EPHE 591

Between Subjects Factorial Analysis of Variance

The F Statistic

 $F = \frac{MS_{between}}{MS_{within}}$

Factorial ANOVA

You have two groups of participants in your experiment (gender: females, males), each gender group is subdivided into three different birth locations (country: Canada, USA, UK). You test them on a single dependent measure, reaction time.

MAIN EFFECT: Gender

MAIN EFFECT: Country

INTERACTION

What it looks like...

Four columns of data:

- 1. Subject
- 2. Grouping Variable A
- 3. Grouping Variable B
- 4. DV

Tests of Between-Subjects Effects

Dependent Variable: rt

⇒

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	24082.315 ^a	11	2189.301	2.833	.002
Intercept	29240127.2	1	29240127.2	37840.705	.000
group	8429.481	3	2809.827	3.636	.014
age	3158.146	2	1579.073	2.044	.133
group * age	12494.688	6	2082.448	2.695	.016
Error	129816.329	168	772.716		
Total	29394025.8	180			
Corrected Total	153898.644	179			

a. R Squared = .156 (Adjusted R Squared = .101)

Recognizing Main Effects and Interactions

Partitioning Variance Estimates in Factorial Designs

MAIN EFFECT A

ERROR

INTERACTION of A and B

MAIN EFFECT B

Within Group Variance Estimate

As before, the within group variance estimate reflects the average of the population variance estimates made from the scores for each cell.

Group

 $S^{2}_{within} = \frac{S_{1}^{2} + S_{2}^{2} + S_{3}^{2} + S_{4}^{2}}{N}$

Main Effect Variance Estimate

As with a single level design, the main effect between variance estimate is based on the variation between the column / row means.

$$S_{between}^2 = (S_M^2)(n)$$

Main Effect Variance Estimate

As with a single level design, the main effect between variance estimate is based on the variation between the column / row means.

$$S_{between}^2 = (S_M^2)(n)$$

Interaction Variance Estimate

The interaction variance estimate is based on the variation between the other possible cell groupings.

$$S_{between}^2 = (S_M^2)(n)$$

Degrees of Freedom in a Factorial ANOVA

$$\begin{split} df_{Rows} &= N_{Rows}\text{-}1 \\ df_{Columns} &= N_{Columns}\text{-}1 \\ df_{Interaction} &= N_{cells}\text{-} df_{Rows} - df_{Columns} - 1 \\ df_{Within} &= df_1 + df_2 + df_3 + df_4 \text{ (the df of the cells)} \\ df_{Total} &= N - 1 \end{split}$$

 $MS = \frac{SS}{df}$

Assumptions

Normality

Homogeneity of Variance

And the Design...

ONLY ADD AS MANY LEVELS AS YOU NEED FOR YOUR ACTUAL HYPOTHESIS.

DO NOT ADD LEVELS SIMPLY BECAUSE YOU CAN!