward model. On the other
hand, a different subset of the above activated regions
should be more vigorously activated when the control
error is artificially increased. This corresponds to the inverse
model. We expect that these two subsets are close to each
other. But, even if they were far apart, it would not contra-
dict the computational model, although such an arrange-
ment would require long range connections between the
forward and inverse models.

We plan to map the computational circuit diagram of our
model onto the neural networks in and around the cerebel-
lum. We plan to fully develop this network model in another
paper.
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9. Conclusions

In conclusion, we have presented a new model based on
multiple paired forward and inverse models, which is cap-
able of motor learning and control in a modular network.
The problem of selecting the appropriate modules is solved
by generating a responsibility signal for each module based
both on the consequences of performed actions, as estimated
by the forward models, and on sensory signals, as estimated
by the responsibility predictor. Within each module, the
inverse and forward models are tightly coupled, by the
responsibility signal, during motor learning. This architec-
ture can, therefore, simultaneously learn the multiple
inverse models necessary for control as well as how to select
the inverse models appropriate for a given environment.
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