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Traditional views of automatic!ty are in need of revision. For example, automaticity often has been
treated as an all-or-none phenomenon, and traditional theories have held that automatic processes
are independent of attention. Yet recent empirical data suggest that automatic processes are continu-
ous, and furthermore are subject to attentional control. A model of attention is presented to address
these issues. Within a parallel distributed processing framework, it is proposed that the attributes of
automaticity depend on the strength of a processing pathway and that strength increases with train-
ing. With the Stroop effect as an example, automatic processes are shown to be continuous and to
emerge gradually with practice. Specifically, a computational model of the Stroop task simulates the
time course of processing as well as the effects of learning. This was accomplished by combining the
cascade mechanism described by McClelland (1979) with the backpropagation learning algorithm
(Rumelhart, Hinton, & Williams, 1986). The model can simulate performance in the standard
Stroop task, as well as aspects of performance in variants of this task that manipulate stimulus-onset
asynchrony, response set, and degree of practice. The model presented is contrasted against other
models, and its relation to many of the central issues in the literature on attention, automaticity, and
interference is discussed.

Introduction

The nature of attention has been one of the central concerns
of experimental psychology since its inception (e.g., Cattell,
1886; Pillsbury, 1908). James (1890) emphasized the selective
aspects of attention and regarded attention as a process of
"taking possession by the mind, in clear and vivid form, of one
out of what seems several simultaneously possible objects or
trains of thought" (p. 403). Others, such as Moray (1969) and
Posner (1975), have noted that attention is also a heightened
state of arousal and that there appears to be a limited pool of
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attention available for cognitive processes. Posner and Snyder
(1975) and Shiffrin and Schneider (1977) have provided ac-
counts of attention that integrate these aspects of attention and
emphasize that attention is intimately tied to learning. These
accounts focus on two types of cognitive processes, controlled
and automatic. Controlled processes are voluntary, require at-
tention, and are relatively slow, whereas automatic processes are
fast and do not require attention for their execution. Perfor-
mance of novel tasks is typically considered to rely on con-
trolled processing; however, with extensive practice, perfor-
mance of some tasks can become automatic (e.g., LaBerge &
Samuels, 1974; Logan, 1979; Posner & Snyder, 1975; Schneider
& Shiffrin, 1977; Shiffrin & Schneider, 1977).'

Many tasks have been used to examine the nature of atten-
tion and automaticity. Perhaps the most extensively studied
tasks have been the search tasks of Shiffrin and Schneider (1977;
Schneider & Shiffrin, 1977), priming tasks (e.g., Neely, 1977),
and the Stroop task (Stroop, 1935). The interpretation of such
studies often has relied on the assumption that automaticity is
an all-or-none phenomenon. However, recent research has be-
gun to question this assumption (e.g., Kahneman & Henik,
1981; MacLeod & Dunbar, 1988). An alternative conception is
that automaticity is a matter of degree. For example, Kahne-

1 Some authors have argued that certain automatic processes are in-
nate. For example, Hasher and Zacks (1979) argued that the encoding
of event frequency is an automatic process and that it is innate. In this
article, however, our focus is on processes that become automatic after
extensive practice at a task.
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man and Treisman (1984) have suggested that processes may
differ in the extent to which they rely on attention, and Mac-
Leod and Dunbar (1988) have presented data that indicate that
the attributes of automaticity develop gradually with practice.
As yet, however, there is no explicit account of the mechanisms
underlying automaticity that can explain both its gradual devel-
opment with practice and its relation to selective attention. The
purpose of this article is to provide such an account.

We begin by illustrating the relationship between attention
and automaticity—as it is commonly construed—in the con-
text of the Stroop interference task. We show how previous at-
tempts to explain the Stroop effect point to significant gaps in
understanding this basic phenomenon. We then describe a theo-
retical framework in which automaticity can be viewed as a con-
tinuous phenomenon that varies with practice; the framework
specifies the relationship between automaticity and attentional
control in terms of specific information-processing mecha-
nisms. The main body of the article describes a simulation
model that applies this theoretical framework to performance
in the Stroop task.

The Stroop Task

The effects observed in the Stroop task provide a clear illus-
tration of people's capacity for selective attention and the ability
of some stimuli to escape attentional control. In this task, sub-
jects are asked to respond to stimuli that vary in two dimen-
sions, one of which they must ignore. In the classic version of
the task, subjects are shown words written in different-colored
inks. When the task is to read the word, subjects are effective in
ignoring the color of the ink, as evidenced by the fact that ink
color has no influence on reading time. However, when the task
is to name the ink color, they are unable to suppress the effects
of word form. If the word conflicts with the ink color (e.g.,
GREEN in red ink2), they are consistently slower to respond (i.e.,
say "red") than for control stimuli (e.g., a row of Xs printed in
red ink), and they are faster if the word agrees with the ink color
(e.g., RED in red ink). Subjects are also slower overall at color
naming than at word reading, suggesting that color naming is a
less practiced task. These effects are highly robust, and similar
findings have been observed in a diversity of paradigms using
various stimuli (for reviews, see Dyer, 1973; MacLeod, 1989).
The Stroop effect illustrates a fundamental aspect of attention:
People are able to ignore some features of the environment but
not others.

The simplest explanation for the Stroop effect is that the rele-
vant difference between color naming and word reading is speed
of processing. Indeed, subjects are consistently faster at reading
words than at naming colors. Because of this fact, it is often
assumed that the word arrives at the response stage of process-
ing before color information. If the word concurs with the color,
this will lead to facilitation of the color-naming response; if the
word conflicts, its influence must be overcome to generate the
correct response, leading to a longer response time for (i.e., in-
terference with) the color-naming process. Because color infor-
mation arrives at the response stage after the word information,
it has no effect on the word-reading process.

However, if speed of processing is the only relevant variable,
then there should be a way to make color information conflict

with word reading by presenting color information early
enough before the onset of the word. In fact, however, this does
not work. M. O. Glaser and Glaser (1982) varied the stimulus-
onset asynchrony (SOA) of a color patch and a color word,3 and
found no interference of the color patch on word reading even
when the color preceded the word by as much as 400 ms. This
result indicates that the relative finishing time of the two pro-
cesses is not the sole determinant of interference effects.

A more general approach to explaining Stroop-like effects has
been to consider the role of attention in processing. This ap-
proach draws on the distinction between automatic and con-
trolled processes (Cattell, 1886;Posner&Snyder, 1975;Shiflrin
& Schneider, 1977). Automatic processes are fast, do not re-
quire attention for their execution, and therefore can occur in-
voluntarily. In contrast, controlled processes are relatively slow,
require attention, and therefore are under voluntary control.
From this point of view, the results of an automatic process are
more likely to escape attempts at selective attention than are
those of a controlled process.

Posner and Snyder (1975) applied the distinction between
controlled and automatic processes directly to the Stroop task
by making the following three assumptions: (a) Word reading is
automatic, (b) color naming is controlled, and (c) if the outputs
of any two processes conflict, one of the two processes will be
slowed. In this view, the finding that word reading is faster than
color naming follows from the relatively greater speed of auto-
matic processes. The finding that ink color has no effect on word
processing follows from the assumption that color naming is
controlled and therefore voluntary; so, the color-naming pro-
cess will not occur when the task is to ignore the color and read
the word. The finding that a conflicting word interferes with
color naming follows from the automaticity (i.e., involuntary
nature) of word reading and the assumption that conflicting
outputs slow responding.

