
62

3
The R environment

FIGURE 3.1
All I want for
Christmas is …
some tasteful
wallpaper

3.1. What will this chapter tell me? 1

At about 5 years old I moved from nursery (note that I moved, I was not ‘kicked out’ for
showing my …) to primary school. Even though my older brother was already there, I
remember being really scared about going. None of my nursery school friends were going
to the same school and I was terrified about meeting lots of new children. I arrived in my
classroom, and as I’d feared, it was full of scary children. In a fairly transparent ploy to

03-Field_R-4368-Ch-03.indd 62 11/02/2012 10:35:59 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

63CHAPTER 3 THE R ENV IRONMENT

make me think that I’d be spending the next 6 years building sand castles, the teacher told
me to play in the sand pit. While I was nervously trying to discover whether I could build a
pile of sand high enough to bury my head in, a boy came and joined me. He was Jonathan
Land, and he was really nice. Within an hour he was my new best friend (5-year-olds are
fickle …) and I loved school. Sometimes new environments seem scarier than they really
are. This chapter introduces you to a scary new environment: R. The R environment is a
generally more unpleasant environment in which to spend time than your normal environ-
ment; nevertheless, we have to spend time there if we are to analyse our data. The purpose
of this chapter is, therefore, to put you in a sand pit with a 5-year-old called Jonathan. I will
orient you in your new home and reassure you that everything will be fine. We will explore
how R works and the key windows in R (the console, editor and graphics/quartz windows).
We will also look at how to create variables, data sets, and import and manipulate data.

3.2. Before you start 1

R is a free software environment for statistical computing and graphics. It is what’s known
as ‘open source’, which means that unlike commercial software companies that protec-
tively hide away the code on which their software is based, the people who developed R
allow everyone to access their code. This open source philosophy allows anyone, anywhere
to contribute to the software. Consequently, the capabilities of R dynamically expand as
people from all over the world add to it. R very much embodies all that is good about the
World Wide Web.

3.2.1. The R-chitecture 1

In essence, R exists as a base package with a reasonable amount of functionality. Once you
have downloaded R and installed it on your own computer, you can start doing some data
analysis and graphs. However, the beauty of R is that it can be expanded by download-
ing packages that add specific functionality to the program. Anyone with a big enough
brain and a bit of time and dedication can write a package for other people to use. These
packages, as well as the software itself, are stored in a central location known as the CRAN
(Comprehensive R Archive Network). Once a package is stored in the CRAN, anyone with
an Internet connection can download it from the CRAN and install it to use within their
own copy of R. R is basically a big global family of fluffy altruistic people contributing to
the goal of producing a versatile data analysis tool that is free for everyone to use. It’s a
statistical embodiment of The Beatles’ utopian vision of peace, love and humanity: a sort
of ‘give ps a chance’.

The CRAN is central to using R: it is the place from where you download the software
and any packages that you want to install. It would be a shame, therefore, if the CRAN
were one day to explode or be eaten by cyber-lizards. The statistical world might col-
lapse. Even assuming the cyber-lizards don’t rise up and overthrow the Internet, it is still
a busy place. Therefore, rather than have a single CRAN location that everyone accesses,
the CRAN is ‘mirrored’ at different places across the globe. ‘Mirrored’ simply means that
there are identical versions of the CRAN scattered across the world. As a resident of the
UK, I might access a CRAN location in the UK, whereas if you are in a different country
you would likely access the copy of the CRAN in your own country (or one nearby). Bigger
countries, such as the US, have multiple CRANs to serve them: the basic philosophy is to
choose a CRAN that is geographically close to you.

03-Field_R-4368-Ch-03.indd 63 11/02/2012 10:35:59 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

64 D ISCOVER ING STAT IST ICS US ING R

Figure 3.2 shows schematically what we have just learnt. At the centre of the diagram is
the CRAN: a repository of the base R software and hundreds of packages. People with big
brains from all over the world write new packages and upload them into the CRAN for
others to use. The CRAN itself is mirrored at different places across the globe (which just
means there are multiple copies of it). As a user of R you download the software, and install
any packages that you want to use via your nearest CRAN.

The idea of needing to install ‘packages’ into a piece of software to get it to do something
for you might seem odd. However, whether you realize it or not many programs work in
this way (just less obviously so). For example, the statistical package SPSS has a base ver-
sion, but also has many modules (for example, the bootstrapping module, advanced sta-
tistics, exact tests and so on). If you have not paid for these modules then certain options
will be unavailable to you. Many students do not realize that SPSS has this modular format
because they use it at a university and the university has paid for all of the modules that
they need. Similarly, in Microsoft Excel you need to load the data analysis add-in before
you can use certain facilities. R is not unusual in having a modular system, and in being
modular it has enormous flexibility: as new statistical techniques are developed, contribu-
tors can react quickly to produce a package for R; a commercial organization would likely
take much longer to include this new technique.

3.2.2. Pros and cons of R 1

The main advantages of using R are that it is free, and it is a versatile and dynamic envi-
ronment. Its open source format and the ability of statisticians to contribute packages to
the CRAN mean that there are many things that you can do that cannot be done in com-
mercially available packages. In addition, it is a rapidly expanding tool and can respond
quickly to new developments in data analysis. These advantages make R an extremely
powerful tool.

The downside to R is mainly ease of use. The ethos of R is to work with a command line
rather than a graphical user interface (GUI). In layman’s terms this means typing instructions

FIGURE 3.2
Users download
R and install
packages
(uploaded by
statisticians
around the
world) to their
own computer
via their nearest
CRAN

03-Field_R-4368-Ch-03.indd 64 11/02/2012 10:36:01 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

65CHAPTER 3 THE R ENV IRONMENT

rather than pointing, clicking, and dragging things with a mouse. This might seem weird at
first and a rather ‘retro’ way of working but I believe that once you have mastered a few fairly
simple things, R’s written commands are a much more efficient way to work.

3.2.3. Downloading and installing R 1

To install R onto your computer you need to visit the project website (http://www.R-
project.org/). Figure 3.3 shows the process of obtaining the installation files. On the main
project page, on the left-hand side, click on the link labelled ‘CRAN’. Remember from
the previous section that there are various copies (mirrors) of the CRAN across the globe;
therefore, the link to the CRAN will navigate you to a page of links to the various ‘mir-
ror’ sites. Scroll down this list to find a mirror near to you (for example, in the diagram

FIGURE 3.3
Downloading R

03-Field_R-4368-Ch-03.indd 65 11/02/2012 10:36:02 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

66 D ISCOVER ING STAT IST ICS US ING R

I have highlighted the mirror closest to me, http://www.stats.bris.ac.uk/R/) and click the
link. Once you have been redirected to the CRAN mirror that you selected, you will see
a web page that asks you which platform you use (Linux, MacOS or Windows). Click the
link that applies to you. We’re assuming that most readers use either Windows or MacOS.

If you click on the ‘Windows’ link, then you’ll be taken to another page with some more
links; click on ‘base’, which will redirect you to the webpage with the link to the setup file,
once there click on the link that says ‘Download R 2.12.2 for Windows’,1 which will initi-
ate the download of the R setup file. Once this file has been downloaded, double-click on
it and you will enter a (hopefully) familiar install procedure.

If you click on the ‘MacOS’ link you will be taken directly to a page from where
you can download the install package by clicking on the link labelled ‘R-2.12.2.pkg’
(please read the footnote about version numbers). Clicking this link will download
the install file; once downloaded, double-click on it and you will enter the normal
MacOS install procedure.

