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Abstract

Motor control is the study of how organisms make accurate goal-
directed movements. Here we consider two problems that the motor
system must solve in order to achieve such control. The first problem is
that sensory feedback is noisy and delayed, which can make movements
inaccurate and unstable. The second problem is that the relationship
between a motor command and the movement it produces is variable,
as the body and the environment can both change. A solution is to build
adaptive internal models of the body and the world. The predictions
of these internal models, called forward models because they transform
motor commands into sensory consequences, can be used to both pro-
duce a lifetime of calibrated movements, and to improve the ability of
the sensory system to estimate the state of the body and the world around
it. Forward models are only useful if they produce unbiased predictions.
Evidence shows that forward models remain calibrated through motor
adaptation: learning driven by sensory prediction errors.
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INTRODUCTION

We have the ability to control our movements
during a vast array of behaviors ranging from
making simple limb movements to dribbling
a basketball, throwing a baseball, or juggling.
We marvel at the accomplishments of ath-
letes, yet, from a theoretical standpoint, even
the ability to make the simplest eye and arm
movements accurately is quite extraordinary.
Consider that the motors that actuate robots
reliably produce the same force for a given in-
put. Yet, our muscles quickly fatigue, altering
their responses from one movement to the next.
The sensors that record motion of a robot do
so with far more precision than one finds in the
response of our proprioceptive neurons. The
transmission lines that connect a robot’s motors
and sensors to the controller move informa-
tion at the speed of light, and the controller can

process sensory information to issue commands
in microseconds. In contrast, our transmission
lines (axons) move information slower than the
speed of sound, and neural computations of-
ten require tens of milliseconds. Therefore, our
ability to produce a lifetime of accurate move-
ments lies not in the fact that we are born with
an invariant set of actuators, precise set of sen-
sors, or fast transmission lines, but rather in that
we are born with a nervous system that adapts to
these limitations and continuously compensates
for them. If left uncompensated, these inherent
limitations could give rise to systematic errors
in our movements. How the brain is able to pre-
dict and correct systematic errors to produce a
lifetime of accurate movements is the subject of
this review.

CORRECTING MOVEMENT
ERRORS WITHOUT
SENSORY FEEDBACK

A typical saccade takes less than 80 ms to
complete and moves the eyes at more than
400 deg/s. Such movements are too brief for
visual or proprioceptive feedback to influence
control of the eyes during the saccade (Keller &
Robinson 1971, Guthrie et al. 1983). However,
a fundamental problem is that the motor com-
mands that initiate the movement are highly
variable and this variability is related to the
context in which the eye movement is made.
For example, people make saccades with higher
velocities in anticipation of seeing a more in-
teresting visual stimulus (e.g., image of a face)
(Xu-Wilson et al. 2009b). If a target is pre-
sented and they are instructed to look in the
opposite direction, saccade velocities are much
lower than if they are asked to look to the tar-
get (Smit et al. 1987). Repeating a visual target
(Straube et al. 1997, Chen-Harris et al. 2008,
Golla et al. 2008) or reducing the reward asso-
ciated with that stimulus (Takikawa et al. 2002)
also reduces saccade velocities. On the other
hand, increasing the reward associated with the
target (Takikawa et al. 2002), making the tar-
get the goal of both the eye and the arm move-
ments (van Donkelaar 1997, Snyder et al. 2002),
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or unexpectedly changing the characteristics of
the target (Xu-Wilson et al. 2009a) all result
in increased saccade velocities without altering
saccade amplitude. Thus, the motor commands
that accelerate the eyes toward a given target
are affected by the expected reward, attention,
or cognitive state of the subject. These factors
all induce variability in the motor commands
that start the movement. Despite this variabil-
ity, the brain accurately guides the eyes to the
target without sensory feedback.

Another problem is that we sometimes blink
when we make saccades. As the eyelid comes
down on the eyes, it acts as a source of me-
chanical perturbation that pushes the eye, al-
tering its trajectory. Remarkably, the motor
commands that guide the eyes during a blink-
affected saccade appear to take into account this
self-induced source of perturbation: The eyes
tend to arrive on target (Rottach et al. 1998).
How does the brain take into account these po-
tential sources of variability without the use of
sensory feedback?

Some three decades ago David Robinson
proposed that endpoint accuracy of saccades is
possible because the brain incorporates an in-
ternal feedback process through the cerebellum
that monitors the motor commands and cor-
rects them online (Robinson 1975). Corollary
discharge encodes a copy of the motor com-
mand (so-called efference copy), and this ef-
ference copy could be processed to predict the
consequences of actions before sensory feed-
back is available. Predicting the consequences
of a motor command is called a forward model.
In the current computational view of motor
control [e.g., Shadmehr & Krakauer (2008)],
the cerebellum may be a forward model (Pasalar
et al. 2006) that uses an efferent copy to pre-
dict consequences of motor commands and to
correct the movement as it is being generated
(Figure 1a). For example, if the internal feed-
back is intact, variability in the commands
that initiate the saccade might be compensated
via cerebellar dependent commands that arrive
later during the same saccade.