This interpretation of the Stroop task exemplifies a general
method that has been used for assessing the automaticity of two
arbitrary processes, A and C, on the basis of their speed of pro-
cessing and the pattern of interference effects they exhibit. If A
is faster than C, and if A interferes with C but C does not inter-
fere with A, then A is automatic and C is controlled. Of course,
this reasoning requires that Processes A and C are in some sense
comparable in intrinsic difficulty and number of processing

This method for identifying processes as automatic or con-
trolled has gained wide acceptance. However, evidence from a
recent series of experiments conducted by MacLeod and Dun-
bar (1988) suggests that this may not be an adequate character-
ization of the processes involved in the Stroop task. They taught
subjects to use color words as names for arbitrary shapes that
actually appeared in a neutral color. After 288 trials (72 trials
per stimulus), subjects could perform this shape-naming task
without difficulty. At this point, the effect that ink color had on

2 Throughout this article, references to word stimuli appear in upper-
case letters (RED), references to color stimuli appear in lowercase letters
(red), and references to potential responses appear in quotation marks
("red").

3 As we discuss later, the Stroop effect can still be observed even when
the two stimulus dimensions are physically disjoint.
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shape naming was tested by presenting subjects with conflicting
and congruent stimuli (i.e., shapes colored to conflict or agree
with their assigned names). Ink color produced large interfer-
ence and facilitation effects. However, when the task was re-
versed, and subjects were asked to state the color of the ink in
which the shapes appeared (the color-naming task), congruity
of the shape name had no effect. They also noted that reaction
times for the shape-naming task (control condition) were slower
than were those for the standard color-naming task (control
condition).

MacLeod and Dunbar's (1988) results are incompatible with
the explanation of the Stroop task in terms of controlled versus
automatic processing. That is, according to standard reasoning,
since (a) color naming is slower than word reading, (b) color
naming is influenced by word information, and (c) ink color
does not influence word reading, color naming must be con-
trolled. Yet, in MacLeod and Dunbar's experiment, color nam-
ing reversed roles. That is, (a) color naming was faster than
shape naming, (b) color naming was not affected by shape
names, and (c) ink color interfered with (and facilitated) shape
naming. If we treat automaticity as dichotomous, we must con-
clude from these findings that color naming is automatic.

One way of accounting for these data—rather than by trying
to dichotomize processes as controlled or automatic—is to sup-
pose that tasks such as word reading, color naming, and shape
naming lie along a continuum. This is suggested by their relative
speeds of performance and by the pattern of interference effects
that exist among these tasks. Thus, word reading is faster than
and is able to interfere with color naming, whereas color nam-
ing is faster than and is able to interfere with shape naming (at
least at first). Such a continuum suggests that speed of process-
ing and interference effects are continuous variables that de-
pend on the degree of automatization of each task. This is sup-
ported by the following evidence.

Continuous Nature of Speed of Processing

Numerous studies have shown that practice produces grad-
ual, continuous increases in processing speed (e.g., Blackburn,
1936; Bryan & Harter, 1899; Logan, 1979; Shiffrin & Schnei-
der, 1977) that follow a power law (Anderson, 1982; Kolers,
1976; Logan, 1988; Newell & Rosenbloom, 1981). MacLeod
and Dunbar (1988) also examined this variable in their study.
They continued to train subjects on the shape-naming task with
144 trials per stimulus daily for 20 days. Reaction times showed
gradual, progressive improvement with practice.

Continuous Nature of Interference Effects

The pattern of interference effects observed in the MacLeod
and Dunbar (1988) study also changed over the course of train-
ing on the shape-naming task. As mentioned earlier, after 1 day
of practice, there was no effect of shape names on color naming.
After 5 days of training, however, shapes produced some inter-
ference, and after 20 days, there was a large effect. That is, pre-
senting a shape with a name that conflicted with its ink color
produced strong interference with the color-naming response.
The reverse pattern of results occurred for the shape-naming
task. After 1 session of practice, conflicting ink color interfered

with naming the shape, whereas after 20 sessions this no longer
occurred.

These data suggest that speed of processing and interference
effects are continuous in nature and that they are closely related
to practice. Furthermore, they indicate that neither speed of
processing nor interference effects, alone, can be used reliably
to identify processes as controlled or automatic. These observa-
tions raise several important questions. What is the relationship
between processes such as word reading, color naming, and
shape naming, and how do their interactions result in the pat-
tern of effects observed? In particular, what kinds of mecha-
nisms can account for continuous changes in both speed of pro-
cessing and interference effects as a function of practice? Fi-
nally, and perhaps most important, how does attention relate to
these phenomena?

The purpose of this article is to provide a theoretical frame-
work within which to address these questions. Using the princi-
ples of parallel distributed processing (PDF), we describe a
model of the Stroop effect in which both speed of processing
and interference effects are related to a common, underlying
variable that we call strength of processing. The model provides
a mechanism for three attributes of automaticity. First, it shows
how strength varies continuously as a function of practice; sec-
ond, it shows how the relative strength of two competing pro-
cesses determines the pattern of interference effects observed;
and third, it shows how the strength of a process determines the
extent to which it is governed by attention.

The model has direct implications for the standard method
by which controlled and automatic processes are distinguished.
The model shows that two processes that use qualitatively iden-
tical mechanisms and differ only in their strength can exhibit
differences in speed of processing and a pattern of interference
effects that make the processes look as though one is automatic
and the other is controlled. This finding suggests that these cri-
teria—speed of processing, ability to produce interference, and
susceptibility to interference—may be inadequate for distin-
guishing between controlled and automatic processing. This
does not mean that the distinction between controlled and auto-
matic processes is useless or invalid. Rather, the model shows
that speed-of-processing differences and Stroop-like interfer-
ence effects can emerge simply from differences in strength of
processing, so that these phenomena may not provide a reliable
basis for distinguishing controlled from automatic processes.

The Processing Framework

The information-processing model we describe was devel-
oped within the more general PDF framework described by
Rumelhart, Hinton, and McClelland (1986). Here, we outline
some of the general characteristics of this framework. We then
turn to the details of our implementation of a model of the
Stroop task.

Architectural characteristics. Processing within the PDF
framework is assumed to take place in a system of connected
modules. Each module consists of an ensemble of elementary
processing units. Each unit is a simple information-processing
device that accumulates inputs from other units and adjusts its
output continuously in response to these inputs.

Representation of information. Information is represented as



CONTROL OF AUTOMATIC PROCESSES 335

a pattern of activation over the units in a module. The activation
of each unit is a real valued number varying between a maxi-
mum and minimum value. Thus, information is represented in
a graded fashion and can accumulate and dissipate with time.

Processing. Processing occurs by the propagation of signals
(spread of activation) from one module to another. This occurs
via the connections that exist between the units in different
modules. In general, there may be connections within as well as
between modules, and connections may be bidirectional. How-
ever, for present purposes, we adopt the simplification that there
is a unidirectional flow of processing, starting at modules used
to represent sensory input and proceeding forward or from the
bottom up to modules from which output governs the execution
of overt responses.

Pathways and their strengths. A particular process is as-
sumed to occur via a sequence of connected modules that form
a pathway. Performance of a task requires that a processing
pathway exist that allows the pattern of activation in the rele-
vant sensory modules to generate—through propagation of ac-
tivation across intermediate modules—an appropriate pattern
of activation in the relevant output modules. The speed and
accuracy with which a task is performed depends on the speed
and accuracy with which information flows along the appropri-
ate processing pathway. This, in turn, depends on the connec-
tions between the units that make up the modules in that path-
way. We demonstrate this in the Simulations section. We refer
to this parameter as the strength of a pathway. Thus, the speed
and accuracy of performing a task depend on the strength of the
pathway used in that task.

Interactions between processes. Individual modules can re-
ceive input from and send information to several other mod-
ules. As such, each can participate in several different process-
ing pathways. Interactions between processes arise in this sys-
tem when two different pathways rely on a common module,
that is, when pathways intersect. If both processes are active,
and the patterns of activation that each generates at the point
of intersection are dissimilar, then interference will occur within
that module, and processing will be impaired in one or both
pathways. If the patterns of activation are very similar, this will
lead to facilitation.