3.2.4. Versions of R 1

At the time of writing, the current version of R is 2.12.2; however, the software
updates fairly regularly so we are confident that by the time anyone is actually read-

ing this, there will be a newer release (possibly several). Notice that
the format of the version number is major.minor.patch, which means
that we are currently on major version 2, minor version 12 and patch
2. Changes in the patch number happen fairly frequently and usually
reflect fixes of minor bugs (so, for example, version 2.12.3 will come
along pretty quickly but won’t really be a substantial change to the
software, just some housekeeping). Minor versions come less regu-
larly (about every 6 months) and still reflect a collection of bug fixes
and minor housekeeping that keeps the software running optimally.
Major releases are quite rare (the switch from version 1 to version 2
happened in 2006). As such, apart from minor fixes, don’t worry if
you are using a more recent version of R than the one we’re using:
it won’t make any difference, or shouldn’t do. The best advice is to
update every so often but other than that don’t worry too much about
which version you’re using; there are more important things in life to
worry about.

3.3. Getting started 1

Once you have installed R you can activate it in the usual way. In windows go to the
start menu (the big windows icon in the bottom left of the screen) select ‘All Programs’,
then scroll down to the folder labelled ‘R’, click on it, and then click on the R icon
(Figure 3.4). In MacOS, go to your ‘Applications’ folder, scroll down to the R icon and
click on it (Figure 3.4).

1 At the time of writing the current version of R is 2.12.2, but by the time you read this book there will have been
an update (or possibly several), so don’t be surprised if the ‘2.12.2’ in the link has changed to a different number.
This difference is not cause for panic, the link will simply reflect the version number of R.

Which version of
R do I needed to
use this book?

Which version of
R do I needed to
use this book?

03-Field_R-4368-Ch-03.indd 66 11/02/2012 10:36:03 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

67CHAPTER 3 THE R ENV IRONMENT

3.3.1. The main windows in R 1

There are three windows that you will use in R. The main window is called the console
(Figure 3.4) and it is where you can both type commands and see the results of executing
these commands (in other words, see the output of your analysis). Rather than writing
commands directly into the console you can also write them in a separate window (known
as the editor window). Working with this window has the advantage that you can save col-
lections of commands as a file that you can reuse at another point in time (perhaps to rerun
the analysis, or to run a similar analysis on a different set of data). I generally tend to work
in this way rather than typing commands into the console because it makes sense to me
to save my work in case I need to replicate it, and as you do more analyses you begin to
have a repository of R commands that you can quickly adapt when running a new analysis.
Ultimately you have to do what works for you. Finally, if you produce any graphics or
graphs they will appear in the graphics window (this window is labelled quartz in MacOS).

FIGURE 3.4
Getting R started

3.3.2. Menus in R 1

Once R is up and running you’ll notice a menu bar similar to the ones you might have seen
in other programs. Figure 3.4 shows the console window and the menu bar associated with
this window. There are some subtle differences between Windows and MacOS versions of
R and we will look at each version in the following two sections. At this stage, simply note
that there are several menus at the top of the screen (e.g.,) that can be activated

03-Field_R-4368-Ch-03.indd 67 11/02/2012 10:36:04 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

andyfield
Text Box
Section skipped

71CHAPTER 3 THE R ENV IRONMENT

Table 3.3 Overview of the menus in R for MacOS

Menu
File: This menu allows you to do general things such as saving scripts or graphs. Likewise, you
can open previously saved files and print graphs, data or output. In essence, it contains all of the
options that are customarily found in File menus.

Edit: This menu contains edit functions such as cut and paste. From here you can also clear the
console (i.e., remove all of the text from it), execute commands, find a particular bit of text and so
on.

Format: This menu lets you change the text styles used (colour, font, etc.).

Workspace: This menu enables you to save the workspace (i.e., analysis output – see section
3.4), load an old workspace or browse your recent workspace files.

Packages & Data: This menu is very important because it is where you load, install and update
packages.

Misc: This menu enables you to set or change the working directory. The working directory is the
default location where R will search for and save files (see section 3.4.4).

Window: If you have multiple windows, this menu allows you to change how the windows in R
are arranged.

Help: This is an invaluable menu because it offers you a searchable repository of help and
frequently asked questions.

3.4. Using R 1

3.4.1. Commands, objects and functions 1

I have already said that R uses ‘commands’ that are typed into the console window. As
such, unlike other data analysis packages with which you might be familiar (e.g., SPSS,
SAS), there are no friendly dialog boxes that you can activate to run analyses. Instead,
everything you want to do has to be typed into the console (or executed from a script file).
This might sound like about as much fun as having one of the living dead slowly chewing
on your brain, but there are advantages to working in this way: although there is a steep
initial learning curve, after time it becomes very quick to run analyses.

Commands in R are generally made up of two parts: objects and functions. These are
separated by ‘<-’, which you can think of as meaning ‘is created from’. As such, the general
form of a command is:

Object<-function

Which means ‘object is created from function’. An object is anything created in R. It could
be a variable, a collection of variables, a statistical model, etc. Objects can be single values
(such as the mean of a set of scores) or collections of information; for example, when you
run an analysis, you create an object that contains the output of that analysis, which means
that this object contains many different values and variables. Functions are the things that
you do in R to create your objects. In the console, to execute a command you simply type
it into the console and press the return key. (You can put more than one command on a
single line if you prefer – see R’s Souls’ Tip 3.2)

03-Field_R-4368-Ch-03.indd 71 11/02/2012 10:36:05 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

andyfield
Text Box
Section Skipped

72 D ISCOVER ING STAT IST ICS US ING R

Table 3.4 Overview of the icons in R for MacOS

Icon Description Console Editor
Clicking this button stops the R processor from whatever it is
doing. !

Clicking this button opens a dialog box that enables you to
select a previously saved script or data file. !

Clicking this button opens a new graphics (quartz) window.
!

Clicking this button opens the X11 window; X11 is a device
that some R packages use. !

Clicking this button opens a dialog box into which you can
enter your system password. This will enable R to run system
commands. Frankly, I have never touched this button and I
suspect it is to be used only by people who actually know
what they’re doing.

!

Clicking this button activates a sidebar on the console
window that lists all of your recently executed commands. !

Clicking this button opens the Preferences dialog box, from
which you can change the console colours (amongst other
things).

!

Clicking this button opens a dialog box from which you can
select and open a previously saved script file. This file will
open in the editor window.

!

Clicking this button opens a new editor window in which you
can create a new script file. !

This icon activates a dialog box for printing whatever you
are currently working on (what is printed depends on which
window is active).

! !

Clicking this button saves the script file that you’re working
on. If you have not already saved the file, clicking this button
activates a Save As … dialog box.

!

Clicking this button quits R.
!

Figure 3.5 shows a very simple example in which we have created an object called ‘metal-
lica’, which is made up of the four band members’ (pre 2001) names. The function used
is the concatenate function or c(), which groups things together. As such, we have written
each band member’s name (in speech marks and separated by commas), and by enclosing
them in c() we bind them into a single entity or object, which we have called ‘metallica’. If
we type this command into the console then when we hit the return key on the keyboard
the object that we have called ‘metallica’ is created. This object is stored in memory so
we can refer back to it in future commands. Throughout this book, we denote commands
entered into the command line in this way:

03-Field_R-4368-Ch-03.indd 72 11/02/2012 10:36:05 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

73CHAPTER 3 THE R ENV IRONMENT

FIGURE 3.5
Using the
command line
in R

 R ’s Souls ’ T ip 3 .2 Running multiple commands at once 1

The command line format of R tends to make you think that you have to run commands one at a time. Even if you
use the R editor it is tempting to put different commands on a new line. There’s nothing wrong with doing this,
and it can make it easier to decipher your commands if you go back to a long script months after you wrote it.
However, it can be useful to run several commands in a single line. Separating them with a semicolon does this.
For example, the two commands:

metallica<-metallica[metallica != "Jason"]

metallica<-c(metallica, "Rob")

can be run in a single line by using a semicolon to separate them:

metallica<-metallica[metallica != "Jason"]; metallica<-c(metallica, "Rob")

03-Field_R-4368-Ch-03.indd 73 11/02/2012 10:36:06 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

74 D ISCOVER ING STAT IST ICS US ING R

metallica<-c("Lars","James","Jason","Kirk")

which follows the style of the MacOS version of the R editor (the Windows version of the
R editor uses plain text so don’t be concerned about the fact that you won’t see coloured
text in Windows).