A strong prediction of this idea is that if
an experiment could impose variability in the

commands that accelerate the eyes, a subject
who is missing this internal feedback process
(e.g., cerebellar patients) would exhibit an in-
ability to compensate for that variability, re-
sulting in dysmetric saccades. A simple way to
induce changes in the motor commands that
accelerate the eyes is to present the visual tar-
gets in a repeating pattern: In healthy subjects,
this repetition results in a decline in saccade
velocities without affecting saccade amplitudes
(Fuchs & Binder 1983, Straube et al. 1997). The
origin of this decline is not well understood.
However, the decline is not due to muscle fa-
tigue but likely of neural origin (Xu-Wilson
et al. 2009a). One possibility is that the repe-
tition of the stimulus acts to devalue the target
of the movement, and a reduced value associ-
ated with the target results in reduced saccade
velocities (Takikawa et al. 2002). Golla et al.
(2008) and Xu-Wilson et al. (2009a) used this
repetition method to introduce changes in the
motor commands that initiated saccades. They
then examined the ability of patients with cere-
bellar damage to respond to these changes. Both
groups of investigators found that repetition
of the stimulus produced strong reductions in
saccade velocities in the healthy and cerebellar
subjects (Figure 1b). That is, if saccade veloci-
ties are viewed as a proxy for the value that the
brain assigns the target (Takikawa et al. 2002,
Xu-Wilson et al. 2009b), then in both healthy
and cerebellar subjects the repetition of the
target resulted in its devaluation. However,
whereas in the healthy subjects saccade am-
plitudes remained accurate, in the cerebellar
patients the saccades fell short of the target as
the velocities declined (Figure 1b). It appeared
that in healthy people, the changes in the mo-
tor commands that initiated the saccade were
generally compensated via motor commands
that arrived later in the same saccade. However,
the compensation was missing in cerebellar
subjects.

In summary, there is variability in the mo-
tor commands that initiate even the simplest
movements like saccades. If left uncompen-
sated, this variability would result in dysmet-
ric movements. The brain appears to monitor
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the motor commands and compensate for the
variability, a process consistent with that of an
internal model that predicts the sensory conse-
quences of motor commands.

CORRECTING MOVEMENT
ERRORS WITH DELAYED
SENSORY FEEDBACK

Unlike saccades, most movements are long
enough in duration that sensory feedback
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plays an essential role in their control. All
goal-directed arm movements fall into this
category. However, the problem is that the
delays inherent in sensory feedback can desta-
bilize movements, confining online error cor-
rection to peripheral mechanisms characterized
by fast spinal reflexes and intrinsic biomechan-
ical properties of the muscles. Such a control
strategy, however, allows for only a very nar-
row class of error feedback behaviors. Despite
these long delays, supraspinal, long-latency re-
sponses to perturbations are often much larger
in amplitude than their short-latency counter-
parts (Strick 1978), and these responses are
present even in relatively quick arm movements
(Saunders & Knill 2003, Saunders & Knill
2004). Together these observations suggest
that cortically modulated, in addition to spinal,
error correction mechanisms play a role in even
short, rapid arm movements. This ability to
perform cortically driven online error feedback
control is remarkable in light of the long sen-
sorimotor delays we experience.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Control of movements without sensory feedback is
difficult because there is variability in motor
commands. The brain appears to maintain accuracy
by using a forward model that predicts the sensory
consequences of motor commands. (a) A highly
stylized view of the process of generating a saccade.
The motor commands depend not just on the
position of the saccade target, but also on the
internal value associated with that movement. For
example, saccades tend to be slower toward stimuli
that have a lower value. (b) Examples of saccades
from a healthy subject and a patient with
degeneration of the cerebellum. With repeated
presentation of a visual target, the saccade target is
devalued, and the motor commands that initiate the
saccade become smaller, generating slower velocities
and accelerations in both the healthy subject and the
cerebellar patient (blue lines). In response to this
variability, the healthy brain produces motor
commands late in the saccade to maintain accuracy,
bringing the eyes to the target. In contrast, the
patient with cerebellar damage cannot correct for
the reductions in the motor commands that initiated
the saccade. As a result, the saccades of the
cerebellar patient fall short of the target. Part b is
reproduced from Xu-Wilson et al. (2009a).
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Why do sensorimotor loop delays present a
problem for real-time feedback control? Con-
sider a simple example. Most of us have experi-
enced the trauma of being scalded in an unfa-
miliar shower. This situation nicely illustrates
how delayed feedback can lead to unstable con-
trol. In an unfamiliar bathroom, an unsuspect-
ing/naı̈ve individual may start his shower at too
low a temperature and then want to increase the
heat. Since the delay between adjusting the tem-
perature control knob and feeling its effects is
notoriously long, initial adjustment of the knob
has no immediate effect on the water tempera-
ture, which may spur the victim-to-be to con-
tinue turning up the heat. By the time the water
temperature starts to respond, the heat adjust-
ment may already be at scalding levels. Then,
when the water becomes too hot, the victim
turns down the temperature control. However,
the temperature continues to rise. The victim
responds by turning down the temperature con-
trol even farther, and when the temperature fi-
nally responds, he is soon freezing. If he were
to continue with the same pattern behavior, the
victim would continue to experience large, un-
stable fluctuations in water temperate resulting
in repeated freeze/burn cycles. Most such vic-
tims soon decide to stop adjusting the temper-
ature control continually—abandoning rapid,
real-time feedback adjustments for a prolonged
“wait and see” approach after each small tem-
perature adjustment. This avoids large temper-
ature fluctuations at the expense of an extended
time for achieving a comfortable water temper-
ature. Note that the whole traumatic scenario
could have been avoided if the victim exercised
a good understanding of how the water tem-
perature would react to each adjustment of the
knob, as would be the case in his own shower.
Such an understanding entails the ability to pre-
dict the sensory consequences of motor actions,
i.e., a forward model.

If the motor system has the means to pre-
dict the sensory state of the motor apparatus,
instabilities arising from delays in measuring
that state can be effectively eliminated (Miall
& Wolpert 1996, Bhushan & Shadmehr
1999). Long-latency online feedback control,

therefore, might rely on a forward model of
dynamics, which would enable the motor sys-
tem to predict state variables such as position
and velocity based on a history of motor com-
mands (Ariff et al. 2002, Mehta & Schaal 2002,
Flanagan et al. 2003). If this predicted state is an
unbiased estimate of the actual state, then feed-
back control driven by these predicted states
could essentially take place in real time and
avoid the instability normally associated with
feedback delays.