The intersection between two pathways can occur at any
point in processing after the sensory stage. For example, inter-
ference at an intermediate stage is consistent with data reported
by Shaffer (1975) and by Allport, Antonis, and Reynolds
(1972). Interference at the output stage would give rise to re-
sponse competition, such as that observed in the Stroop task
(cf. Dyer, 1973). The general view that interference effects arise
whenever two processes rely on a common resource or set of
resources has been referred to as the multiple-resources view
(e.g., Allport, 1982; Hirst & Kalmar, 1987; Navon & Gopher,
1979; Wickens, 1984). Logan (1985) summarized this position
succinctly:

Different tasks may depend on different resources, and dual-task
interference occurs only when the tasks share common resources.
Thus, the interference a particular task produces will not be an
invariant characteristic of that task; rather, it will depend on the
nature of the tasks it is combined with." (p. 376)

This point will be made explicit in the simulations we present
later.

Attentional control. One way to avoid the interactions that
occur at the intersection between two pathways is to modulate
the information arriving along one of them. This is one of the
primary functions of attention within this framework and is
consistent with the views on attention expressed by several
other authors (Kahneman & Treisman, 1984; Logan, 1980;
Treisman, 1960). In our system, modulation occurs by altering
the responsiveness of the processing units in a pathway. In this
way, attention can be used to control individual processes. How-
ever, this does not necessarily imply that attention requires a
unique or even distinct component of processing. Attention can
be thought of as an additional source of input that provides con-
textual support for the processing of signals within a selected
pathway.

This framework can be used to account for many of the em-
pirical phenomena associated with learning and automaticity.
Schneider (1985) has used a similar approach to explain how
performance in a category-search task changes as a function of
practice. Here, we focus on the significance that this approach
has for selective attention, using the Stroop task as an example.
In the next section, we describe a simulation model of the
Stroop task that is based on the processing principles discussed
earlier. We then present a series of six simulations to demon-
strate that this model is able to account for many of the empiri-
cal phenomena associated with automaticity and for their grad-
ual emergence as a function of practice. The first four simula-
tions are used to examine the attributes of automaticity
evidenced in the Stroop task (namely, speed of processing and
interference effects). The remaining simulations directly ex-
plore the relationship between processing and attention.

The Model

In this section, we describe the POP mechanisms for process-
ing, practice, and attentional control that we used to simulate
the Stroop task.

Architecture, Processing, and the
Representation of Information

The architecture of this model is depicted in Figure 1. The
model consists of two processing pathways—one for processing
color information, the other for processing word information—
both of which converge on a common response mechanism.
Each pathway consists of a set of input units, a set of intermedi-
ate units, and a set of output units. Each of the input units in a
given pathway projects to all of the intermediate units in that
pathway. The intermediate units from both pathways project to
all of the output units in the model. In addition, each unit is
associated with a bias term, which is a constant value that is
added to its net input (discussed later).

Processing in this system is strictly feed forward. A stimulus
is provided by activating units at the input level of the network.
Activation then propagates to the intermediate units and grad-
ually to the output units. A response occurs when sufficient acti-
vation has accumulated from one of the output units to exceed
a response threshold. Reaction time is assumed to be linearly
related to the number of processing cycles necessary for this
threshold to be exceeded (the response mechanism is discussed
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Figure 1. Network architecture. (Units at the bottom are input units, and units
at the top are the output [response] units.)

in greater detail later). In addition to the units just described,
there are two task demand (or attention) units—one for the col-
or-naming task, the other for the word-reading task. These are
connected to the intermediate units in the two processing path-
ways and are used to allocate attention to one or the other of
them. Activation of a particular task demand unit sensitizes
processing in the corresponding pathway, as is explained later.

Individual stimuli and responses have discrete representa-
tions in this model. Each color is represented by a single input
unit in the color pathway, and each word is represented by a
single input unit in the word pathway. Similarly, each output
unit represents one potential response. We chose local represen-
tations of this kind to keep the model as simple and interpret-
able as possible. However, nothing in principle precludes the
possibility that either inputs or outputs could be distributed
over many units, and preliminary investigations indicate that
our findings using local representations generalize to systems
using distributed representations.

Mechanisms for Learning and the
Time Course of Processing

The model is intended to provide an explanation of the rela-
tionship between learning and the time course of the psycholog-
ical processes involved in the Stroop task. PDF models that
have addressed the time course of psychological processes have
largely been distinct from those that address learning and mem-
ory. For example, McClelland (1979) presented a multilevel

PDF system that provided an account of the time course of psy-
chological processes; however, this system did not include a
learning algorithm. The backpropagation algorithm described
by Rumelhart, Hinton, and Williams (1986) was introduced as
a general learning mechanism that can be used in multilevel
networks. However, PDF systems that have used this algorithm
generally have not simulated temporal phenomena, such as re-
action times. Here we describe each of these mechanisms and
their limitations in greater detail. We then show how they can
be brought together to provide a single system in which both
learning and processing dynamics can be examined.

McClelland's (1979) cascade model provides a mechanism
for simulating the time course of psychological processes. In this
system, information is represented as the activation of units in
a multilevel, feed-forward network. Input is presented as a pat-
tern of activation over units at the lowest level. Information
gradually propagates upward, as units at each level update their
activations on the input they are receiving from lower levels.
Eventually, a pattern of activation develops over the units at the
topmost level, where a response is generated. Units in this net-
work update their activations on the basis of a weighted sum of
the input they receive from units at the previous level in the
network. Specifically, the net input at time t for unit,- (at level,,)
is calculated as

net,(0 = 2 a,(t)w,j, (1)
i

where at(t) is the activation of each unit/ (at leveln_i) from which
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unit; received input and Wy is the weight (or strength) of the
connection from each unit, to unit,. The activation of a unit is
simply a running average of its net input over time:

aj(t) = net/0 = rnet/0 + (1 - r)net/(f - 1), (2)

where net/0 is the time average of the net input to unit,, net/0
is the net input to unit, at time t, and r is a rate constant. This
time-averaging function is what establishes the time course of
processing in this model. When r is small, the unit's activation
will change slowly; with a larger T, it will change more quickly.
One feature of Equation 2 is that if the net input to a unit re-
mains fixed, the unit's activation will approach an asymptotic
value that is equal to this net input. As a result, McClelland
(1979) demonstrated that with a constant input to the first layer
in such a network, all of the units will approach an asymptotic
activation value. Moreover, this value is determined strictly by
the input to the network and the connections that exist between
the units. Thus, given a particular input pattern and sufficient
time to settle, the network will always reach a stable state in
which each unit has achieved a characteristic activation value.

One problem with the type of network used in the cascade
model is that it is based on a linear activation function. That is,
the activation of a unit is simply a weighted sum of the inputs
it receives. Networks that rely on linear update rules such as
this, even if they are composed of multiple layers, suffer from
fundamental computational limitations (see Rumelhart, Hin-
ton, & McClelland, 1986, for a discussion). To overcome this
problem, a network must have at least one layer of units be-
tween the input and output units that make use of a nonlinear
relation between input and output. Another problem with the
cascade model, especially within the current context, is that it
lacks any mechanism for learning. Both of these problems can
be overcome if mechanisms are included that have been used in
recent PDF models of learning.

The first step is to introduce nonlinearity into processing.
Typically, this has been done by using the logistic function to
calculate the activation of a unit, based on its instantaneous net
input:

0/0 = logistic[net/0] =
1

(3)

where net/0 is given by Equation 1. The logistic function intro-
duces nonlinearity by constraining the activation of units to be
between the values of 0 and 1 (see Figure 2). This nonlinearity
provides important behaviors, which we discuss later (see At-
tentional Selection section). However, as it stands, Equation 3
does not exhibit a gradual buildup of activation over time. The
full response to a new input occurs in a single processing step
at each level, so the effects of a new input are propagated
through the network in a single sweep through all of its levels.
The dynamic properties of the cascade model can be intro-
duced, however, if we assume, as the cascade model did, that the
net input to a unit is averaged over time before the activation
value is calculated. This gives us the following activation rule:

a/0 = logistic[net/0], (4)

where net/0 is defined as in Equation 2. The only difference
between this activation rule and the one used in the cascade

model is that the time-averaged net input to a unit is passed
through the logistic function to arrive at its activation. We are
still assured that the activation value will approach an asymp-
tote that depends only on the input pattern and the connection
strengths in the network. In fact, this asymptote is the same as
the activation that the unit would assume without the use of
time averaging (to see this, consider the limiting case in which
T=D.