Now we have created an object called ‘metallica’ we can do things with it. First, we can
have a look at its contents by typing ‘metallica’ (or ‘print(metallica)’ works too) into the
command line and hitting the return key:

metallica

The contents of the object ‘metallica’ will be displayed in the console window. Throughout
the book we display output as follows:

[1] "Lars" "James" "Jason" "Kirk"

Note that R has printed into the console the contents of the object ‘metallica’, and the
contents are simply the four band members’ names. You need to be very careful when you
type commands and create objects in R, because it is case sensitive (see R’s Souls’ Tip 3.3).

 R ’s Souls ’ T ip 3 .3 R is case sensitive 1

R is case sensitive, which means that if the same things are written in upper or lower case, R thinks that they
are completely different things. For example, we created a variable called metallica; if we asked to see the con-
tents of Metallica (note the capital M), R would tell us that this object didn’t exist. If we wanted to completely
confuse ourselves we could actually create a variable called Metallica (with a capital M) and put different data
into it than in the variable metallica (with a small m), and R would have no problem with us doing so. As far
as R is concerned, metallica and Metallica are as different to each other as variables called earwax and
doseOfBellendium.

This case sensitivity can create problems if you don’t pay attention. Functions are generally lower case so you
just need to avoid accidentally using capitals, but every so often you find a function that has a capital letter (such
as as.Date() used in this chapter) and you need to make sure you have typed it correctly. For example, if you want
to use the function data.frame() but type data.Frame() or Data.Frame() you will get an error. If you get an error,
check that you have typed any functions or variable names exactly as they should be.

We can do other things with our newly created object too. The Metallica fans amongst
you will probably be furious at me for listing the pre 2001 line up of the band. In 2001
bassist Jason Newstead left the band and was replaced by Rob Trujillo. Even as I type, there
are hoards of Metallica fans with precognition about the contents of this book queuing
outside my house and they have dubbed me unforgiven. Personally I’m a big fan of Rob
Trujillo, he’s given the band a solid kick up the backside, and so let’s put him in his rightful
place in the band. We currently have a ‘metallica’ object that contains Jason. First we can
change our object to eject Jason (harsh, I know). To get rid of Jason in R we can use this
command:

metallica<-metallica[metallica != "Jason"]

This just means that we’re re-creating the object ‘metallica’, the ‘<-‘ means that ‘we’re
creating it from’ and our function is metallica[metallica != “Jason”] which means ‘use the
object metallica, but get rid of (!=) Jason’. A simple line of text and Jason is gone, which

03-Field_R-4368-Ch-03.indd 74 11/02/2012 10:36:06 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

75CHAPTER 3 THE R ENV IRONMENT

was probably a lot less hassle than his actual ousting from the band. If only Lars and James
had come to me for advice. If we have a look at our ‘metallica’ object now we’ll see that
it contains only three names. We can do this by simply typing ‘metallica’ and hitting the
return key. Below shows the command and the output:

metallica

[1] "Lars" "James" "Kirk"

Now let’s add Rob Trujillo to the band. To do this we can again create an object called
‘metallica’ (which will overwrite our previous object), and we can use the concatenate com-
mand to take the old ‘metallica’ object and add “Rob” to it. The command looks like this:

metallica<-c(metallica, "Rob")

If we execute this command (by pressing return) and again look at the contents of ‘metal-
lica’ we will see that Rob has been added to the band:

metallica

[1] "Lars" "James" "Kirk" "Rob"

SELF-TEST

9 Create an object that represents your favourite band
(unless it’s Metallica, in which case use your second
favourite band) and that contains the names of each
band member. If you don’t have a favourite band,
then create an object called friends that contains the
names of your five best friends.

3.4.2. Using scripts 1

Although you can execute commands from the console, I think it is better to write com-
mands in the R editor and execute them from there. A document of commands written in
the R editor is known as a script. There are several advantages to this way of working. First,
at the end of your session you can save the script file, which can be reloaded in the future
if you need to re-create your analysis. Rerunning analyses, therefore, becomes a matter of
loading a file and hitting a few buttons – it will take less than 10 seconds. Often in life you
need to run analyses that are quite similar to ones that you have run before; if you have a
repository of scripts then it becomes fairly quick to create new ones by editing an existing
one or cutting and pasting commands from existing scripts and then editing the variable
names. Personally I find that using old scripts to create new ones speeds things up a lot, but
this could be because I’m pretty hopeless at remembering how to do things in R. Finally,
I often mess things up and run commands that throw error messages back in my face; if
these commands are written directly into the console then you have to rewrite the whole
command (or cut and paste the wrong command and edit it), whereas if you ran the com-
mand from the editor window then you can edit the command directly without having to
cut and paste it (or rewrite it), and execute it. Again, it’s a small saving in time, but these
savings add up until eventually the savings outweigh the actual time you’re spending doing
the task and then time starts to run backwards. I was 56 when I started writing this book,
but thanks to using the editor window in R I am now 37.

03-Field_R-4368-Ch-03.indd 75 11/02/2012 10:36:06 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

76 D ISCOVER ING STAT IST ICS US ING R

Figure 3.6 shows how to execute commands from the editor window. Assuming you
have written some commands, all you need to do is to place the cursor in the line contain-
ing the command that you want to execute, or if you want to execute many commands in
one go then highlight a block of commands by dragging over them while holding down the
left mouse button. Once your commands are highlighted, you can execute them in one of
several ways.

In Windows, you have a plethora of choices: you can (1) click on ; (2) click the right
mouse button while in the editor window to activate a menu, then click with the left mouse
button on the top option which is to run the command (see Figure 3.6); (3) go through
the main menus by selecting Edit⇒Run line or selection; or (4) press and hold down the
Ctrl key, and while holding it down press and release the letter R on the keyboard (this
is by far the quickest option). In the book we notate pressing a key while another is held
down as ‘hold + press’, for example Ctrl + R means press the R key while holding down
the Ctrl key.

In MacOS you can run the highlighted commands, or the current line, through the
menus by selecting Edit⇒Execute, but as with Windows the keyboard shortcut is much
quicker: press and hold down the cmd key (a), and while holding it down press and release
the return key (↵). In case you skipped the previous paragraph, we will notate pressing a
key while another is held down as ‘hold + press’, for example a + ↵ means press the ↵
key while holding down the a.

You’ll notice that the commands appear in the console window as they are executed,
along with any consequences of those commands (for example, if one of your commands
asks to view an object the contents will be printed in the console just the same as if you had
typed the command directly into the console).

3.4.3. The R workspace 1

As you work on a given data set or analysis, you will create many objects, all of which are
stored in memory. The collection of objects and things you have created in a session is
known as your workspace. When you quit R it will ask you if you want to save your current
workspace. If you choose to save the workspace then you are saving the contents of the

FIGURE 3.6
Executing
commands from
the R editor
window

03-Field_R-4368-Ch-03.indd 76 11/02/2012 10:36:07 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

77CHAPTER 3 THE R ENV IRONMENT

console window and any objects that have been created. The file is known as an R image
and is saved in a file with .RData at the end. You can save the workspace at any time using
the File⇒Save Workspace … menu in Windows or in MacOS make sure you are in the
console window and select File⇒Save As ….