Feedback responses driven by internal mod-
els can also be more effective in compensat-
ing for a perturbation than responses driven
solely by sensory feedback alone. For exam-
ple, when the arm is moved because of an un-
expected perturbation, the short-latency spinal
reflexes respond solely to the muscle stretch,
but longer latency reflexes produce a response
that also takes into account the consequences
of the net torques on the joints (Lacquaniti &
Soechting 1984, Soechting & Lacquaniti 1988,
Kurtzer et al. 2008). This is important because
a perturbation that stretches one muscle of-
ten cannot be compensated by activating that
muscle alone. That is, because of intrinsic me-
chanical coupling between the physical dynam-
ics of connected joints such as the elbow and
the shoulder (so-called interaction torques), re-
sponding to a stretch of a shoulder muscle by
activating that muscle would produce a motion
of not only the shoulder, but also of the el-
bow. Therefore, responses that take into ac-
count these interaction torques can counter-
act the consequences of external perturbations
more effectively than responses specific to the
muscles that were stretched by the perturba-
tion (Kurtzer et al. 2008). These studies suggest
that long-latency reflexes take into account the
physical dynamics of the limb in producing a
compensatory response to a perturbation.

One way to test the role of forward models
during ongoing arm movements is to have peo-
ple generate motor commands based on their
estimate of current limb position. For exam-
ple, if the hand is moving and the brain can
predict the current location of the hand and
its velocity, then the motor commands should
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reflect this predicted state. If unexpected per-
turbations to this state are encountered, then
the predicted state will not match the actual
state. However, after the sensorimotor loop de-
lay, accurate predictions should be restored if
the forward model can integrate information
about motor commands with the observed sen-
sory feedback. Wagner & Smith (2008) tested
this idea by exposing subjects to novel velocity-
dependent dynamics to train a relationship be-
tween hand velocity and lateral force. On some
trials, the reaching movement was perturbed.
In these cases, lateral force profiles, which
reflected real-time internal estimates of hand
velocity, were initially disrupted but became ex-
tremely accurate 150 ms after perturbation off-
set, even though the hand velocity during this
period was clearly different from what had been
planned. This observation demonstrates that a
forward model is providing accurate state esti-

mates that are then fed to the previously adapted
controller to provide corrections to the unex-
pected perturbation without a time lag.

If the brain had to rely solely on sensory
feedback, then the motor commands should
reflect a time-delayed estimate of hand position
rather than a real-time prediction. Miall et al.
(2007) used this idea to test the hypothesis that
the cerebellum is involved in predicting the
position of the hand during a movement. They
had people move their hands laterally until they
heard a tone, at which point visual feedback
was removed and they reached in a forward
direction toward a target location (Figure 2a).
At the time of the tone, the brain needs to
generate motor commands that bring the hand
from its current position to the target. These
commands depend on the estimated state of the
hand. If this state estimate is primarily due to a
delayed sensory feedback, then the estimate of

a

Virtual target

Half-silvered

mirror

Target

500 – 1500 ms

Lateral movement

Reaching

movement

b

5 cm

TMS Control

Figure 2
Control of movements with sensory feedback is difficult because feedback is time delayed. The brain appears
to maintain accuracy by using a forward model that predicts the sensory consequences of motor commands.
(a) Volunteers were asked to move their hand laterally until they heard a tone, at which point they would
reach toward a target. The cerebellum was disrupted via a TMS pulse soon after the tone. (b) Reach
trajectories from a movement in which TMS was applied to the cerebellum, and a movement in which no
TMS was applied. Application of TMS produces a movement in which the estimate of the state of the arm
appears to be delayed with respect to its actual state, resulting in missing the target to the right. From Miall
et al. (2007).
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hand position will be closer to the shoulder than
in reality, in which case the motor commands
will miss the target to the right. Alternatively,
if this state estimate is primarily due to an
unbiased prediction, then the estimate of hand
position will be near its actual position, in which
case the motor commands will bring the hand
to the target. When people heard the tone, they
brought their hand very near the target (control
group, Figure 2b). However, if the cerebellum
could be disrupted by a series of transcranial
magnetic stimulation (TMS) pulses right after
the tone, the motor commands that would be
generated would miss the target to the right.
That is, disruption of the cerebellum should
make the state estimate “stale,” reflecting not
the current position of the hand but a position
some time in the past. This is indeed what was
observed; the state estimate was off by 130 ms.
These results are consistent with the idea that
the cerebellum predicts the state of the limb
from the history of motor commands, allowing
one to act on this estimate of state rather than
relying solely on a delayed sensory feedback,
and suggest that cerebellar output might
provide a “motion update” signal that can
be combined with delayed sensory feedback
elsewhere in the brain in order to generate
real-time state estimates for motor control.

THE EFFECT OF PREDICTING
SENSORY CONSEQUENCES
OF MOTOR COMMANDS
ON PERCEPTION

A clear advantage of making sensory predictions
is that the brain does not have to wait for the
sensory measurements before it can act. How-
ever, there is a more fundamental advantage
to making predictions, and this has to do with
perception.

Our ability to estimate the state of our body
and the external world appears to be a combina-
tion of two streams of information: one in which
our brain predicts what should happen, and one
in which our sensory system reports what did
happen. The advantage of this is that if our
predictions are unbiased, then our perception

(and the decisions that are made based on that
perception) will be better than if we had to rely
on sensory measurements alone. In a sense, our
perception will be more accurate (e.g., display
less variance) if we combine what we predicted
with what our sensory system measured.

Although this may seem like a fairly new
idea, it was first proposed around 1011 by Ibn
al-Haytham, an Iraqi scientist (also known as
Alhazen), in his Book of Optics in which he ex-
plained the “Moon illusion”, the perception
that the Moon is bigger when it is near the
horizon than high in the sky, in terms of expec-
tations about distance (although we perceive it
this way, when measured by a simple camera the
size of the Moon is actually a bit smaller near
the horizon, as it is farther away by about the
radius of the Earth). In 1781, Immanuel Kant
in his theory of idealism claimed that our per-
ceptions are not the result of a physiological
process in which, for example, the eyes faith-
fully transmit visual information to the brain,
but rather, our perceptions are a result of a psy-
chological process in which our brain combines
what it already believes with the sensory in-
formation. He wrote, “The understanding can
intuit nothing, the senses can think nothing.
Only through their union can knowledge arise”
(Kant 1781).