Several learning rules have been described for single and mul-
tilevel networks using nonlinear units. In the current model, we
used the generalized delta rule (also known as the backpropaga-
tion learning algorithm) described by Rumelhart, Hinton, and
Williams (1986). Learning occurs by adjusting the connection
strengths to reduce the difference between the output pattern
produced by the network and the one desired in response to the
current input. This difference is essentially a measure of the
error in the performance of the network. Error reduction occurs
by repeatedly cycling through the following steps: (a) presenting
an input pattern to be learned, (b) allowing the network to gen-
erate its asymptotic output pattern, (c) computing the differ-
ence between this output pattern and the one desired, (d) propa-
gating information derived from this difference back to all of
the intermediate units in the network, and (e) allowing each
unit to adjust its connection strengths on the basis of this error
information. By repeatedly applying this sequence of steps to
each member of a set of input patterns, the network can be
trained to approximate the desired output pattern for each
input.

The nonlinearity of the activation update rule discussed ear-
lier is compatible with the backpropagation algorithm, which
only requires that the activation function be monotonic and
continuous (i.e., differentiable). The logistic function satisfies
this constraint. Furthermore, so long as units are allowed to
reach their asymptotic activation values before error informa-
tion is computed at the output level, then learning in this system
is no different from systems that do not include a time-averag-
ing component.

Variability and the Response-Selection Mechanism

Processing Variability

Even when human subjects appear to have mastered a task,
they still exhibit variability in their response. This can be seen,
for example, in the distribution of reaction times for a given
task. To capture this variability, and to be able to model the
variability of reaction time data, we introduce randomness into
the model by adding normally distributed noise to the net input
of each unit (except the input units).

Response Mechanism

In addition to the variability in the activation process, the
model also incorporates variability in the response mechanism.
One successful way of modeling response variability has been
to assume that the choice of a response is based on a random
walk (Link, 1975) or a diffusion process (Ratcliff, 1978). In our
adaptation of these ideas, we associate each possible response
with an evidence accumulator that receives input from the out-
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put units of the network. At the beginning of each trial, all of
the evidence accumulators are set to 0. In each time step of
processing, each evidence accumulator adds a small amount of
evidence to its accumulated total. The amount added is random
and normally distributed, with mean n based on the output of
the network, and with fixed standard deviation a. The mean
is proportional to the difference between the activation of the
corresponding unit and the activation of the most active alterna-
tive:

i = a(act, - max—act,*,), (5)

where a determines the rate of evidence accumulation. A re-
sponse is generated when one of the accumulators reaches a
fixed threshold. Throughout all of our simulations, the value of
a was 0.1, the value of a was 0.1, and the value of the threshold
was 1.0.

This response-selection mechanism may seem different from
the rest of the network. For example, evidence is accumulated
additively in the response-selection mechanism, whereas run-
ning averages are used elsewhere in the network. Additionally,
the response-selection mechanism is linear, whereas the rest of
the net is nonlinear and relies on this nonlinearity. In fact, we
can easily show that the additive diffusion process can be mim-
icked with linear running averages by assuming that the re-
sponse criterion gets smaller as processing goes on within a trial.
The impact of introducing nonlinearity into the evidence accu-
mulator is less obvious. However, it need not exert a strong dis-
torting effect, as long as the threshold is within the linear mid-
portion of the accumulation function.

Attentional Selection

The role of attention in the model is to select one of two com-
peting processes on the basis of the task instructions. For this
to occur, one of two task demand specifications must be pro-
vided as input to the model: "respond to color" or "respond to
word." We assume that this information is available as the out-
put from some other module and results from encoding and
interpreting the task instructions. Clearly, this is a highly flexi-
ble process and can adapt to the wide variety of information-
processing tasks that humans can perform. Our focus in this
article, however, is not on how task interpretation occurs or on
how decisions concerning the allocation of attention are made.
Rather, we are concerned with how information about the task
and the corresponding allocation of attention influences pro-
cessing in the pathways directly involved in performing the task
itself. By focusing on the influences that attention has on pro-
cessing and specifying the mechanisms by which this occurs, we
hope to show how attention interacts with strength of processing
to determine the pattern of effects that are observed in the
Stroop task.

Task information is represented in the model in the same way
as any other information: as a pattern of activation over a set
of processing units. For this purpose, two additional units are
included in the network: one that represents the intention to
name colors, another for reading words. A particular task is
specified by activating one of these task demand units. Task de-
mand units modulate processing by adjusting the resting levels
of units in the two main pathways, putting task-appropriate
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Figure 2. The logistic activation function. (Note that the slope of this
function is greatest when the net input is 0.0 and decreases when the
net input is large in either the positive or negative direction.)

units in the middle of their dynamic range and those for inap-
propriate units near the bottom, where they will be relatively
insensitive. We do not know whether attention is primarily ex-
citatory (sensitizing task-appropriate units), inhibitory (desen-
sitizing inappropriate units), or (as we suspect) some of both.
In any case, we assume that the connection strengths from the
task demand units to intermediate units in each pathway are
such that when the unit for a particular task is active, it sets the
resting level of units in the appropriate pathway to the middle
of their range, whereas units in the inappropriate pathway as-
sume a more negative value. The modulatory influence that
these changes in resting level have on processing is due to the
nonlinearity of the logistic activation function. To show how
this occurs, we examine this function in greater detail.

As described by Equation 4, the activation of a unit is deter-
mined by the logistic of its net input. The logistic function has
roughly three regions (Figure 2). In the middle region, when
the net input is near 0, the relationship between net input and
activation is more or less linear, with a slope of approximately
1. In this region, the activation of a unit is very responsive to
changes in its net input. That is, changes in the net input will
lead to significant changes in the unit's activation. In contrast,
at each end of the logistic function, the slope is dramatically
reduced. In these regions—when the magnitude of the net input
is large, either in a positive or negative direction—changes in
the input to a unit have a small effect on its activation. This
feature was an important factor in our choice of a nonlinear
activation function, allowing the responsiveness of units to be
modulated by adjusting their base levels of activation. This ad-
justment is accomplished by the activation of the task demand
units.

In principle, task demand units are assumed to have connec-
tions to the intermediate units in each pathway, such that acti-
vation of a task demand unit drives the resting net input of units
in the appropriate pathway toward zero, and units in competing
pathways toward more negative values. Driving the net input
of task-appropriate units toward zero places them in the most
responsive region of their dynamic range, whereas making the
net input of task-inappropriate units more negative places them
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Table 1
Training Stimuli

Task demand Color input Word input Output

Color
Color
Word
Word

red
green

——

_

—
RED
GREEN

"red"
"green"
"red"
"green"

Note. Dashes indicate there was no input.

in a flatter region of the activation function. In the current
model, we implemented a simpler version of this general
scheme. All intermediate units were assumed to have a negative
bias, so that they were relatively insensitive at rest. Task demand
units provided an amount of activation to intermediate units in
the corresponding pathway that offset this negative bias, driving
their net input to zero. Thus, task demand units had the effect
of sensitizing units in the corresponding pathway, and units in
the inappropriate pathway remained in a relatively insensitive
state.

Finally, we note that the connections between each task de-
mand unit and all of the intermediate units within a given path-

way are assumed to be uniform in strength, so that activation
of a task demand unit does not, by itself, provide any informa-
tion to a given pathway. Its effect is strictly modulatory.