3.4.4. Setting a working directory 2

By default, when you try to do anything (e.g., open a file) from R it will go to the directory
in which the program is stored on your computer. This is fine if you happen to store all of
your data and output in that folder, but it is highly unlikely that you do. If you don’t then
every time you want to load or save a file you will find yourself wasting time using the
menus to navigate around your computer to try to find files, and you will probably lose
track of things you save because they have been dumped in R’s home folder. You will also
end up having to specify the exact file path for every file you save/access. For example,
assuming that you’re using Windows, your user name is ‘Andy F’ (because you’ve stolen my
identity), you have a folder in your main documents folder called ‘Data’ and within that
you have another folder called ‘R Book Examples’, then if you want to access this folder
(to save or load a file) you’d have to use this file path:

C:/Users/Andy F/Documents/Data/R Book Examples

So, to load a file called data.dat from this location you would need to execute the follow-
ing command:

myData = read.delim("C:/Users/Andy F/Documents/Data/R Book Examples/data.
dat")

Don’t worry about what this command means (we’ll get to that in due course), I just
want you to notice that it is going to get pretty tedious to keep typing ‘C:/Users/Andy F/
Documents/Data/R Book Examples’ every time you want to load or save something.

If you use R as much as I do then all this time typing locations has two consequences: (1)
all those seconds have added up and I have probably spent weeks typing file paths when I
could have been doing something useful like playing my drum kit; (2) I have increased my
chances of getting RSI in my wrists, and if I’m going to get RSI in my wrists I can think
of more enjoyable ways to achieve it than typing file paths (drumming again, obviously).

The best piece of advice I can give you is to establish a working directory at the beginning
of your R session. This is a directory in which you want to store your data files, any scripts
associated with the analysis or your workspace. Basically, anything to do with a session.
To begin with, create this folder (in the usual way in Windows or MacOS) and place the
data files you’ll be using in that folder. Then, when you start your session in R change the
working directory to be the folder that you have just created. Let’s assume again that you’re
me (Andy F), that you have a folder in ‘My Documents’ called ‘Data’ and within that you
have created a folder called ‘R Book Examples’ in which you have placed some data files
that you want to analyse. To set the working directory to be this folder, we use the setwd()
command to specify this newly created folder as the working directory:

setwd("C:/Users/Andy F/Documents/Data/R Book Examples")

By executing this command, we can now access files in that folder directly without having
to reference the full file path. For example, if we wanted to load our data.dat file again, we
can now execute this command:

myData = read.delim("data.dat")

03-Field_R-4368-Ch-03.indd 77 11/02/2012 10:36:07 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

78 D ISCOVER ING STAT IST ICS US ING R

Compare this command with the one we wrote earlier; it is much shorter because we can
now specify only the file name safe in the knowledge that R will automatically try to find
the file in ‘C:/Users/Andy F/Documents/Data/R Book Examples’. If you want to check what
the working directory is then execute this command:

getwd()

Executing this command will display the current working directory in the console
window.2

In MacOS you can do much the same thing except that you won’t have a C drive.
Assuming you are likely to work in your main user directory, the easiest thing to do is to
use the ‘ ~ ’ symbol, which is a shorthand for your user directory. So, if we use the same
file path as we did for Windows, we can specify this as:

setwd("~/Documents/Data/R Book Examples")

The ~ specifies the MacOS equivalent of ‘C:/Users/Andy F’. Alternatively, you can navigate
to the directory that you want to use using the Misc⇒Change Working Directory menu
path (or a + D).

Throughout the book I am going to assume that for each chapter you have stored the
data files somewhere that makes sense to you and that you have set this folder to be your
working directory. If you do not do this then you’ll find that commands that load and save
files will not work.

3.4.5. Installing packages 1

Earlier on I mentioned that R comes with some base functions ready for you to use.
However, to get the most out of it we need to install packages that enable us to do particu-
lar things. For example, in the next chapter we look at graphs, and to create the graphs
in that chapter we use a package called ggplot2. This package does not come pre-installed
in R so to work through the next chapter we would have to install ggplot2 so that R can
access its functions.

You can install packages in two ways: through the menus or using a command. If you
know the package that you want to install then the simplest way is to execute this command:

install.packages("package.name")

in which ‘package.name’ is replaced by the name of the package that you’d like installed.
For example, we have (hopefully) written a package containing some functions that are
used in the book. This package is called DSUR, therefore, to install it we would execute:

install.packages("DSUR")

Note that the name of the package must be enclosed in speech marks.
Once a package is installed you need to reference it for R to know that you’re using it.

You need to install the package only once3 but you need to reference it each time you start a
new session of R. To reference a package, we simply execute this general command:

library(package.name)

2 In Windows, the filepaths can also be specified using ‘\\’ to indicate directories, so that “C:/Users/Andy F/Docu-
ments/Data/R Book Examples” is exactly the same as “C: \\Users\\Andy F\\Documents\\Data\\R Book Examples”.
R tends to return filepaths in the ‘\\’ form, but will accept it if you specify them using ‘/’. Try not to be confused
by these two different formats. MacOS users don’t have these tribulations.

3 This isn’t strictly true: if you upgrade to a new version of R you will have to reinstall all of your packages again.

03-Field_R-4368-Ch-03.indd 78 11/02/2012 10:36:07 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

79CHAPTER 3 THE R ENV IRONMENT

in which ‘package.name’ is replaced by the name of the package that you’d like to use.
Again, if we want to use the DSUR package we would execute:

library(DSUR)

Note that in this command the name of the package is not enclosed in speech marks.
Alternatively you can manage packages through the menu system. Figure 3.7 overviews

the menus for managing packages. In Windows if you select Packages⇒Install package(s)…
a window will open that first asks you to select a CRAN. Having selected the CRAN near-
est to you from the list and clicked on , a new dialog box will open that lists all
of the available packages. Click on the one or ones that you want (you can select several
by holding down the Ctrl key as you click) and then click on . This will have the
same effect as using the install.packages() command. You can load packages by selecting
Packages⇒Load package…, which opens a dialog box with all of the available packages
that you could load. Select the one(s) you want to load and then click on . This has
the same effect as the library() command.

In MacOS if you select Packages & Data⇒Package Installer a window will open. Click on
 and a lists all Of the available packages appears. Click on the one or ones that

you want (you can select several by holding down the a key as you click) and then click on

FIGURE 3.7
Installing and
loading packages
through the
menus in R

03-Field_R-4368-Ch-03.indd 79 11/02/2012 10:36:08 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

80 D ISCOVER ING STAT IST ICS US ING R

 R ’s Souls ’ T ip 3 .4 Disambiguating functions 1

Occasionally you might stumble across two functions in two different packages that have the same name. For
example, there is a recode() function in both the Hmisc and car packages. If you have both packages loaded and
you try to use recode(), R won’t know which one to use or will have a guess (perhaps incorrectly). This situation
is easy to rectify: you can specify the package when you use the function as follows:

package::function()

For example, if we want to use the recode() function in the car package we would write:

car::recode()

but to use the one in Hmisc we would write:

Hmisc::recode()

Here is an example where we recode a variable using recode() from the car package:

variableName <-car::recode(variableName, "2=0;0=2")

. This will have the same effect as using the install.packages() command. You
can load packages by selecting Packages & Data⇒Package Manager, which opens a dialog box
with all of the available packages that you could load. Click on the tick boxes next to the one(s)
you want to load. This has the same effect as the library() command.

One entertaining (by which I mean annoying) consequence of any Tom, Dick or Harriet
being able to contribute packages to R is that you sometimes encounter useful functions
that have the same name as different functions in different packages. For example, there is
a recode() function that exists in both the Hmisc and car packages. Therefore, if you have
both of these packages loaded you will need to tell R which particular recode function you
want to use (see R’s Souls’ Tip 3.4).