If we follow this line of reasoning and return
to our example of predicting the sensory conse-
quences of the motor commands that move the
eyes in a saccade, we might guess that during
the postsaccadic period, the brain should have
a better estimate of eye position than if it simply
relied on proprioceptive information (from eye
muscles) alone. In theory, the combination of
the two streams of information (prediction and
sensory feedback) should allow it to estimate
eye position better. As a consequence, subse-
quent movements that depend on this position
estimate should be more accurate.

For example, consider a task in which sub-
jects are asked to make two saccades in succes-
sion in the dark so that the endpoint of the
first saccade is the starting point of the sec-
ond saccade. The motor commands that gener-
ate the second saccade should take into account
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the consequences of the motor commands for
the first saccade. That is, planning of the sec-
ond saccade can benefit from the efference copy
of the first saccade. Indeed, a neural pathway
for the transmission of this efference copy in-
formation appears to be from the superior col-
liculus, through the mediodorsal nucleus in the
thalamus, to the frontal eye fields (Sommer &
Wurtz 2002, 2006). When two eye movements
are made in rapid succession, the motor com-
mand for the second saccade takes the first into
account, but when this pathway is disrupted,
this ability is markedly reduced (Sommer &
Wurtz 2002).

Usually when we make saccades, visual in-
formation is present at the end of each saccade.
This visual information is simply a remapped
version of the visual field before the saccade. In
effect, the eye is a camera that moves during a
saccade, altering the retinal image. Therefore,
the change in the visual information is a pre-
dictable event, and is part of the sensory con-
sequences of the motor commands that moved
the eye. Accordingly, neurons in posterior pari-
etal cortex have been shown to remap their
receptive fields based on such predictions be-
fore saccades occur (Duhamel et al. 1992). An
interesting prediction is that the brain should
have a better estimate of what it sees after a
saccade than if that same visual information
was only provided passively. Indeed, this was
recently confirmed in an experiment in which
people were asked to reach to targets that they
could see but not predict versus targets that they
could both predict their location [because of
self-generated eye movements, i.e., remapping;
see Vaziri et al. (2006)]. Being able to predict
the sensory consequences of a saccade allowed
subjects to have a more accurate estimate of the
location of the target.

Therefore, by predicting the sensory con-
sequences of motor commands, the brain can
overcome not only delay in sensory feedback,
but perhaps more importantly, it can actually
sense the world better than is possible from
sensory feedback alone. The latter comes about
when our brain combines what it has predicted
with what it has measured—two sources of

information, when used properly, are better
than one.

If our brain could not accurately predict sen-
sory consequences of our motor commands,
then we would not be able to sense the world
around us in a normal way. An example of this
is patient R.W., a 35-year-old man who was de-
scribed by Haarmeier et al. (1997). R.W. suf-
fered a stroke in a region covering parts of the
parietal and occipital cortex, affecting a part
of cortex that receives vestibular input, a loca-
tion in which cells are sensitive to visual mo-
tion. R.W. complained of vertigo only when
his eyes tracked visual objects and not when his
eyes were closed. He explained that when he
was watching his son run across a field (a con-
dition in which his eyes moved smoothly to fol-
low his son), he would see the boy running,
but he would also perceive the rest of the vi-
sual scene (e.g., the trees) smoothly moving in
the opposite direction. Haarmeier et al. (1997)
demonstrated that when R.W. moved his eyes,
his brain was unable to predict the sensory con-
sequences of the oculomotor commands. As his
eyes moved to follow his son, the trees moved
in the opposite direction on his retina. The
healthy brain predicts that moving the eyes will
have the sensory consequence of shifting the
image of the stationary world on the retina. We
do not perceive this shifting image as real mo-
tion of the world because we predict it to be a
consequence of motion of our eyes. In R.W.,
the vertigo was a symptom of the brain’s inabil-
ity to predict such sensory consequences.

You do not need to have a brain lesion to
get a feel for what R.W. sees when he moves
his eyes. Take a camera and aim it at a runner
and try to move (i.e., pan) so that the image of
the runner stays at the center of the picture. As
you are moving the camera, take a picture. That
picture will show a sharply focused runner but
a blurry background that appears to be moving
in the opposite direction. However, when you
are looking at the runner with your naked eyes,
the background appears perfectly still. The rea-
son is that your brain predicts the background
image shift that should take place on the retina
as you move your eyes, and combines it with
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the actual shift. By combining the observed and
predicted images, the parts that agree must have
been stationary, and parts that disagree must
have moved.

COMBINING PREDICTIONS
WITH SENSORY OBSERVATIONS
TO PRODUCE A MOTOR
RESPONSE

To combine two streams of information, one
needs to apply a weighting to each stream. In
principle, the weight should be higher for the
more reliable information source. For exam-
ple, during a reaching movement, one can make
predictions about the state of the arm from the
history of motor commands, but as the move-
ment proceeds, one faces the problem of how to
combine this prediction with the sensory feed-
back. Some four decades ago, Rudolph Kalman
proposed a principled way that this kind of
problem should be solved: Combine the two
sources of information in a way that minimizes
the variance of the resulting estimate (Kalman
1960). If we view the prediction as the prior be-
lief, and the sensory feedback as the current evi-
dence, then Kalman’s algorithm is equivalent to
a Bayesian process of integration in which the
weight associated with each piece of informa-
tion depends on the uncertainty of each quan-
tity. Therefore, the idea that emerges is that the
brain should not only make predictions about
sensory consequences of motor commands, but
should also incorporate a measure of uncer-
tainty about that prediction.