Simulations

We implemented the mechanisms described in the previous
section in a specific model of the Stroop task. In the following
sections, we describe how the model was used to simulate hu-
man performance in this task. We start by describing some of
the general methods used in the simulations. We then describe
four simulations that provide an explicit account of the attri-
butes of automaticity and how they relate to practice. These are
followed by two simulations that address issues concerning the
relationship between attention and automaticity.

Simulation Methods

All simulations involved two phases, a training phase and a test phase.

Training Phase

The network was trained to produce the correct response when infor-
mation was presented in each of the two processing pathways. Training
patterns were made up of a task specification and input to the corre-

RESPONSE

"red" "green"

red green

INK COLOR
Color

Naming
Word

Reading

RED GREEN

WORD

TASK DEMAND

Figure 3. Diagram of the network showing the connection strengths after training on the word-reading and
color-naming tasks. (Strengths are shown next to connections; biases on the intermediate units are shown
inside the units. Attention strengths—from task demand units to intermediate units—were fixed, as were
biases for the intermediate units. The values were chosen so that when the task demand unit was on, the
base input for units in the corresponding pathway was 0.0, whereas the base input to units in the other
pathway was in the range of -4.0 to -4.9, depending on the experiment.)
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spending pathway (see Table 1). For example, an input pattern was
"red-color-NULL," which activated the red input unit in the color path-
way and the "respond to color" task demand unit but did not activate
any word input units. The network was trained to activate the red out-
put unit as its response to this stimulus. Conflict and congruent stimuli
were omitted from the training set, reflecting the assumption that, in
ordinary experience, subjects rarely encounter these kinds of stimuli.

At the outset of training, the connection strengths between intermedi-
ate and output units were small, random values. The connections be-
tween input units and intermediate units were assigned moderate values
(+2 and -2) that generated a distinct representation of each input at
the intermediate level. This set of strengths reflects the assumption that,
early in their experience, subjects are able to successfully encode sen-
sory information (e.g., colors and word forms) at an intermediate level
of representation but are unable to map these onto appropriate verbal
responses. This ability only comes with training. This initial state of
the network also allowed us to capture the power law associated with
training, which we discuss later (see Simulation 3).

The influence of attention was implemented in the simplest way pos-
sible. Bias parameters for intermediate units and connection strengths
from the task demand units were chosen so that when a particular task
demand unit was on, the intermediate units in the attended pathway
had a base net input of 0.0 and were thus maximally responsive to input
(see earlier discussion).4 Units in the unattended pathway had a much
lower base activation. The value of the base activation of units in the
unattended pathway (determined by their negative bias) reflected the
effectiveness of filtering in a given task and was allowed to vary from
experiment to experiment (see later text).

In each training trial, an input pattern was presented to the network,
and all of the units were allowed to reach their asymptotic values.5

Difference terms were then computed by comparing the actual activa-
tion with the desired activation value for each output unit. These differ-
ence terms were treated as error signals that were then used to calculate
changes to the connection strengths following the backpropagation
learning procedure (Rumelhart, Hinton, & Williams, 1986).6 All of the
connections along the word and color processing pathways were modi-
fiable, and their values were set by the learning procedure just described.
However, the connections from the task demand units to the intermedi-
ate units in each pathway and the bias terms that established the resting
activations of these units were assumed to be unmodifiable. Training
proceeded until the network was capable of correctly processing all of
the test stimuli (see the Test Phase section).

One purpose of the model is to account for the relationship between
practice effects and automaticity. In the context of the Stroop task, in-
vestigators have proposed that word reading is more highly practiced
than color naming (Brown, 1915; MacLeod & Dunbar, 1988; Posner &
Snyder, 1975). To model this difference in practice, we gave the network
differential amounts of training on the word and color patterns. Every
word pattern was presented in every epoch, whereas the probability of a
color pattern being presented in a given epoch was 0.1. Thus, on average,
word patterns were seen 10 times as often as color patterns, and at any
given point during training, the network had received a greater amount
of practice with word reading than with color naming.7

Figure 3 displays the strengths on all of the connections in the network
at the end of training. As expected, they were stronger in the word path-
way than in the color pathway, due to the greater frequency of word
training.

Test Phase

The network was tested on the 12 input patterns corresponding to all
possible stimuli in a Stroop task in which there are two possible re-
sponses (e.g., "red" and "green"). These patterns represented the con-
trol stimulus, the congruent stimulus, and the conflict stimulus for each

of the two inputs (red or green) in each of the two tasks (word reading
and color naming; see Table 2). Presentation of a particular pattern con-
sisted of activating the appropriate input unit or units and the task de-
mand unit. For example, one of the conflict stimuli in the color-naming
task (the word GREEN in red ink) was presented by activating the red
color input unit, the "attend to color" task demand unit, and the GREEN
word input unit.

Each test trial began by activating the appropriate task demand unit
and allowing the activation of all units to reach asymptote. This put the
network in a ready state corresponding to the appropriate task. At this
point, the intermediate units in the selected pathway and all of the out-
put units had resting activation levels of 0.5, whereas the intermediate
units in the competing pathway were relatively inactive (activations of
approximately 0.01). The test pattern was then presented, and the sys-
tem was allowed to cycle until the activation accumulated from one of
the output units exceeded the response threshold. A value of 1.0 was
used for the response threshold in all simulations. The number of cycles
required to exceed this threshold was recorded as the reaction time to
that input. The system was then reset, and the next trial began. Data
values reported later represent the mean value of 100 trials run for each
condition. A representative sample of the reaction time distributions
obtained in this way is shown in Figure 4. This shows the skewed distri-
bution typical of human data and standard random walk models (e.g.,
Ratcliff, 1978).

To simplify comparison between empirical reaction times and the
model's performance, we report simulation reaction times as trans-
formed values. For each simulation, we performed a linear regression
of the simulation data on the empirical data. Simulation data are re-
ported as the number of cycles transformed by this regression equation.8

4 This article does not address the general issue of whether the con-
nections strengths from task demand units to intermediate units are
learned. In the simulations that we report, these connections strengths
were fixed. In other simulations, we have found that they can be learned;
however, the implications of this need to be explored more fully.

5 Processing was deterministic during training; that is, units were not
subject to noise. Individual simulations using noise during training indi-
cated that this did not significantly alter the results, and the elimination
of noise in this phase substantially reduced the length and number of
simulations required to arrive at a normative set of results.

6 Connection strengths were updated after each sweep through the set
of training patterns. Learning rate was 0.1, and momentum was 0.0.

7 We focus on frequency of training as the primary difference between
word reading and color naming because this has been the emphasis in
the literature. However, other differences between these tasks might also
be important. For example, it seems likely that word reading is also a
more consistently mapped task than color naming: A particular se-
quence of letters is almost invariably associated with the word they rep-
resent (even if the word itself has an ambiguous meaning); however, col-
ors are often associated with words other than their name (e.g., red is
associated with heat, embarrassment, and "stop"). Although this point
has not been emphasized with regard to the Stroop task, it is a well-
established finding that consistent mapping leads to the development of
automaticity, whereas variable mapping impedes it (e.g., Logan, 1979;
Shiffrin & Schneider, 1977). Our model captures this fact: The more
consistently a stimulus is related to a particular response, the stronger
will be the connections for processing that stimulus. Although we focus
on frequency (i.e., amount of practice) as a determinant of pathway
strength, keep in mind that consistency of practice is an equally impor-
tant variable that may be a significant factor underlying the Stroop
effect.

8 In all cases, the intercept of the regression equation was positive,
reflecting components of processing (e.g., early visual processing and
response execution) not simulated by the model. The intercept value
for all simulations was in the range of 200-500 ms.
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Table 2
Test Stimuli

Stimulus type Color input Word input

Color naming
Task specification
Control
Conflict
Congruent

Word reading
Task specification
Control
Conflict
Congruent

Task demand: color

red
red
red

Task demand: word

green
red

GREEN
RED

RED
RED
RED

Note. Only those stimuli for which "red" was the correct response are
shown. The network was also tested with the corresponding stimuli for
which "green" was the correct response. Dashes indicate there was no
input.

