OVERVIEW

Today

Sensory and Motor Neurons

Thursday

Parkinsons Disease

Administration

Exam One Bonus Points Slides Online

"Hello, Emily. This is Gladys Murphy up the street. Fine, thanks . . . Say, could you go to your window and describe what's in my front yard?"

Premotor area neuron discharge

Top view of cerebral cortex

Descending pathways involved in motor control

7 major descending motor control pathways from Cerebral Cortex or Brainstem Nuclei:

From Frontal Cortex:

- i. Lateral Corticospinal tract
- ii. Ventral Corticospinal tract
- iii. Corticobulbar tract (→ cranial nerve motor nuclei).

From Brainstem Nuclei:

- i. Rubrospinal tract
- ii. Reticulospinal tract
- iii. Vestibulospinal tract
- iv. Tectospinal tract

Interneuron Connections: (sometimes an intermediary before motor neurons)

1. Segmental interneurons – short branches within single spinal cord segment

2. Propiospinal neurons – projects for multiple spinal segments before synapsing onto motor neuron - long projections coordinating movements of upper and lower limbs

Somatotopic Organization

LATERAL DESCENDING PATHWAYS

Lateral Corticospinal Tract:

Starts at the 1° motor cortex decussation zone and lateral motor nuclei of cervical and lumbrosacral Cord.

Primary control of distal muscles

LATERAL DESCENDING PATHWAYS

Rubrospinal Tract

Red nucleus (magnocellular) → midbrain decussation → lateral intermediate zone and ventral horn.

Provides additional control

MEDIAL DESCENDING PATHWAYS

Medial (Ventral) Corticospinal Tract

Axial and girdle muscles.

Ipsilateral ventral column → bilateral projections to medial grey matter.

Controls especially for head, shoulder, and upper trunk muscles.

Reticulospinal Tract

Many terminate in cervical cord.

But, 2° projections to propiospinal neurons may influence lower axial muscles also.

Pontine → ventral column.

Medullary reticular formation → lateral column

Autonomic movements: posture and repetitive movements.

Tectospinal Tract

From superior coliculus → coordinates head and eye movements.

Vestibulospinal Tracts:

Lateral vestibular nucleus → lateral vestibulospinal tract (to all spinal limbs)

Maintains balance.

Medial nucleus → medial tracts for control of head position (cervical only).

Organization of Tracts

Note the descending and ascending tracts and their relative positions.

- Two Types of Muscle Fiber
 - Extrafusal fibers:
 Innervated by alpha motor neurons
 - Intrafusal fibers:
 Innervated by gamma motor neurons

Beta Motor Neurons Innervate intrafusal muscle fibers of muscle spindles, with collaterals to extrafusal fibres.

Why is the motor neuron system set up this way?

Sensory Pathways

Sensory Receptors

Transduce stimuli into electrical signals

Three major divisions:

1. Interoceptor

Information from within the body

2. Exteroceptor

Information from the environment

3. Proprioceptor

Information about the relative orientation of body segments

Receptors have a wide range of complexity...

How do we get information from mechanoreceptors?

Stimulus transduced to change in membrane potential Receptor responds to specific energy form; but can respond to others...

Need adequate stimulus to reach AP threshold

Specialized cells code strength

Stimulus characteristics are coded

Stimulus attributes are preserved by 4 properties:

1. Modality –

Type of neuron

2. Location –

Which neurons fire? Somatosensory cortex very organized (topographical map)

3. Intensity –

Number of activated receptors; frequency of APs
larger stimulus = 个'd receptor potential, 个'd AP firing frequency

4. Duration –

Coded by duration of AP trains in sensory neuron Longer a stimulus persists, the longer the train of APs

Coding for intensity and duration of stimulus...

Somatic Senses

- 1. <u>Touch</u> Cutaneous
- 2. <u>Proprioception</u>
 Muscle & joint receptors
- 3. Nociception (pain, etc)
- 4. Temperature
- 1 & 2 play important roles in motor control

Cutaneous Receptors

Two major classes of cutaneous receptors:

Tonic & Phasic

Sensory receptors associated with muscles & joints...