Körding & Wolpert (2004) tested the idea
that as a movement took place, the brain com-
bined its predictions about sensory feedback
with actual sensory feedback using weights that
depended on the uncertainty of each kind of in-
formation. They first trained subjects to reach
to a goal location by providing them feedback
via a cursor on a screen (the hand was never
visible). As the finger moved from the start
position, the cursor disappeared. Halfway to
the target, the cursor reappeared briefly. How-
ever, its position was, on average, 1 cm to the
right of the actual finger position, but on any

given trial the actual displacement was chosen
from a Gaussian distribution. Because the lo-
cation of the cursor was probabilistic, the vari-
ance of the Gaussian distribution described the
confidence with which people could predict
the sensory consequences of their motor com-
mands. To control the confidence that the brain
should have regarding sensory measurements,
they added noise to the display of the cursor:
The cursor was displayed as a cloud of dots.
On some trials, the cursor was shown clearly so
the uncertainty regarding its position was low.
In other trials, the uncertainty was high as the
cursor was hidden in a cloud of noise. The idea
was that on a given trial, when a subject ob-
serves the cursor position midway to the tar-
get, she should issue a feedback correction to
her movement based on two sources of infor-
mation: the observation on that trial, and prior
prediction regarding where the cursor would
have been expected to be. The weighting of
each source of error information should be in-
versely related to the variance of each distri-
bution. Indeed, Körding & Wolpert’s (2004)
experimental data were consistent with this the-
oretical framework. Bayesian integration also
explains feedback responses to force perturba-
tions (Körding et al. 2004), feedback responses
to perturbations to the properties of the tar-
get (Izawa & Shadmehr 2008), and perceptual
estimates of position and velocity in the pres-
ence of noise (Ernst & Banks 2002, Weiss et al.
2002, Stocker & Simoncelli 2006, Sato et al.
2007).

In summary, the data suggest that as the
brain programs motor commands, it also pre-
dicts the sensory consequences. Once the sen-
sory system reports its measurements, the brain
combines what it had predicted with the mea-
surements to form a “belief” that represents its
estimate of the state of the world. This belief is
then used to issue feedback responses to current
actions and to adapt our internal models of the
world that will guide future actions. Thus, our
actions are not simply based on our current sen-
sory observations. Rather, our actions are often
based on a statistically optimal integration of
sensory observations with our predictions.
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MOTOR ADAPTATION:
LEARNING FROM SENSORY
PREDICTION ERRORS

Combining predictions with observations is
useful only if the predictions are generally ac-
curate. If in trial after trial there are persistent
differences between predictions and observa-
tions, that is, the brain’s predictions are con-
sistently biased, then there is something wrong
in these predictions. The problem of forming
unbiased predictions of sensory observations is
a fundamental problem of learning. When you
have formed an accurate representation, i.e., a
forward model of how motor commands affect
the motion of your arm or your eyes, you can
apply motor commands to this internal model
and (on average) accurately predict the motion
that will result. However, during development,
bones grow and muscle mass increases, chang-
ing the relationship between motor commands
and motion of the limb. Disease can affect the
strength of muscles that act on the eyes. In ad-
dition to such gradual variations, the arm’s dy-
namics change over a shorter time scale when
we grasp objects and perform manipulation.
It follows that in order to maintain a desired
level of performance, our brain needs to be “ro-
bust” to these changes. This robustness may be
achieved through an updating, or adaptation,
of an internal model that predicts the sensory
consequences of motor commands.

In the case of arm movements, there are
two well studied versions of the adaptation
paradigm. In one version, called visuomotor
adaptation, the investigator introduces a per-
turbation that distorts the visual consequences
of the motor commands but leaves the proprio-
ceptive consequences unchanged. This is typi-
cally done by wearing prism goggles, or having
people move a cursor on the screen in which the
relationship between cursor position and hand
position is manipulated (Krakauer et al. 1999,
2000). In another more recent version of the
adaptation paradigm, called force-field adapta-
tion, the investigator introduces a physical per-
turbation that alters both the visual and pro-
prioceptive consequences of motor commands.

This is typically done by having the volunteer
hold the handle of an actuated manipulandum
(a robotic arm) that can produce force on the
hand that varies with hand motion (Shadmehr
& Mussa-Ivaldi 1994). This type of adaptation
can also be studied by having people hold a pas-
sive manipulandum for which the weight can be
adjusted (Krakauer et al. 1999), reach in a rotat-
ing room [the rotation imposes Coriolis forces
on the hand (Lackner & Dizio 1994)], or even
in microgravity in which the usual forces are
removed (Lackner & Dizio 1996).

In the case of eye movements, there is also
a well-studied version of the adaptation experi-
ment. In the experiment, a target is shown and
as soon as the eyes begin moving toward it, the
target is extinguished and a new target is dis-
played (McLaughlin 1967). As a result, the sac-
cade completes with an endpoint error, i.e., the
motor command produces the expected pro-
prioceptive feedback from the eye muscles but
an unexpected visual feedback from the retina.
The current data suggest that in both the arm
adaptation and saccade adaptation experiments,
learning depends on the sensory prediction
errors.

The oldest record of a visuomotor adapta-
tion experiment is an 1867 report by Hermann
von Helmholtz. In that work, he asked subjects
to point with their finger at targets while wear-
ing prism lenses that displaced the visual field
laterally. When the displacement was to the
left, subjects initially had errors (an overshoot)
in that direction, but after some practice, they
learned to compensate for the visual displace-
ment. Helmholtz observed that as soon as the
prisms were removed, subjects made erroneous
movements to the right of the target. This is
known as an after-effect of adaptation.