Regression equations are provided in the figures accompanying each
simulation.

Free Parameters

We undertook a large number of simulation experiments, varying
different parameters of the model and examining how they affected the
model's ability to account for the basic form of the empirical phenom-
ena. In the Appendix, we describe the parameter values used in the re-
ported simulations, as well as several trade-offs and interactions between
parameters that we encountered. In general, we strove to use one set of
parameters for all simulations. However, in comparing the results of
different empirical studies, we found that nominally identical experi-
mental conditions sometimes produce rather different interference and
facilitation effects. In particular, in experiments where subjects had to
say the color of the ink in which words were actually written, interfer-
ence effects were sometimes more than twice as large as in experiments
where color and word information occurred in physically different loca-
tions. This difference probably reflected differences in subjects' ability
to selectively modulate processing of task-relevant and task-irrelevant
information. To capture this, we allowed the strength of the attentional
effect to be adjusted separately for each simulation. This was done by
varying the resting activation level of units in the unattended channel,
thereby placing them in a more or less responsive state.

Strength of Processing

Simulation 1: The Basic Stroop Effect

The purpose of the first simulation was to provide an account
for the set of empirical findings that comprise the basic Stroop
effect. These are displayed in Figure 5A and are described'
below.

Word reading is faster than color naming. The time to read
a color word is approximately 350-450 ms, whereas the time to
name a color patch or a row of colored Xs is 550-650 ms. Thus,
word reading is approximately 200 ms faster than color naming
(cf.Cattell, 1886; Dyer, 1973;M.O.Glaser&Glaser, 1982).

Word reading is not affected by ink color. Ink color has virtu-

ally no effect on the amount of time needed to read the word.
That is, reaction times to read the word in the conflict and con-
gruent conditions are the same as in the control condition. This
phenomenon was originally discovered by Stroop (1935) and
can be seen in the flat shape of the graph for word reading in
Figure 5A. This finding is extremely robust and is very difficult
to disrupt. Even when the ink color appears before the word, it
does not interfere with word reading (M. O. Glaser & Glaser,
1982). Only when the task is changed radically will the ink color
interfere with word reading (Dunbar & MacLeod, 1984; Gu-
menik& Glass, 1970).

Words can influence color naming. A conflicting word pro-
duces a substantial increase in reaction time for naming the ink
color relative to the control condition. The amount of interfer-
ence is variable but is usually approximately 100 ms (e.g., Dun-
bar & MacLeod, 1984; M.O. Glaser & Glaser, 1982;Kahneman
& Chajczyk, 1983). This finding is also extremely robust, and
nearly all subjects show the effect. Even when the word and the
ink color are presented in different spatial locations (e.g., the
word is placed above a color patch), the word still interferes
with naming the ink color (Gatti & Egeth, 1978; Kahneman &
Henik, 1981). In the congruent condition, the word facilitates
ink naming, producing a decrease in reaction time relative to
the control condition (Hintzman et al., 1972). The amount of
facilitation can range from approximately 20 ms (Regan, 1978)
to approximately 50 ms (Kahneman & Chajczyk, 1983).

There is less facilitation than interference. Congruent stimuli
have not been used as extensively as conflict stimuli, but the
general finding is that the amount of facilitation obtained is
much less than the amount of interference (Dunbar & Mac-
Leod, 1984).

Figure 5A shows the findings in a standard Stroop experiment
(Dunbar & MacLeod, 1984). Figure 5B presents the results of
our simulation, which reproduces all of the empirical effects.
These are explained as follows.

Word reading was faster than color naming in the simulation
because differential amounts of training led to the development

3
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Reaction Time
(msec = 12 * cycles + 206)

Figure 4. Distribution of reaction times for 100 trials of color
naming (control condition) from Simulation 1.
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Empirical Data Simulation Data
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D Color Naming
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Figure 5. Performance data for the standard Stroop task. (A: Data from an empirical study [after Dunbar
& MacLeod, 1984, p. 62]. B: Results of the model's simulation of these data.)

of a stronger pathway for the processing of word information
than color information. The fact that the network was trained
more extensively with word stimuli than with colors meant that
units in the word pathway had a greater number of trials in
which to increment their connection strengths (see Figure 3).
Stronger connections resulted in larger changes to the net input,
and therefore to the activation, of word units in each processing
cycle (see Equations 1 and 2). This allowed activation to accu-
mulate at the output level more rapidly in the word pathway
than in the color-naming pathway. The faster the correct re-
sponse unit accumulates activation (and competing units be-
come inhibited), the faster the response threshold will be ex-
ceeded. Thus, the strength of a pathway determines its speed of
processing.

The difference in the strength of the two pathways also ex-
plains the difference in interference effects between the two
tasks. First, consider the failure of color information to affect
the word-reading task. Here, activation of the task demand unit
puts intermediate units in the word-reading pathway in a re-
sponsive state, so that information flows effectively along this
pathway. In contrast, because no attention is allocated to the
color pathway, units in this pathway remain in an unresponsive
state, and accumulation of information at the level of the inter-
mediate units is severely attenuated. Furthermore, because the
connections from intermediate to output units are weaker in
the color pathway, information that accumulates on intermedi-
ate units is transmitted to the output level more weakly than
information flowing along the word pathway. Both of these fac-
tors diminish the impact of color information on the network's
response to a word. As such, reaction time in the word-reading
task is only slightly affected by the presence of either congruent
or conflicting color input.

Different results occur when color naming is the task. Atten-
tion is allocated to this pathway, so that the intermediate units
are placed in a responsive part of their dynamic range, and in-
formation flows unattenuated to the output level. Now it is the
units in the word pathway that are relatively unresponsive.
However, because of the stronger connections in the word path-

way, more activation can build up at the intermediate unit level.
The amount of this accumulation is greater than it was for color
units in the word-reading task.9 Furthermore, the connections
from the intermediate units to output units in this pathway are
also stronger than in the color pathway, so information that ac-
cumulates on the intermediate units has a greater influence at
the output level. Thus, some information flows along the word
pathway even in the absence of the allocation of attention. Al-
though this flow of information is only partial, and is not suffi-
cient to determine which response is made, it is enough to affect
the speed with which a response is made, thus producing inter-
ference and facilitation in the color-naming task. This process-
ing of information in the word pathway without the allocation
of attention captures the involuntariness of word reading and
accounts for the interference and facilitation effects that are ob-
served. All of these effects are attributable to the fact that the
word-reading pathway is stronger (i.e., has stronger connec-
tions) than the color-naming pathway.

The fourth finding is that the amount of interference is con-
sistently larger than the amount of facilitation. In the model,
there are two factors that contribute to this result. One is the
nonlinearity of the activation function. This imposes a ceiling
on the activation of the correct response unit, which leads to an

9 As an example, consider the case in which the RED word input unit
is activated. This has an excitatory connection to the leftmost interme-
diate unit in the word pathway, with a strength of 2.63. In the absence
of input from the task demand unit (and ignoring the effects of noise),
this intermediate unit receives a net input of 2.63 + (—44to) = —1.37.
After passing this through the logistic activation function, we arrive at
an asymptotic activation of 0.2 for this unit. This is the amount contrib-
uted to the net input of the "red" output unit. Now consider the situa-
tion for the color-naming pathway. There, the strength of the connection
from the red input unit to the corresponding intermediate unit is only
2.20. In the absence of task demand activation, the intermediate unit
will have a net input of 2.20 + (-44to) = -1.8, which when passed
through the logistic function, results in an activation of 0.14. Thus, in
the absence of attention, activation of an intermediate color unit is lower
than that of a corresponding word-pathway unit.
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Net Input

Figure 6. Mechanisms underlying the asymmetry between interference and facilitation effects. (A: Effects
of equal amounts of excitation [E] and inhibition [I] from a competing pathway on the asymptotic activation
of an output unit. B: The effects of these different asymptotic levels of activation on the time to reach a
particular level of activation. F = facilitation; I = interference.)