3.4.6. Getting help 1

There is an enormous amount of information on the Internet about using R, and I gener-
ally find that if I get stuck I can find help with a quick Google (or whatever search engine
you use) search. However, there is help built into R as well. If you are using a particular
function and you want to know more about it then you can get help by executing the help()
command:

help(function)

or by executing:

?function

In both cases function is the name of the function about which you need help. For example,
we used the concatenate function earlier on, c(), if we wanted help with this function we
could execute either:

help(c)

or

?c

03-Field_R-4368-Ch-03.indd 80 11/02/2012 10:36:08 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

81CHAPTER 3 THE R ENV IRONMENT

These commands open a new window with the help documentation for that function. Be
aware that the help files are active only if you have loaded the package to which the func-
tion belongs. Therefore, if you try to use help but the help files are not found, check that
you have loaded the relevant package with the library() command.

3.5. Getting data into R 1

3.5.1. Creating variables 1

You can enter data directly into R. As we saw earlier on, you can use the c() function to cre-
ate objects that contain data. The example we used was a collection of names, but you can
do much the same with numbers. Earlier we created an object containing the names of the
four members of metallica. Let’s do this again, but this time call the object metallicaNames.
We can create this object by executing the following command:

metallicaNames<-c("Lars","James","Kirk","Rob")

We now have an object called metallicaNames containing the band members’ names. When
we create objects it is important to name them in a meaningful way and you should put
some thought into the names that you choose (see R’s Souls’ Tip 3.7).

Let’s say we wanted another object containing the ages of each band member. At the time
of writing, their ages are 47, 47, 48 and 46, respectively. We can create a new object called
metallicaAges in the same way as before, by executing:

metallicaAges<-c(47, 47, 48, 46)

Notice that when we specified names we placed the names in quotes, but when we
entered their ages we did not. The quotes tell R that the data are not numeric. Variables
that consist of data that are text are known as string variables. Variables that contain
data that are numbers are known as numeric variables. R and its associated packages
tend to be able to treat data fairly intelligently. In other words, we don’t need to tell
R that a variable is numeric or not, it sort of works it out for itself – most of the time
at least. However, string values should always be placed in quotes, and numeric val-
ues are never placed in quotes (unless you want them to be treated as text rather than
numbers).

3.5.2. Creating dataframes 1

We currently have two separate objects: metallicaNames and metallicaAges. Wouldn’t it be
nice to combine them into a single object? We can do this by creating a dataframe. You can
think of a dataframe as a spreadsheet (so, like the contents of the data editor in SPSS, or a
worksheet in Excel). It is an object containing variables. There are other ways to combine
variables in R but dataframes are the way we will most commonly use because of their ver-
satility (R’s Souls’ Tip 3.5). If we want to combine metallicaNames and metallicaAges into
a dataframe we can use the data.frame() function:

metallica<-data.frame(Name = metallicaNames, Age = metallicaAges)

In this command we create a new object (called metallica) and we create it from the func-
tion data.frame(). The text within the data.frame() command tells R how to build the
dataframe. First it tells R to create an object called ‘Name’, which is equal to the existing

03-Field_R-4368-Ch-03.indd 81 11/02/2012 10:36:08 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

82 D ISCOVER ING STAT IST ICS US ING R

object metallicaNames. Then it tells R to create an object called ‘Age’, which is equal to the
existing object metallicaAges. We can look at the contents of the dataframe by executing:

metallica

You will see the following displayed in the console:

Name Age

1 Lars 47
2 James 47
3 Kirk 48
4 Rob 46

As such, our dataframe consists of two variables (Name and Age), the first is the band
member’s name, and the second is their age. Now that the dataframe has been created we
can refer to these variables at any point using the general form:

dataframe$variableName

For example, if we wanted to use the ages of metallica, we could refer to this variable as:

metallica$Age

similarly, if we want the Name variable we could use:

metallica$Name

Let’s add a new variable that contains the age of each member’s eldest child; we will call
this variable childAge. According to an Internet search, James’s (Cali) and Lars’s (Myles)
eldest children were both born in 1998, Kirk’s (Angel) was born in 2006 and Rob’s (Tye-
Orion) in 2004. At the time of writing, this makes them 12, 12, 4 and 6, respectively. We
can add this variable using the c() function as follows:

metallica$childAge<-c(12, 12, 4, 6)

This command is fairly straightforward: metallica$childAge simply creates the variable
childAge in the pre-existing dataframe metallica. As always the ‘<-’ means ‘create from’,
then the c() function allows us to collect together the numbers representing each member’s
eldest child’s age (in the appropriate order).

We can look at the contents of the dataframe by executing:

metallica

You will see the following displayed in the console:

 Name Age childAge

1 Lars 47 12
2 James 47 12
3 Kirk 48 4
4 Rob 46 6

Notice that the new variable has been added.
Sometimes, especially with large dataframes, it can be useful to list the variables in the

dataframe. This can be done using the names() function. You simply specify the name
of the dataframe within the brackets; so, if we want to list the variables in the metallica
dataframe, we would execute:

names(metallica)

The output will be a list of the variable names in the dataframe:

[1] "Name" "Age" "childAge"

In this case, R lists the names of the three variables in the dataframe.

03-Field_R-4368-Ch-03.indd 82 11/02/2012 10:36:08 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

andyfield
Highlight
this ism output not a command, so needs to be in courier, black.

83CHAPTER 3 THE R ENV IRONMENT

3.5.3. Calculating new variables from exisiting ones 1

Although we’re not going to get into it too much here (but see Chapter 5), we can also
use arithmetic and logical operators to create new variables from existing ones. Table 3.5
overviews some of the basic operators that are used in R. As you can see, there are many
operations with which you will be familiar (but see R’s Souls’ Tip 3.6) that you can use on
variables: you can add them (using +), subtract them (using −), divide them (using /), and
multiply them (using *). We will encounter these and the others in the table as we progress
through the book. For now, though, we will look at a simple example to give you a sense
that dataframes are versatile frameworks for storing and manipulating data.

 R ’s Souls ’ T ip 3 .5 The list() and cbind() functions 1

Dataframes are not the only way to combine variables in R: throughout the book you will find us using the list()
and cbind() functions to combine variables. The list() function creates a list of separate objects; you can imagine
it as though it is your handbag (or manbag) but nicely organized. Your handbag contains lots of different objects:
lipstick, phone, iPod, pen, etc. Those objects can be different, but that doesn’t stop them being collected into the
same bag. The list() function creates a sort of bag into which you can place objects that you have created in R.
However, it’s a well-organized bag and so objects that you place in it are given a number to indicate whether they
are the first, second etc. object in the bag. For example, if we executed these commands:

metallica<-list(metallicaNames, metallicaAges)

instead of the data.frame() function from the chapter, we would create a R-like handbag called metallica that looks
like this:

[[1]]
[1] “Lars” “James” “Kirk” “Rob”
[[2]]
[1] 47 47 48 46

Object [1] in the bag is the list of names, and object [2] in the bag is the list of ages.
The function cbind() is used simply for pasting columns of data together (you can also use rbind() to combine

rows of data together). For example, if we execute:

metallica<-cbind(metallicaNames, metallicaAges)

instead of the data.frame() function from the chapter, we would create a matrix called metallica that looks like this:

 metallicaNames metallicaAges

[1,] “Lars” “47”
[2,] “James” “47”
[3,] “Kirk” “48”
[4,] “Rob” “46”

Notice that the end result is that the two variables have been pasted together as different columns in the same
object. However, notice that the numbers are in quotes; this is because the variable containing names is text, so it
causes the ages to be text as well. For this reason, cbind() is most useful for combining variables of the same type.

In general, dataframes are a versatile way to store variables: unlike cbind(), data.frame() stores variables of
different types together (trivia note: cbind() works by using the data.frame() function so they’re basically the same).
Therefore, we tend to work with dataframes; however, we will use list() sometimes because some functions like to
work with lists of variables, and we will sometimes use cbind() as a quick method for combining numeric variables.

