EPHE 591

Between Subjects Factorial Analysis of Variance

The F Statistic

$$
F=\frac{M S_{\text {between }}}{M S_{\text {within }}}
$$

Factorial ANOVA

You have two groups of participants in your experiment (gender: females, males), each gender group is subdivided into three different birth locations (country: Canada, USA, UK). You test them on a single dependent measure, reaction time.

MAIN EFFECT:
Gender

Country

INTERACTION

What it looks like...

Four columns of data:

1. Subject
2. Grouping Variable A
3. Grouping Variable B
4. DV

Tests of Between-Subjects Effects
Dependent Variable: rt

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$24082.315^{\text {a }}$	11	2189.301	2.833	.002
Intercept	29240127.2	1	29240127.2	37840.705	.000
group	8429.481	3	2809.827	3.636	.014
age	3158.146	2	1579.073	2.044	.133
group *age	12494.688	6	2082.448	2.695	.016
Error	129816.329	168	772.716		
Total	29394025.8	180			
Corrected Total	153898.644	179			

a. R Squared $=.156$ (Adjusted R Squared $=.101$)

Recognizing Main Effects and Interactions

Partitioning Variance Estimates in Factorial Designs

MAIN
 EFFECT A

ERROR

INTERACTION of A and B

MAIN
EFFECT B

Within Group Variance Estimate

As before, the within group variance estimate reflects the average of the population variance estimates made from the scores for each cell.

$$
S_{\text {within }}^{2}=\frac{S_{1}^{2}+S_{2}^{2}+S_{3}^{2}+S_{4}^{2}}{N_{\text {groups }}}
$$

Main Effect Variance Estimate

As with a single level design, the main effect between variance estimate is based on the variation between the column / row means.

$$
S_{\text {berween }}^{2}=\left(S_{M}^{2}\right)(n)
$$

Main Effect Variance Estimate

As with a single level design, the main effect between variance estimate is based on the variation between the column / row means.

$$
S_{\text {between }}^{2}=\left(S_{M}^{2}\right)(n)
$$

Interaction Variance Estimate

The interaction variance estimate is based on the variation between the other possible cell groupings.

$$
S_{\text {berween }}^{2}=\left(S_{M}^{2}\right)(n)
$$

Degrees of Freedom in a Factorial ANOVA

$$
\begin{aligned}
& \mathrm{df}_{\text {Rows }}=\mathrm{N}_{\text {Rows }}-1 \\
& \mathrm{df}_{\text {Columns }}=\mathrm{N}_{\text {Columns }}-1 \\
& d f_{\text {Interaction }}=N_{\text {cells }}-d f_{\text {Rows }}-d f_{\text {Columns }}-1 \\
& d f_{\text {Within }} \\
& \text { cells) } \\
& \mathrm{df}_{\text {Total }} \quad=\mathrm{N}-1
\end{aligned}
$$

$M S=\frac{S S}{d f}$

$$
F=\frac{M S_{\text {Effect }}}{M S_{\text {Within }}}
$$

Assumptions

Normality

Homogeneity of Variance

And the Design...

ONLY ADD AS MANY LEVELS AS YOU NEED FOR YOUR ACTUAL HYPOTHESIS.

DO NOT ADD LEVELS SIMPLY BECAUSE YOU CAN!