asymmetry between the effects of the excitation it receives from
the irrelevant pathway in the congruent condition and the inhi-
bition it receives in the conflict condition. To see this more
clearly, consider the idealized situation depicted in Figure 6A.
In this figure, the activation function for the correct response
unit is shown. Its asymptotic activation is plotted for each of
the three experimental conditions in a color-naming trial. Note
that activation is highest in the congruent condition and lowest
in the conflict condition. This occurs because in the congruent
condition, the-irrelevant pathway contributes excitatory input
to the response unit, increasing its net input, whereas in the
conflict condition, it contributes inhibition, decreasing the re-
sponse unit's net input. Note that although the increase in net
input in the congruent condition is equal in magnitude to the
decrease in the conflict condition, the effect on the activation of
the response unit is not symmetric: Inhibition has a greater
effect than does excitation. This difference occurs because the
unit is in a nonlinear region of the logistic activation function.
In this region, increasing the net input has less of an effect on
activation than decreasing it.10

Figure 6A shows the asymptotic activation values for the re-
sponse unit in each of the three conditions. Figure 6B is a plot
of the rise in response unit activation, over time, toward each
of these asymptotic values. Note that at any point the difference
in activation between the control and conflict conditions is
greater than the difference between the control and congruent
conditions. Therefore, throughout the course of processing, in-
hibition has a greater influence than excitation on the accumu-
lation of evidence at the output level. Thus, the nonlinearity of
the logistic function and its interaction with the dynamics of
processing help to produce the asymmetry between the size of
interference and facilitation effects observed in the simulation.

A second factor also contributes to the asymmetry in the
magnitudes of interference and facilitation. This is the basically
negatively accelerating form of the curve relating activation to
cycles of processing. This negatively accelerating curve is an in-
herent property of the cascade mechanism (time averaging of
net inputs) and would tend to cause a slight asymmetry in the
interference and facilitation effects even if interference and fa-
cilitation had exactly equal and opposite effects on asymptotic
activation. However, this is a relatively weak effect and is not

sufficient in and of itself to account for the greater than 2:1 ratio
of interference to facilitation that is typically observed.

Neither the logistic function nor the cascade mechanism was
included in the model specifically to produce an asymmetry
between interference and facilitation. The logistic function was
included to introduce nonlinearity into processing for the pur-
pose of computational generality (see Mechanisms for Learning
and the Time Course of Processing section, presented earlier)
and to allow attention to modulate the responsiveness of units
in the processing pathways. The cascade mechanism was intro-
duced to model the dynamics of processing. The fact that these
mechanisms led to an asymmetry between interference and fa-
cilitation is a by-product of these computationally motivated
features of the model.

Most theories have been unable to account for this asymme-
try in terms of a single processing mechanism. In fact, several
authors have argued that separate processing mechanisms are
responsible for interference and facilitation effects (e.g., M. O.
Glaser & Glaser, 1982; MacLeod & Dunbar, 1988). Although
this remains a logical possibility, our model demonstrates that
this is not necessarily the case. We believe that the failure of
previous theories to account for this asymmetry in terms of a
single mechanism has been due to their reliance, either explic-
itly or implicitly, on linear processing mechanisms.

Simulation 2: SOA Effects—Speed of Processing and
Pathway Strength

The results of the previous simulation demonstrate that the
strength of a pathway determines speed of processing and

10 The reason that output activations fall in this region has to do with
the nature of the activation function and training in this system. Early
in training, the connections to an output unit are small, so that the net
input it receives, regardless of the input pattern being presented, is near
0.0, and its activation is approximately 0.5. If the correct response to a
particular input pattern requires that output unit to have an activation
value of 1.0, then learning will progressively adjust its connections so
that its activation shifts from 0.5 to a value closer to 1.0 when that input
pattern is present. The region between 0.5 and 1.0 (for units that should
have an output of 1.0) is precisely the region of the logistic function that
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Figure 7. Effects of varying stimulus-onset asynchrony (SOA) between word and color stimuli in the color-
naming and word-reading tasks. (A: Data from an empirical study [after M. O. Glaser & Glaser, 1982]. B:
Results of the model's simulation of these effects. Note. Thedata in panel A are from "Time Course Analysis
of the Stroop Phenomenon" by M. O. Glaser and W. R. Glaser, 1982, Journal of Experimental Psychology:
Human Perception and Performance, 8, p. 880. Copyright 1982 by the American Psychological Association.)

whether one process will influence (interfere with or facilitate)
another. In this simulation, we demonstrate that pathway
strength, and not just speed of processing, is responsible for in-
terference and facilitation effects.

The speed-of-processing account of the Stroop effect assumes
that the faster finishing time of the reading process is responsi-
ble for the asymmetry in interference effects between word
reading and color naming. If no other factors are assumed, then
this account predicts that the Stroop effect can be reversed by
presenting color information before the word.1'

M. O. Glaser and Glaser (1982) tested this prediction and
found no support for it: Color information failed to interfere
with word reading even when color information preceded the
word by 400 ms. Indeed, they found no effect of colors on words
over SOAs ranging from —400 ms (color preceding word) to 400
ms (word preceding color). Data from the word-reading condi-
tion of one of their experiments are shown in the lower part of
Figure 1A.

We simulated the M. O. Glaser and Glaser (1982) experiment
by activating the color input unit before and after the word in-
put unit. This was done at the number of cycles corresponding
to the SOAs used in the actual experiment.12 To simulate the
reduced interference and facilitation effects observed at the 0-
ms SOA in this experiment, in comparison with the standard
experiment using integral stimuli, we increased the size of the
attentional effect for both pathways by decreasing the resting
net input to units in the unattended from —4.0 to —4.9. The
results of this simulation are presented in Figure IB.

The model shows little interference of color on word, regard-
less of SOA, just as is seen in M. O. Glaser and Glaser's (1982)

produces the asymmetry between interference and facilitation observed
in our simulations.

data. When color precedes word, the model shows a slight effect
of color on word, but the effect is much smaller than the effect
of word on color (the maximum, and what appears to be the
asymptotic amount of interference produced by colors on
words, is substantially less than the amount of interference pro-
duced by words on colors at the 0-ms SOA). In this way, the
model concurs with the empirical data, suggesting that differ-
ential speed of processing is not the sole source of interference
observed in the Stroop task. The model shows that interference
is substantially influenced by differences in strength of process-
ing: When attention is withdrawn from the weaker pathway, it
is able to produce less activation at the output level than the
stronger pathway is able to produce when attention is with-
drawn from it. As a result, weaker pathways produce less inter-
ference, independent of their finishing time.

Nevertheless, there is a discrepancy between the model and
the empirical data in Figure 7. The simulation shows some in-
fluence of color on word reading when the color is presented
sufficiently in advance of the word, whereas the subjects do not.
In fact, empirical data of Neumann (cited in Phaff, 1986) indi-
cate that under some conditions, colors appearing early can pro-
duce a small amount of interference with word reading, just as
the model implies. It is unclear, therefore, whether this mis-
match between the simulation and the M. O. Glaser and Glaser

1' This requires spatial separation of color and word stimuli. This re-
duces, but does not eliminate, the standard set of effects (see Gatti &
Egeth, 1978).

12 The number of cycles corresponding to each SOA was determined
in the following manner: The simulation was tested at the 0-ms SOA
(color and word presented simultaneously, as in Simulation 1). A regres-
sion was performed of these data on the M. O. Glaser and Glaser (1982)
data at the 0-ms SOA. Other SOAs were then divided by the regression
coefficient to arrive at the number of cycles to be used for each SOA in
the simulation.
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(1982) data represents a limitation of the model or the involve-
ment, in their experiment, of additional processes that are not
central to the Stroop effect. The latter possibility is suggested by
another discrepancy between our simulation and the empirical
results.