03-Field_R-4368-Ch-03.indd 83 11/02/2012 10:36:09 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

84 D ISCOVER ING STAT IST ICS US ING R

If we wanted to find out how old (roughly) each band member was when he had their
First child, then we can subtract his eldest child’s age from his current age. We can store
this information in a new variable (fatherhoodAge). We would create this new variable as
follows:

metallica$fatherhoodAge<- metallica$Age − metallica$childAge

This command is again straightforward: metallica$fatherhoodAge simply creates the vari-
able called fatherhoodAge in the existing dataframe (metallica). The ‘<-’ means ‘create
from’, then follows the instructions about how to create it; we ask that the new variable
is the child’s age (which is the variable childAge in the metallica data set, referred to as
metallica$childAge) subtracted from (−) the member’s age (metallica$Age). Again, if we
look at the dataframe by executing

Table 3.5 Some of main operators that can be used in R

Operator What it does
+ Adds things together

− Subtracts things

* Multiplies things

/ Divides things

^ or ** Exponentiation (i.e., to the power of, so, x^2 or x**2 is x2, x^3 is x3 and so on)

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Exactly equals to (this might confuse you because you’ll be used to using ‘=’ as
the symbol for ‘equals’, but in R you usually use ‘==’)

!= Not equal to

!x Not x

x | y x OR y (e.g., name == “Lars”|“James” means ‘the variable name is equal to either
Lars or James’)

x & y x AND y (e.g., age == 47 & name == ”James” means ‘the variable age is equal
to 47 and the variable name is equal to James’)

isTRUE(x) Test if x is TRUE

 R ’s Souls ’ T ip 3 .6 Equals signs 1

A common cause of errors in R is that you will have spent your whole life using the symbol ‘=’ when you want
to say ‘equals’. For example, you’ll all be familiar with the idea that age = 37 is interpreted as ‘age equals 37’.
However, in a transparent attempt to wilfully confuse us, R uses the symbol ‘==’ instead. At first, you might
find that if you get error messages it is because you have used ‘=’ when you should have used ‘==’. It’s worth
checking your command to see whether you have inadvertently let everything you have ever learnt about equals
signs get the better of you.

03-Field_R-4368-Ch-03.indd 84 11/02/2012 10:36:09 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

andyfield
Highlight
lower case f

85CHAPTER 3 THE R ENV IRONMENT

metallica

we see that a new variable has been created containing the age of each band member when
they had their first child. We can see from this that James and Lars were both 35 years old,
Kirk was 44 and Rob was 40.

 Name Age childAge fatherhoodAge

1 Lars 47 12 35
2 James 47 12 35
3 Kirk 48 4 44
4 Rob 46 6 40

 R ’s Souls ’ T ip 3 .7 Naming variables 1

There are conventions about naming variables and objects in R. Unfortunately these conventions sometimes
contradict each other. For example, the Google style guide for R recommends that ‘Variable names should have
all lower case letters and words separated with dots (.)’. So, for example, if you had a variable representing chil-
dren’s anxiety levels you might name it child.anxiety but should not name it child_anxiety and definitely not
Child_Anxiety. However, Hadley (see the second URL at the end of this tip) recommends ‘Variable names …
should be lowercase. Use _ to separate words within a name. … Strive for concise but meaningful names’. In
which case, child_anxiety would be fine.

I tend to use an old programming convention of capitalizing all but the first word. So, I would name the variable
childAnxiety, which waves its buttocks at the aforementioned conventions. I also sometimes use underscores
… that’s just the kind of rebellious guy I am.

The one thing that we can all agree on is that variable names should be meaningful and concise. This skill
can take some time and effort to perfect, and I can imagine that you might think that it is a waste of your time.
However, as you go through your course accumulating script files, you will be grateful that you did. Imagine you
had a variable called ‘number of times I wanted to shoot myself during Andy Field’s statistics lecture’; then you
might have called the variable ‘shoot’. All of your analysis and output will simply refer to ‘shoot’. That’s all well and
good, but what happens in three weeks’ time when you look at your analysis again? The chances are that you’ll
probably think ‘What did shoot stand for? Number of shots at goal? Number of shots I drank?’ Imagine the chaos
you could get into if you had used an acronym for the variable ‘workers attending news kiosk’. Get into a good
habit and spend a bit of time naming objects in R in a meaningful way. The aforementioned style guides might
also help you to become more consistent than I am in your approach to naming:

 http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
 https://github.com/hadley/devtools/wiki/Style

3.5.4. Organizing your data 1

When inputting a new set of data, you must do so in a logical way. The most logical way
(and consistent with other packages like SPSS and SAS) that we usually use is known as the
wide format. In the wide format each row represents data from one entity while each col-
umn represents a variable. There is no discrimination between independent and dependent
variables: both types should be placed in a separate column. The key point is that each
row represents one entity’s data (be that entity a human, mouse, tulip, business, or water
sample). Therefore, any information about that case should be entered across the data

03-Field_R-4368-Ch-03.indd 85 11/02/2012 10:36:09 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

86 D ISCOVER ING STAT IST ICS US ING R

editor. For example, imagine you were interested in sex differences in perceptions of pain
created by hot and cold stimuli. You could place some people’s hands in a bucket of very
cold water for a minute and ask them to rate how painful they thought the experience was
on a scale of 1 to 10. You could then ask them to hold a hot potato and again measure their
perception of pain. Imagine I was a participant. You would have a single row representing
my data, so there would be a different column for my name, my gender, my pain percep-
tion for cold water and my pain perception for a hot potato: Andy, male, 7, 10.

The column with the information about my gender is a grouping variable (also known as
a factor): I can belong to either the group of males or the group of females, but not both.
As such, this variable is a between-group variable (different entities belong to different
groups). Rather than representing groups with words, R uses numbers and words. This
involves assigning each group a number, and a label that descibes the group. Therefore,
between-group variables are represented by a single column in which the group to which
the person belonged is defined using a number and label (see section 3.5.4.3). For example,
we might decide that if a person is male then we give them the number 0, and if they’re
female we give them the number 1. We then have to tell R that every time it sees a 1 in a
particular column the person is a female, and every time it sees a 0 the person is a male.
Variables that specify to which of several groups a person belongs can be used to split up
data files (so in the pain example you could run an analysis on the male and female partici-
pants separately – see section 5.5.3).

Finally, the two measures of pain are a repeated measure (all participants were subjected
to hot and cold stimuli). Therefore, levels of this variable (see R’s Souls’ Tip 3.8) can be
entered in separate columns (one for pain perception for a hot stimulus and one for pain
perception for a cold stimulus).

 R ’s Souls ’ T ip 3 .8 Entering data 1

There is a simple rule for how variables are typically arranged in an R dataframe: data from different things go in
different rows of the dataframe, whereas data from the same things go in different columns of the dataframe. As
such, each person (or mollusc, goat, organization, or whatever you have measured) is represented in a different
row. Data within each person (or mollusc, etc.) go in different columns. So, if you’ve prodded your mollusc, or
human, several times with a pencil and measured how much it twitches as an outcome, then each prod will be
represented by a column.

In experimental research this means that any variable measured with the same participants (a repeated mea-
sure) should be represented by several columns (each column representing one level of the repeated-measures
variable). However, any variable that defines different groups of things (such as when a between-group design
is used and different participants are assigned to different levels of the independent variable) is defined using
a single column. This idea will become clearer as you learn about how to carry out specific procedures. (This
golden rule is not as golden as it seems at first glance – often data need to be arranged in a different format − but
it’s a good place to start and it’s reasonable easy to rearrange a dataframe – see section 3.9.)