Nearly a century later, Held & Freedman
(1963) repeated Helmholtz’s experiment with
a new twist. They compared the performance
of subjects when they actively moved their
arm while viewing their finger through prism
glasses, versus when they viewed their fin-
gers but their arms were passively moved for
them. In both cases, the subjects viewed fin-
ger motion through a prism that induced a

98 Shadmehr · Smith · Krakauer

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
10

.3
3:

89
-1

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
V

ic
to

ri
a 

on
 0

3/
02

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



NE33CH05-Shadmehr ARI 14 May 2010 16:32

displacement in the visual feedback. Af-
ter this viewing, subjects were tested in a
pointing task. Held and colleagues (Held &
Gottlieb 1958, Held & Freedman 1963) found
that in the test session, subjects only showed
after-effects if they had actively moved their
hands while viewing them. In their words,
“Although the passive-movement condition
provided the eye with the same optical in-
formation that the active-movement condi-
tion did, the crucial connection between mo-
tor output and visual feedback was lacking.”
In our terminology, sensory prediction error
was missing in the passive condition, as the
subjects did not actively generate a movement,
and therefore could not predict the sensory
consequences.

A more recent example of visuomotor
adaptation provides strong evidence for the
crucial role of sensory prediction errors.
Mazzoni & Krakauer (2006) had people move

their wrist so that the position of the index
finger was coupled with the position of a cursor
on a screen. There were always eight targets
on display, spanning 360◦. On a given trial, one
of the targets would light up and the subject
would move the cursor in an out-and-back
trajectory, hitting the target and then returning
to the center. After a baseline familiarization
period (40 trials), the experimenters imposed a
45◦ counter-clockwise rotation on the relation-
ship between the cursor and finger position
(early adaptation, Figure 3a). Let us label this
perturbation with r . Now, a motor command
u that moved the hand in direction θ did not
produce a cursor motion in the same direction,
but in direction θ + r . If we label the predicted
sensory consequences ŷ = θ and the observed
consequences y = θ + r , then there is a sensory
prediction error y − ŷ . The objective is to use
this prediction error to update an estimate for r̂ .
With that estimate, for a target at direction θ∗,

Baseline

Early adaptation Late adaptation

Strategy

Hand Cursor

Cursor Hand

Cursor Hand

(Aim)

a b

E
rr

o
r 

(d
e

g
)

Movement number
40 60 80 100 120

Strategy
15

30

45

–15

–30

0

Adaptation

CCW

CW

CCW

CW

15

30

45

–15

0

Figure 3
An example of learning from sensory prediction errors during visuomotor adaptation. (a) Subjects were asked to make an out-and-back
motion with their hand so a cursor was moved to one of eight targets. In the baseline condition, hand motion and cursor motion were
congruent. In the adaptation condition, a 45◦ rotation was imposed on the motion of the cursor and the hand. In the adaptation group
(top two plots), the subjects gradually learned to move their hand in a way that compensated for the rotation. In the strategy group
(bottom two plots), after two movements subjects were told about the perturbation and asked to simply aim to the neighboring target.
(b) Endpoint errors in the adaptation and strategy groups. The strategy group immediately compensated for the endpoint errors, but
paradoxically, the errors gradually grew. The rate of change of errors in the strategy and adaptation groups was the same. The rapid
initial improvement is due to learning in the explicit memory system, whereas the gradual learning that follows is due to an implicit
system. From Mazzoni & Krakauer (2006).
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we can generate a motor command u = θ∗ − r̂
to bring the cursor to the target. Indeed, after
about 80 trials, in response to target at θ∗ people
would move their hands to θ∗ −40 so the cursor
would land within 5◦ of the target (as shown in
the “adaptation” subplot of Figure 3b).

Now, Mazzoni & Krakauer (2006) took an-
other group of naı̈ve subjects and after they
had experienced a couple of rotation trials, they
simply told them: “Look, you made two move-
ments that had large errors because we im-
posed a rotation that pushed you 45◦ counter-
clockwise. You can counter the error by aiming
for the neighboring clockwise target.” That is,
simply issue the motor command u = θ∗ − 45
and as a consequence, the cursor will move at
direction θ and land at the target. Indeed, the
subjects followed this strategy: On the very next
trial, all the error dropped to zero (strategy
group, Figure 3b). However, something very
interesting happened: As the trials continued,
the errors gradually grew! What’s more, the
rate of change in the errors in this “strategy”
group was exactly the same as the rate of change
in the regular adaptation paradigm.

To explain this, Mazzoni & Krakauer (2006)
hypothesized that on trial 43, when the sub-
jects in the strategy group were producing the
motor commands that brought the cursor to
the target, there was still a discrepancy be-
tween the predicted and observed sensory con-
sequences of motor commands y − ŷ . This is
because whereas they had been told explicitly of
the perturbation, implicitly their estimate was
still around zero, r̂ ≈ 0. The “learning curve”
(over which the performance errors grew in
the strategy group) tells us how quickly the
implicit estimates became accurate. This oc-
curred gradually over the course of about 50
trials, which closely matches the time course of
normal adaptation (compare panels a and b in
Figure 3), suggesting that the ability to predict
the consequences of our actions and the ability
to control our actions improve at the same rate.
This finding is inconsistent with the hypothe-
sis that accurate prediction (i.e., learning of a
forward model) precedes the ability to control
one’s actions (Flanagan et al. 2003), and sug-

gests instead that accurate prediction may be
the limiting factor for accurate control.

However, there is another way to view the
process of motor adaptation. As we perform a
movement that experiences an error, we some-
times have the opportunity to correct it (for
example, via reflexive pathways during that
movement, or via corrective movements that
occur later). These motor corrections may act
as a teaching signal for the brain (Miles &
Lisberger 1981, Kawato 1996). For example,
when arm movements are perturbed with un-
expected forces, reflex pathways respond to par-
tially compensate for the sensory prediction er-
rors (Thoroughman & Shadmehr 1999). When
a visual target is moved during a saccade, there
is a second saccade that brings the eyes to the
new target position. One way to think of motor
learning is to imagine that the motor commands
that corrected the movement might be added
with a slight time advance to the motor com-
mands that initiate the next movement. The er-
ror feedback learning theory of the cerebellum
relies on this motor correction (Kawato 1996).

