DECISION MAKING: EXPECTED VALUE

MEDS 470 / NRSC 500B
Dr. Olav E. Krigolson

Decision Making Theory

Utilitarianism

People seek actions that increase utility and avoid actions that decrease utility

Mill, 1861

Decision Making

Our ability to process multiple alternatives and choose the option that maximizes utility

Expected Value $=$ Value \times Probability

Expanded Form

$\mathrm{EV}=\operatorname{Gain} \times \mathrm{P}_{\mathrm{G}}-$ Cost $\times \mathrm{P}_{\mathrm{C}}$

A Sample Problem

Problem 1

Would you play a gamble that has a 40% chance to win $\$ 1000$ or a 70% chance to win $\$ 600$?

Another Expected Value Problem

Example: the Lottery

- The Lottery (also known as a tax on people who are bad at math...)
- A certain lottery works by picking 6 numbers from 1 to 49. It costs $\$ 1.00$ to play the lottery, and if you win, you win $\$ 2$ million after taxes.
- If you play the lottery once, what are your expected winnings or losses?

Lottery

Calculate the probability of winning in 1 try:

$\frac{1}{\binom{49}{6}}=\frac{1}{\frac{19!}{43!6!}}=\frac{1}{13,983,816}=7.2 \times 10^{-8}$
"49 choose $6 "$ Out of 49 numbers, this is the number of distinct combinations of 6.

$x \$$	$p(x)$
-1	.999999928
+2 million	7.2×10^{-8}

Expected Value

The probability function

$x \$$	$p(x)$
-1	.999999928
+2 million	7.2×10^{-8}

Expected Value

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\mathrm{P}(\mathrm{win}) * \$ 2,000,000+\mathrm{P}(\text { lose }) *-\$ 1.00 \\
& =2.0 \times 10^{6} * 7.2 \times 10^{-8}+.999999928(-1)=.144-.999999928=-\$.86
\end{aligned}
$$

Negative expected value is never good!
You shouldn't play if you expect to lose money!

Expected Value

If you play the lottery every week for 10 years, what are your expected winnings or losses?
$520 \times(-.86)=-\$ 447.20$

Why casinos give out free drinks

A roulette wheel has the numbers 1 through 36, as well as 0 and 00. If you bet $\$ 1$ that an odd number comes up, you win or lose $\$ 1$ according to whether or not that event occurs. If random variable X denotes your net gain, $X=1$ with probability $18 / 38$ and $X=-1$ with probability 20/38.

$$
E(X)=1(18 / 38)-1(20 / 38)=-\$.053
$$

On average, the casino wins (and the player loses) 5 cents per game.

The casino rakes in even more if the stakes are higher:
$E(X)=10(18 / 38)-10(20 / 38)=-\$.53$
If the cost is $\$ 10$ per game, the casino wins an average of 53 cents per game. If 10,000 games are played in a night, that's a cool $\$ 5300$.

Vrew = 10

Vright $=0$

Vrew $=0$

Vrew $=10$

Vright $=0$

Vrew $=0$

Vrew $=0$

$$
V_{w}=0
$$

$C=0$
$\mathrm{V}_{\mathrm{e}}=0$

$$
\begin{array}{r}
V_{s}=0 \\
\\
\end{array}
$$

$$
V_{w}=0
$$

$C=0$
$\mathrm{V}_{\mathrm{e}}=0$

$$
\begin{array}{r}
V_{s}=0 \\
\\
\end{array}
$$

NOTE: There is no actual value to these earlier states, they simply reflect Predictions of future reward!

Tic Tac Toe

X	0.3	0.5
0.3	O	0.1
0.5	0.1	0.8

What do these values really mean?

Tic Tac Toe

Tic Tac Toe

But is this enough? Eligibility Traces...

1996 Deep Blue wins a game 1997 Deep Blue wins a match

$p=0.4345$

$p=0.4511$

Decision Making

1. Always choose the highest value option

The Problem with Value...

The Problem with Probability...

What is your chance of winning this

 Black Jack hand?Player

Rank your chance of dying from...

Car Accident

Bee Sting
Lightning Strike
Plane Crash
Ebola
Terrorist Attack
Shark Attack

1 in 13.3 million chance of contracting Ebola in America this year (based on a model of 12 imported cases of Ebola in the course of a year)
\cdots
1 in 11 million
chance of dying in a plane crash for an American this year

1 in 9.6 million chance of dying from a lightning strike for an American this year

1 in 5.2 million chance of dying from a bee sting for an American this year
$\mathbf{1}$ in 3.7 million chance of being killed by a shark in your lifetime (worldwide)
\square
1 in 9100
chance of being killed in a car accident in America this year

The Problem with Huygens

Prospect Theory

Daniel Kahneman and Amos Tversky

Consider...

Problem 1: In addition to whatever you own, you have been given $\$ 1000$. You are now asked to choose of these option 50% chance to win $\$ 1000$ OR get $\$ 500$ for sure.

Problem 2: In addition to whatever you own, you have been given $\$ 2000$. You are now asked to choose of these option 50% change to lose $\$ 1000$ OR lose $\$ 500$ for sure.

Consider...

Problem 1: In addition to whatever you own, you have been given $\$ 1000$.
You are now asked to choose of these option 50% change to win $\$ 1000$ OR get $\$ 500$ for sure

Problem 2: In addition to whatever you own, you have been given $\$ 2000$.
You are now asked to choose one of these options: 50% chance to lose $\$ 1000$ OR lose $\$ 500$ for sure

Prospect Theory

1. Neutral reference point
2. Diminishing sensitivity to gains and losses
3. S is not symmetrical

Explains Loss Aversion
(and other things - Status Quo,
Endowment Effect, etc)

Figure 10

LOSS AVERSION