Imagine we were interested in looking at the differences between lecturers and students.
We took a random sample of five psychology lecturers from the University of Sussex and
five psychology students and then measured how many friends they had, their weekly

03-Field_R-4368-Ch-03.indd 86 11/02/2012 10:36:09 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

87CHAPTER 3 THE R ENV IRONMENT

alcohol consumption (in units), their yearly income and how neurotic they were (higher
score is more neurotic). These data are in Table 3.6.

3.5.4.1. Creating a string variable 1

The first variable in our data set is the name of the lecturer/student. This variable consists
of names; therefore, it is a string variable. We have seen how to create string variables
already: we use the c() function and list all values in quotations so that R knows that it is
string data. As such, we can create a variable called name as follows:

name<-c("Ben", "Martin", "Andy", "Paul", "Graham", "Carina", "Karina",
"Doug", "Mark", "Zoe")

We do not need to specify the level at which this variable was measured (see section
1.5.1.2) because R will automatically treat it as nominal because it is a string variable, and
therefore represents only names of cases and provides no information about the order of
cases, or the magnitude of one case compared to another.

3.5.4.2. Creating a date variable 1

Notice that the second column in our table contains dates (birth dates, to be exact). To
enter date variables into R we use much the same procedure as with a string variable, except
that we need to use a particular format, and we need to tell R that the data are dates if we
want to do any date-related computations. We can convert dates written as text into date
objects using the as.Date() function. This function takes strings of text, and converts them
into dates; this is important if you want to do things like subtract dates from one another.
For example, if you want to work out how old someone was when you tested him or her,
you could take the date on which they were tested and subtract from it the date they were
born. If you have not converted these objects from strings to date objects this subtraction
won’t work (see R’s Souls’ Tip 3.9).

Table 3.6 Some data with which to play

Name Birth Date Job
No. of

Friends
Alcohol
(units) Income (p.a.) Neuroticism

Ben 03-Jul-1977 Lecturer 5 10 20,000 10

Martin 24-May-1969 Lecturer 2 15 40,000 17

Andy 21-Jun-1973 Lecturer 0 20 35,000 14

Paul 16-Jul-1970 Lecturer 4 5 22,000 13

Graham 10-Oct-1949 Lecturer 1 30 50,000 21

Carina 05-Nov-1983 Student 10 25 5,000 7

Karina 08-Oct-1987 Student 12 20 100 13

Doug 16-Sep-1989 Student 15 16 3,000 9

Mark 20-May-1973 Student 12 17 10,000 14

Zoë 12-Nov-1984 Student 17 18 10 13

03-Field_R-4368-Ch-03.indd 87 11/02/2012 10:36:09 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

88 D ISCOVER ING STAT IST ICS US ING R

 R ’s Souls ’ T ip 3 .9 Dates 1

If you want to do calculations involving dates then you need to tell R to treat a variable as a date object. Let’s look
at what happens if we don’t. Imagine two variables (husband and wife) that contain the birthdates of four men
and their respective wives. We might create these variables and enter these birthdates as follows:

husband<-c("1973-06-21", "1970-07-16", "1949-10-08", "1969-05-24")

wife<-c("1984-11-12", "1973-08-02", "1948-11-11", "1983-07-23")

If we want to now calculate the age gap between these partners, then we could create a new variable, agegap,
which is the difference between the two variables (husband − wife):

agegap <- husband-wife

We’d find this rather disappointing message in the console:

Error in husband - wife : non-numeric argument to binary operator

This message is R’s way of saying ‘What the hell are trying to get me to do? These are words; I can’t subtract
letters from each other.’

However, if we use the as.Date() function when we create the variables then R knows that the strings of text
are dates:

husband<-as.Date(c("1973-06-21", "1970-07-16", "1949-10-08", "1969-05-24"))

wife<-as.Date(c("1984-11-12", "1973-08-02", "1948-11-11", "1983-07-23"))

If we try again to calculate the difference between the two variables:

agegap <- husband-wife

agegap

we get a more sensible output:

Time differences in days

[1] -4162 -1113 331 -5173

This output tells us that in the first couple the wife is 4162 days younger than her husband (about 11 years), for
the third couple the wife is 331 days older (just under a year).

The as.Date() function is placed around the function that we would normally use to enter
a series of strings. Normally if we enter strings we use the form:

variable<-c("string 1", "string 2", "string 3", etc.)

For dates, these strings need to be in the form yyyy-mm-dd. In other words, if we want to
enter the date 21 June 1973, then we would enter it as “1973-06-21”. As such, we could
create a variable called birth_date containing the dates of birth by executing the following
command:

birth_date<-as.Date(c("1977-07-03", "1969-05-24", "1973-06-21", "1970-07-16",
"1949-10-10", "1983-11-05", "1987-10-08", "1989-09-16", "1973-05-20",
"1984-11-12"))

Note that we have entered each date as a text string (in quotations) in the appropriate
format (yyyy-mm-dd). By enclosing these data in the as.Date() function, these strings are
converted to date objects.

03-Field_R-4368-Ch-03.indd 88 11/02/2012 10:36:10 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

89CHAPTER 3 THE R ENV IRONMENT

3.5.4.3. Creating coding variables/factors 1

A coding variable (also known as a grouping variable or factor) is a variable that uses num-
bers to represent different groups of data. As such, it is a numeric variable, but these num-
bers represent names (i.e., it is a nominal variable). These groups of data could be levels
of a treatment variable in an experiment, different groups of people (men or women, an
experimental group or a control group, ethnic groups, etc.), different geographic locations,
different organizations, etc.

In experiments, coding variables represent independent variables that have been mea-
sured between groups (i.e., different participants were assigned to different groups). If you
were to run an experiment with one group of participants in an experimental condition
and a different group of participants in a control group, you might assign the experimental
group a code of 1 and the control group a code of 0. When you come to put the data into
R you would create a variable (which you might call group) and type in the value 1 for
any participants in the experimental group, and 0 for any participant in the control group.
These codes tell R that all of the cases that have been assigned the value 1 should be treated
as belonging to the same group, and likewise for the cases assigned the value 0. In situations
other than experiments, you might simply use codes to distinguish naturally occurring
groups of people (e.g., you might give students a code of 1 and lecturers a code of 0). These
codes are completely arbitrary; for the sake of convention people typically use 0, 1, 2, 3,
etc., but in practice you could have a code of 495 if you were feeling particularly arbitrary.

We have a coding variable in our data: the one describing whether a person was a lec-
turer or student. To create this coding variable, we follow the steps for creating a normal
variable, but we also have to tell R that the variable is a coding variable/factor and which
numeric codes have been assigned to which groups.

First, we can enter the data and then worry about turning these data into a coding vari-
able. In our data we have five lecturers (who we will code with 1) and five students (who
we will code with 2). As such, we need to enter a series of 1s and 2s into our new variable,
which we’ll call job. The way the data are laid out in Table 3.6 we have the five lecturers
followed by the five students, so we can enter the data as:

job<-c(1,1,1,1,1,2,2,2,2,2)

In situations like this, in which all cases in the same group are grouped together in the
data file, we could do the same thing more quickly using the rep() function. This function
takes the general form of rep(number to repeat, how many repetitions). As such, rep(1,
5) will repeat the number 1 five times. Therefore, we could generate our job variable as
follows:

job<-c(rep(1, 5),rep(2, 5))

Whichever method you use the end results is the same:

job

[1] 1 1 1 1 1 2 2 2 2 2

To turn this variable into a factor, we use the factor() function. This function takes the
general form:

factor(variable, levels = c(x,y, … z), labels = c("label1", "label2", …
"label3"))

This looks a bit scary, but it’s not too bad really. Let’s break it down: factor(variableName)
is all you really need to create the factor – in our case factor(job) would do the trick.
However, we need to tell R which values we have used to denote different groups and
we do this with levels = c(1,2,3,4, …); as usual we use the c() function to list the values
we have used. If we have used a regular series such as 1, 2, 3, 4 we can abbreviate this