To address this question, experiments have
attempted to dissociate the effect of error-
driven motor corrections from error signals
themselves. In saccade adaptation experiments
this has been done by presenting endpoint er-
rors (sensory prediction errors) under condi-
tions that reduce motor corrections (Wallman
& Fuchs 1998, Noto & Robinson 2001). In
reach adaptation paradigms this has been done
by making a rapid movement so that there is
a reduced possibility of correcting that move-
ment (Tseng et al. 2007). All three experiments
demonstrate that adaptation of the motor com-
mands is driven directly by error signals rather
than error corrections.

THE MULTIPLE TIMESCALES
OF ADAPTATION

Recent work has shown that the interactions
between adaptive processes that learn and for-
get on different time scales underlie several
key features of motor adaptation (Smith et al.
2006). The idea that the process of memory
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formation proceeds on multiple time scales is,
of course, not new as multiple time scales have
long been observed in learning curves and for-
getting curves (Rubin & Wenzel 1996, Scheidt
et al. 2000, Wixted 2004). However, the ability
to understand the natural interactions between
different adaptive processes opens a window
onto understanding several seemingly complex
learning phenomena.

One such phenomenon is spontaneous re-
covery. Spontaneous recovery of memory refers
to the natural reemergence of a learned re-
sponse after that response has been extin-
guished through extinction training. This phe-
nomenon has been observed in a wide range of
paradigms (Rescorla 2004, Kojima et al. 2004,
Stollhoff et al. 2005). Our recent work proposed
a mechanism that explains spontaneous recov-
ery as an interaction between the decay of two
adaptive processes (Figure 4). If two processes
participate in learning from error, one with a
faster time course than the other, then both

processes need not be extinguished for the over-
all learning to disappear. Instead, learning can
be extinguished if these processes come to can-
cel each other’s effects during the extinction
training. If this is the case, then the extinc-
tion training would leave two opposing memory
traces that compete with each other and decay
at different rates. Since the extinction training
is generally quite rapid, the faster process would
be expected to oppose the initial learning, and
its decay would reveal the incomplete extinc-
tion of the slower process—corresponding to
a spontaneous recovery of the overall learning.
Decay of this slower process would eventually
extinguish the spontaneous recovery.

In recent studies, the pattern of spontaneous
recovery was shown to correspond to the in-
trinsic decay rates of two adaptive processes in
exactly this way for motor adaptation in both
arm (Smith et al. 2006) and eye movements
(Ethier et al. 2008). In the first study, the adap-
tation to a velocity-dependent force-field was
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Figure 4
Spontaneous recovery in motor adaptation is explained by a two-process multi-rate model. After a baseline
period (no shading), participants were trained to adapt to a velocity-dependent force-field (beige shading),
de-adapted by exposure to the opposite force-field (brown shading), and tested for recovery under conditions
in which lateral errors were held to zero. Adaptation levels during the recovery period were measured on
error-clamp trials during which lateral errors were clamped at zero to prevent error-driven learning and so
that the feed-forward patterns of lateral forces could be directly measured without contamination from
error-driven feedback corrections or inertial interactions. These error-clamp trials were also occasionally
interspersed into the baseline and training periods to measure the initial learning curve. The multirate model
reproduces the double exponential pattern in the learning curve, and not only the amount, but the shape of
the spontaneous recovery profile. According to the model, this shape emerges because of the superposition
of a rapid up-going decay of the fast learning process and a prolonged down-going decay of the slow learning
process. From Smith et al. (2006).
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extinguished by exposure to the opposite force-
field. When motor errors were subsequently
clamped to zero, the adaptive response to the
original force-field spontaneously reemerged
with a fast exponential time course and then
died away with a slower exponential time
course as would be predicted by this model.
In the second study, the same pattern of spon-
taneous recovery was replicated for saccade
adaptation.

The basic idea that extinction results when
the fast component of learning cancels the ef-
fects of slower components provides a possi-
ble explanation for two other key features of
learning: savings and anterograde interference.
If the original response is retrained after extinc-
tion, this relearning is noticeably faster than the
initial learning despite the same initial perfor-
mance level and the same training procedure—a
phenomenon known as savings or facilitation.
However, if a response opposite to the initial
response is trained after extinction, this oppo-
site learning is slower than the initial learning—
a phenomenon known as anterograde interfer-
ence or forward interference. Because the fast
process responds more quickly to training than
the slow process, subsequent training compat-
ible with the initial learning will benefit from
the bias of the slow learning process toward the
initial learning. In contrast, subsequent train-
ing that opposes the initial learning will suffer
from this bias.

However, neither savings nor anterograde
interference can be fully explained by simple in-
teractions between adaptive processes. A recent
study showed that savings persists even when
extinction is carried out gradually under condi-
tions in which the individual adaptive processes
should be extinguished (Zarahn et al. 2008).
The mechanism underlying this component of
savings is not clear, but it may result from a gen-
eral improvement in the rate of learning or from
a memory of the initial adaptation that is not ex-
pressed until it is recalled. In an earlier study,
catastrophic anterograde interference occurred
after delays of several days, suggesting the op-
eration of contextual effects rather than per-
sistence of adaptive processes (Krakauer et al.

2005). Another study found that when training
was followed by “reverse-training” until extinc-
tion, the spontaneous recovery was so strong as
to suggest that during reverse-training, there
was effectively no unlearning, but rather only
an instantiation of a new and competing fast
adaptive memory (Criscimagna-Hemminger &
Shadmehr 2008).