Muscle:

Muscle spindles

Golgi tendon organs

Joint:

Joint capsule mechanoreceptors

Types of Sensory Neurons

Type 1a Primary Rate of change of muscle

Type 1b N/A in GTO

Type II Secondary Fire when muscle static

Table I Somatosensory Receptors and their Peripheral Axons

Receptor Type	Axon ³ Group	CAP Peak	Conduction Velocity	Axon Diameter	Information Processed
Muscle Spindle: Annulospiral endings	1a	Αα	70-120 m/sec	1-20 μΜ	Muscle length and velocity
Muscle Spindle: Flower Spray endings	II	Αβ	30-70 m/sec	6-12 μM	Muscle length
Golgi Tendon Organ	Ib	Αα	70-120 m/sec	12-20 μΜ	Muscle tension
Joint: Pacinian	II	Аβ	30-70 m/sec	6-12 μM	Joint movement
Joint: Ruffini	II	Аβ	30-70 m/sec	6-12 μM	Joint angle
Joint: Golgi Tendon Organ	II	Аβ	30-70 m/sec	6-12 μM	Joint torque
Meissner corpuscle	II	Аβ	30-70 m/sec	6-12 μM	Touch, flitter or movement
Pacinian corpuscle	II	Аβ	30-70 m/sec	6-12 μM	Vibration
Ruffini corpuscle	II	Аβ	30-70 m/sec	6-12 μΜ	Skin stretch
Hair follicle	II & III	Αβ & Αδ	10-70 m/sec	2-12 μΜ	Touch movement
Merkel complex	II	Аβ	30-70 m/sec	6-12 μM	Fine touch
Free Nerve endings	III	Αδ	5-30 m/sec	1-6 μΜ	Sharp pain or cool/cold
Free nerve endings	IV	С	0.5-2 m/sec	<1.5 μM	Dull or aching pain, or touch or warm

Sensory Receptors in Muscle

Muscle Spindles

Stretch-sensitive mechanoreceptors

Provide info about muscle length & velocity of contraction to CNS

Golgi Tendon Organ (GTO)

Golgi Tendon Organ (GTO)

Receptors at junction of tendons & muscle fibers

Innervated by Group Ib afferents

stretching a muscle: pinching of sensory fibers -- neuron firing

contracted muscle: pulls tendon during contraction -- sensory neuron fires

GTOs are our major "force sensors" in skeletal muscle

How does the sensory system "know" about sensory feedback?

Segregation of information...

 Organization based on the anatomical location of an input & the proximity of relay nuclei

Topographic organization...

Motor & sensory maps

Figure 17.1 Typical features of pathways within the central nervous system involve the presence of synaptic relays, integration of information from different pathways, and topographic organization.

Different groups of afferents have different projections in spinal cord

- Size determines termination point within spinal cord
- Some inputs make monosynaptic connections with MNs (remember muscle spindle pathways)

Figure 17.2 Afferent fibers enter the spinal cord through the dorsal columns. Small, unmyelinated fibers $(A\delta, C)$ typically terminate in Rexed laminae I and II. Larger sensory fibers terminate in laminae III-IV, while muscle afferents (Ia, II) terminate anywhere from lamina V to lamina IX.

Sensory Processing

Brain is broken into different areas

Brodmann's areas

speech, touch, vision, motor areas, etc...

Specialized processing within different cerebral areas; e.g...

Rapidly adapting skin mechanoreceptors

- Area 1

Slowly adapting skin mechanoreceptors

- Area 3b

Thalamus receives & relays information

Functional areas of the cerebral cortex...

Bear et al. (1996) EPHE 380 - Motor Control

Dorsal Column Pathway

- Major somatosensory ascending pathway
 - Group I muscle afferents
 - Tactile mechanoreceptors
- Terminate in the cuneatous & gracilis nuclei in medulla

 Eventually arrives in somatosensory cortex

Ascending dorsal column-medial lemniscal pathway to primary sensory cortex Somatic sensory cortex (postcentral gyrus) Toe Leg Trunk Forearm and hand area Cerebral cortex Lateral sulcus Internal capsule Thalamus · Ventral posterior lateral nucleus Third ventricle Midbrain Medial lemniscus Pons Medial lemniscus Medulla Gracile nucleus Cuneate nucleus -Spinal trigeminal Medulla nucleus Sensory decussation -Gracile fascicle Dorsal root -Cuneate fascicle ganglion Spinal cord

Somatosensory Cortex

- Subdivided into distinct regions, based on anatomical connections & function
 - e.g. inputs from similar regions & receptors are grouped together
 - Columnar organization

Somatosensory Cortex

- Organized into columns based on anatomy
 - e.g. first, second digit
- Organized into subcolumns based on modality
 - e.g. SA & RA receptors
- Organized into layers based on connections in brain
 - e.g. thalamic inputs/outputs

Mapping the cortex...

- There are both sensory AND motor maps...
 - HOMUNCULUS (see also Kandel et al. Fig 38-1)
- Distortions in size representation why?

Sensory receptors: What's important?

Bottom line?

- Feedback from joint receptors, muscle spindles, GTOs, & cutaneous afferents all play roles in kinesthesia & proprioception
- Interaction between movement goal & feedback