03-Field_R-4368-Ch-03.indd 89 11/02/2012 10:36:10 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

90 D ISCOVER ING STAT IST ICS US ING R

as c(1:4), where the colon simply means ‘all the values between’; so, c(1:4) is the same
as c(1,2,3,4) and c(0:6) is the same as c(0,1,2,3,4,5,6). In our case, we used 1 and 2 to
denote the two groups, so we could specify this as c(1:2) or c(1,2). The final step is to
assign labels to these levels using labels = c(“label”, …). Again, we use c() to list the labels
that we wish to assign. You must list these labels in the same order as your numeric levels,
and you need to make sure you have provided a label for each level. In our case, 1 cor-
responds to lecturers and 2 to students, so we would want to specify labels of “Lecturer”
and “Student”. As such, we could write levels = c(“Lecturers”, “Students”). If we put all
of this together we get this command, which we can execute to transform job into a cod-
ing variable:

job<-factor(job, levels = c(1:2), labels = c("Lecturer", "Student"))

Having converted job to a factor, R will treat it as a nominal variable. A final way to gener-
ate factors is to use the gl() function – the ‘gl’ stands for general (factor) levels. This func-
tion takes the general form:

newFactor<-gl(number of levels, cases in each level, total cases, labels =
c("label1", "label2"…))

which creates a factor variable called newFactor; you specify the number of levels or groups
of the factor, how many cases are in each level/group, optionally the total number of cases
(the default is to multiply the number of groups by the number of cases per group), and
you can also use the labels option to list names for each level/group. We could generate the
variable job as follows:

job<-gl(2, 5, labels = c("Lecturer", "Student"))

The end result is a fully-fledged coding variable (or factor):

[1] Lecturer Lecturer Lecturer Lecturer Lecturer Student Student Student
Student Student

With any factor variable you can see the factor levels and their order by using the levels()
function, in which you enter the name of the factor. So, to see the levels of our variable job
we could execute:

levels(job)

which will produce this output:

[1] “Lecturer” “Student”

In other words, we know that the variable job has two levels and they are (in this order)
Lecturer and Student. We can also use this function to set the levels of a variable. For example,
imagine we wanted these levels to be called Medical Lecturer and Medical Student, we
could execute:

levels(job)<-c("Medical Lecturer", "Medical Student")

This command will rename the levels associated with the variable job (note, the new names
are entered as text with speech marks, and are wrapped up in the c() function). You can also
use this function to reorder the levels of a factor – see R’s Souls’ Tip 3.13.

This example should clarify why in experimental research grouping variables are used
for variables that have been measured between participants: because by using a coding
variable it is impossible for a participant to belong to more than one group. This situation
should occur in a between-group design (i.e., a participant should not be tested in both
the experimental and the control group). However, in repeated-measures designs (within
subjects) each participant is tested in every condition and so we would not use this sort of
coding variable (because each participant does take part in every experimental condition)

03-Field_R-4368-Ch-03.indd 90 11/02/2012 10:36:10 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

91CHAPTER 3 THE R ENV IRONMENT

3.5.4.4. Creating a numeric variable 1

Numeric variables are the easiest ones to create and we have already created several of
these already in this chapter. Our next four variables are friends, alcohol, income and neu-
rotic. These are all numeric variables and you can use what you have learnt so far to create
them (I hope!).

SELF-TEST

9 Use what you have learnt about creating variables in
R to create variables called friends, alcohol, income
and neurotic containing the data in Table 3.6.

Hopefully you have tried out the exercise, and if so you should have executed the fol-
lowing commands:

friends<-c(5,2,0,4,1,10,12,15,12,17)

alcohol<-c(10,15,20,5,30,25,20,16,17,18)

income<-c(20000,40000,35000,22000,50000,5000,100,3000,10000,10)

neurotic<-c(10,17,14,13,21,7,13,9,14,13)

SELF-TEST

9 Having created the variables in Table 3.6, construct a
dataframe containing them all called lecturerData.

Having created the individual variables we can bind these together in a dataframe. We
do this by executing this command:

lecturerData<-data.frame(name,birth_date,job,friends,alcohol,income,
neurotic)

If we look at the contents of this dataframe you should hopefully see the same as Table 3.6:

> lecturerData

 name birth_date job friends alcohol income neurotic
1 Ben 1977-07-03 Lecturer 5 10 20000 10
2 Martin 1969-05-24 Lecturer 2 15 40000 17
3 Andy 1973-06-21 Lecturer 0 20 35000 14
4 Paul 1970-07-16 Lecturer 4 5 22000 13
5 Graham 1949-10-10 Lecturer 1 30 50000 21
6 Carina 1983-11-05 Student 10 25 5000 7
7 Karina 1987-10-08 Student 12 20 100 13
8 Doug 1989-09-16 Student 15 16 3000 9
9 Mark 1973-05-20 Student 12 17 10000 14
10 Zoe 1984-11-12 Student 17 18 10 13

03-Field_R-4368-Ch-03.indd 91 11/02/2012 10:36:11 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

113CHAPTER 3 THE R ENV IRONMENT

R packages used in this chapter

foreign Rcmdr

R functions used in this chapter
as.Date()
as.matrix()
c()
cast()
choose.file()
data.frame()
factor()
getwd()
gl()
help()
install.packages()
levels()
library()
mean()
melt()

names()
print()
read.csv()
read.delim()
read.spss()
recode()
rep()
reshape()
setwd()
stack()
subset()
unstack()
write.csv()
write.table()

What have I discovered about statistics? 1

This chapter has provided a basic introduction to the R environment. We’ve seen that R is
free software that you can download from the Internet. People with big brains contribute
packages that enable you to carry out different tasks in R. They upload these packages to
a mystical entity known as the CRAN, and you download them from there into your com-
puter. Once you have installed and loaded a package you can use the functions within it.

We also saw that R operates through written commands. When conducting tasks in
R, you write commands and then execute them (either in the console window, or using
a script file). It was noteworthy that we learned that we cannot simply write “R, can
you analyse my data for me please” but actually have to use specific functions and com-
mands. Along the way, we discovered that R will do its best to place obstacles in our
way: it will pedantically fail to recognize functions and variables if they are not written
exactly as they should be, it will spew out vitriolic error messages if we miss punctuation
marks, and it will act aloof and uninterested if we specify incorrectly even the smallest
detail. It believes this behaviour to be character building.

You also created your first data set by specifying some variables and inputting some data.
In doing so you discovered that we can code groups of people using numbers (coding vari-
ables) and discovered that rows in the data represent different entities (or cases of data) and
columns represent different variables. Unless of course you use the long format, in which
case a completely different set of rules apply. That’s OK, though, because we learnt how to
transform data from wide to long format. The joy that brought to us can barely be estimated.

We also discovered that I was scared of my new school. However, with the help of
Jonathan Land my confidence grew. With this new confidence I began to feel comfort-
able not just at school but in the world at large. It was time to explore.

03-Field_R-4368-Ch-03.indd 113 11/02/2012 10:37:42 AM

Excerpt from:
Field, A. P., Miles, J. N. V., & Field, Z. C. (2012). Discovering statistics using R: And sex and drugs and rock 'n' roll. London: Sage.

(c) Professor Andy P. Field, 2011

andyfield
Text Box
Rest of Chapter Skipped, but if you liked what you saw so far, please buy a copy of the book:http://www.amazon.co.uk/Discovering-Statistics-Using-Andy-Field/dp/1446200469/ref=as_li_tf_sw?&linkCode=wsw&tag=statihell-21http://www.amazon.com/Discovering-Statistics-Using-Andy-Field/dp/1446200469/ref=sr_1_2?ie=UTF8&qid=1333398039&sr=8-2