Whereas interactions between the fast and
slow processes account for initial learning,
spontaneous recovery, and some forms of inter-
ference, it appears that only one of these pro-
cesses provides a gateway to long-term memory
formation. Twenty-four-hour retention levels
assessed after various amounts of initial training
(i.e., at different points of the learning curve) do
not directly reflect the adaptation level achieved
during the initial training period, but instead re-
flect the predicted level of the slow component
of adaptation as shown in Figure 5 ( Joiner &
Smith 2008). This suggests that maximizing the
long-term benefit of a training session does not
necessarily come from maximizing the overall
level of learning, but rather from maximizing
the amount of learning achieved by a single
constituent, the slow process. Thus, a simple
interaction between a fast and a slow adaptive
process appears to explain not only the shapes of
initial learning curves, but also the phenomena
of spontaneous recovery, anterograde interfer-
ence, and patterns of 24-h retention in motor
adaptation.

Eye movements also display multiple time
scales of adaptation. For example, eye veloc-
ity in optokinetic nystagmus (involuntary eye
movements in response to continuous move-
ment of the visual field) is characterized by two
components: a rapid rise followed by a slower
increase to steady state (Cohen et al. 1977). The
rapid rise in eye velocity has been shown to
be specifically affected by particular neural le-
sions (Zee et al. 1987), suggesting that these
time scales may have distinct neuroanatomical
bases. This idea is supported by data indicating
that during saccade adaptation in patients with
cerebellar cortical damage, there is a profound
loss in the fast time scales of adaptation but less
impairment in the slower adaptive processes
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Figure 5
Long-term retention in motor adaptation is explained by the level of a slow component of motor adaptation. Four groups of
participants were tested for 24-h retention after different amounts of training with a velocity-dependent force-field. The learning
curves during the training period itself are plotted with lines, and the 24-h retention levels are plotted as squares (mean ± SEM). The
pattern of 24-h retention has essentially the same shape as the slow learning process (r = 0.99), suggesting that this process serves as a
gateway to long-term retention. From Joiner & Smith (2008).

(Xu-Wilson et al. 2009a). In reaching move-
ments, transcranial magnetic stimulation of
the lateral posterior parietal cortex (Della-
Maggiore et al. 2004) or the motor cortex
(Richardson et al. 2006, Hadipour-Niktarash
et al. 2007) appears to specifically affect the
slower adaptive processes. Interestingly, stim-
ulation of posterior parietal cortex appears to
have a stronger effect than stimulation of motor
cortex. Imaging studies also suggest that there
may be distinct neural networks associated with
the fast and slow adaptive processes (Krakauer
et al. 2004, Tunik et al. 2007).

LIMITATIONS

The framework that we focused on in this re-
view is one in which the brain learns to ac-
curately predict the sensory consequences of
motor commands. Three important and per-
tinent problems in motor learning have not
been discussed here: how to discern common
structure in the dynamics of the tasks in which
one is engaged (e.g., uncovering structure), how
to produce motor commands that maximize
some measure of performance (e.g., maximizing

reward while minimizing effort, as in optimal
control), and how the brain decides when to
form new memories and when to modify exist-
ing ones.

The first problem is one of discovering the
structure of the system that one is controlling.
For example, inertial objects share a common
structure in which acceleration and velocity are
linearly separable quantities in the function that
relates motion to forces. An intelligent system
that interacts with a large number of inertial
objects would benefit from discovering this
structure, as it would allow it to learn control by
simply adjusting a small number of parameters,
rather than searching in the high-dimensional
space of all possible motor commands (Hwang
et al. 2006, Braun et al. 2009). It is possible
that in the short time scale of training in a
laboratory, subjects use internal models with
structures that are similar to that of their body
and merely tweak the parameters of these
models to adapt to the imposed perturbations
(Körding et al. 2007). Another way to say this
is that the mechanisms involved in correcting
movements in response to self-generated
perturbations (natural variability in the motor
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commands that move our body parts) are the
same as those co-opted when people adapt to
externally imposed perturbations. However,
long-term learning likely involves building a
structural model specific to the task at hand, a
process that would allow specialization and ex-
pertise that goes beyond parameter estimation
with a generic model (Reis et al. 2009).

The second problem is that even if one has
a perfect model that predicts the sensory con-
sequences of motor commands, one still has to
find the motor commands that maximize per-
formance. This is the general problem of opti-
mal control, i.e., given a relationship between
motor commands and sensory consequences,
find a feedback control law that achieves the
greatest amount of reward (or some other per-
formance measure) at the least amount of ef-
fort (Todorov & Jordan 2002). Evidence for
this process comes from experiments that find
that during adaptation to a perturbation, motor
commands do not return performance to a base-
line trajectory, but rather a trajectory that maxi-
mizes performance while minimizing a measure
of effort (Uno et al. 1989, Emken et al. 2007,
Izawa et al. 2008).

The third problem is that if adaptive changes
to the mechanisms for predicting the conse-
quences of our actions and for controlling our
actions occur continuously as described here,
it is difficult to imagine that each movement
leads to a new memory that can be recalled. On
the other hand, we know that multiple discrete
memories can be formed and consolidated.
Understanding the nature of the contexts that

lead to the formation and recall of motor
memories is clearly important (Gandolfo et al.
1996, Krakauer et al. 2006, Krakauer 2009,
Cothros et al. 2009). State, as a physicist would
define it—position and velocity of motion—has
been shown to be an important context for the
formation and recall of motor memories, but
multiple memories can be associated with the
same motion states. What other contexts are
important, and how do some contexts come to
be more important than others?

SUMMARY AND CONCLUSIONS

The motor system needs to be able to adjust
for the both the presence of noise and delay in
sensory feedback, and for changes in the body
and the world that alter the relationship be-
tween motor commands and their sensory con-
sequences. The common solution to these two
problems is a forward model. Forward mod-
els, possibly located in the cerebellum, receive
a copy of the outgoing motor command and
generate a prediction of the expected sensory
consequence at very short latency. This out-
put in sensory coordinates can be used to make
fast trajectory corrections with the pre-existing
controller before true sensory feedback is avail-
able, and can be integrated with true sensory
feedback to optimize state estimates and en-
hance perception. Forward models are useful
only if they are accurate and evidence suggests
that accuracy is maintained through adaptive
processes driven by sensory prediction errors.
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