In M. O. Glaser and Glaser's (1982) experiment, subjects
showed very little interference in color naming when the word
appeared more than 200 ms in advance of the color (see upper
part of Figure 7 A). In their original analysis, this result was at-
tributed to strategic effects. More recently, the Glasers have sug-
gested that a process of habituation may be involved (W. Glaser,
personal communication, September 16, 1988). Our model
does not include such a process, and this may be why the simu-
lation shows greater rather than lesser amounts of interference
at the longer negative SOAs. Note, however, that if habituation
applies to color stimuli as it does to words, then it would also
tend to reduce any effect that colors have on word reading at
the longer SOAs. If this effect were small to start with, it might
be entirely eliminated by habituation. This may explain why
Glaser and Glaser failed to observe any effect of colors on words
at long SOAs, but owing to lack of a habituation process in our
model, a small effect was observed in the simulation.

In summary, although the model does not capture all aspects
of the empirical data, it clearly demonstrates our central point,
that differential strength of processing can explain why present-
ing a weaker stimulus before a stronger one fails to compensate
for differences in processing speed with regard to interference
and facilitation effects.

Practice Effects

A primary purpose of this model is to show how the changes
in strength that occur with practice can lead to the kinds of
changes in speed of processing and interference effects observed
for human subjects. These phenomena are addressed by the fol-
lowing two simulations.

Simulation 3: The Power Law

Numerous studies have demonstrated that the increases in
speed of processing that occur with practice follow a power law
(Anderson, 1982; Kolers, 1976; Logan, 1988; Newell & Rosen-
bloom, 1981). This finding is so common that some authors
have suggested that, to be taken seriously, any model of automa-
ticity must demonstrate this behavior (e.g., Logan, 1988). The
power law for reaction time (RT) as a function of number of
training trials (N) has the following form:

where a is the asymptotic value of the reaction time, b is the
difference between initial and asymptotic performance, and c is
the learning rate associated with the process. When this func-
tion is plotted in log-log coordinates, reaction time should ap-
pear as a linear function of number of trials, with slope c. Typi-
cally, RTis the mean of the distribution of reaction times for a
process at a given point in training. Recently, Logan (1988)
showed that, at least for some tasks, the standard deviation of
this distribution also decreases with training according to a
power law and that this occurs at the same rate as the decrease
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Figure 8. Log-log plot of the mean and standard deviation for reaction
time at various points during training on the color-naming task. (Re-
gression equations are for mean reaction times and standard deviations
separately, and are plotted as solid lines. Squared correlations between
observed and predicted values are also provided. Dashed lines show the
regression that best fits both sets of data simultaneously.)

in mean reaction time (i.e., the coefficient c is the same for both
functions). This means that in log-log coordinates, the plot of
reaction times should be parallel to the plot of standard devia-
tions.

To assess the current model for these properties, we trained
the network on the color-naming task for 100,000 epochs. At
regular intervals, the network was given 100 test trials (control
condition) on this task. Figure 8 shows the log of the mean reac-
tion time minus its estimated asymptote and the log of the stan-
dard deviation minus its estimated asymptote, each plotted
against the log of the number of training trials. Both mean reac-
tion time and standard deviation are closely approximated by
power functions of training. Furthermore, the exponents of the
two functions are very similar and are within the range of varia-
tion exhibited by Logan's (1988) empirical data.

Learning follows a power law for two reasons. First, learning
in the network is error driven. That is, the amount that each
connection weight is changed is based on how much each out-
put unit activation differs from its desired (target) value. Early
in training, this difference is likely to be large (otherwise, the
problem would already be solved), so large changes will be
made to the connection strengths. As the appropriate set of
strengths develops, the error will get smaller and so will the
changes made to the connections in each training trial. How-
ever, although weight changes will get smaller with practice, they
will continue to occur as long as there is training. This is because
target values are taken to be 1.0 for active units and 0.0 for all
others. These target values can never actually be reached with
finite input to units using the logistic activation function (see
Figure 2). Thus, there is always some error and therefore always
some additional strengthening of connections that is possible.
However, this strengthening will get progressively less with
training; therefore, improvements in reaction time will become
less as well.
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A second reason for the deceleration of improvements in re-
action time with practice is that as connections get stronger, sub-
sequent increases in strength have less of an influence on activa-
tion (and therefore reaction time). This is due to the nonlinear-
ity of the activation function: Once a connection (or set of
connections) is strong enough to produce an activation near 0.0
or 1.0, further changes will have little effect on that unit. Thus,
smaller changes in strength compounded with the smaller
effects of such changes combine to produce the pattern of dou-
bly diminishing returns that is captured by the log-log relation
between reaction time and practice.

The arguments just provided apply only when representa-
tions in the next-to-last layer have already been fairly well estab-
lished, and training involves primarily the connections between
this layer and the output layer. In training a multilayer network
from scratch, using backpropagation, there is a long initial
phase of slow learning, followed by one or more periods of rapid
acceleration, and then finally a phase that follows a power law.
Accordingly, when both the input and output layers of connec-
tions in our network had to be learned, improvements in reac-
tion time did not follow a power law from the start of training.
Adherence to the power law occurred only when meaningful
and moderately strong connections from the input units to the
intermediate units were already in place at the beginning of
training. Although these input connections were modifiable and
were augmented during training, their initial values had to be
such that the network could do the task by modifying only the
output connections.

Although some might take these findings as an indictment of
the backpropagation learning algorithm, we suggest that they
may reflect constraints on the applicability of the power law: It
may apply to only certain types of learning. Specifically, it may
not apply to situations in which an intermediate representation
must be constructed to perform a task. These may involve more
than one phase of learning, as is observed in backpropagation
networks when more than one layer of weights must be learned.
Along these lines, we have used a backpropagation model to
capture the stagelike character of learning reported in a set of
developmental tasks (McClelland, 1989), and Schneider and Ol-
iver (in press) have begun to explore how backpropagation nets
can capture multiphase learning observed for certain tasks in
adults.

Simulation 4: Practice Effects and the Development of
Automaticity

Having demonstrated that the current model conforms to
standard laws of learning, we now apply it to empirical data
concerning learning and the influence that learning has on in-
terference effects. MacLeod and Dunbar (1988) have shown
that both speed of processing and the ability of one process to
interfere with (or facilitate) another are affected by the relative
amounts of training that subjects have received on each. In their
experiments, subjects were taught to associate a different color
name to each of four different shapes. During the training
phase, the shapes were all presented in a neutral color (white),
and subjects practiced naming these for 20 days. Mean reaction
times were calculated for each day of training (see Figure 9 A).
After 1, 5, and 20 days of practice, subjects were tested with

neutral, conflict, and congruent stimuli in both the shape-nam-
ing and color-naming tasks.13 The results of this experiment can
be summarized as follows (these also appear in the top of Figure
12, presented later):

« After 1 day (72 trials per stimulus) of practice on shape naming,
this was still more than 100 ms slower than color naming. The
shapes had no effect on the time to name the ink colors. However,
the ink colors produced interference and facilitation in the shape-
naming task. The amount of interference was greater than the
amount of facilitation.

• After 5 days (504 trials per stimulus) of practice, shape naming
was significantly faster than on the first day. In addition, the
shapes now interfered with color naming, although they did not
produce facilitation. The colors continued to produce both inter-
ference and facilitation in shape naming.

• After 20 days (2,520 trials per stimulus) of practice, shape nam-
ing was slightly faster than ink naming. The shapes produced a
large amount of interference and a small amount of facilitation
in naming colors. The colors now produced much smaller
amounts of facilitation and interference in shape naming.

MacLeod and Dunbar (1988) argued that these data contradict
the idea that the attributes of automaticity are all or none. They
suggested instead that a continuum of automaticity exists, in
which it is the relative amount of training on two tasks that
determines the nature of the interactions between them. The
current model provides a mechanism for this.

To simulate the MacLeod and Dunbar (1988) experiments,
we used the network from the previous simulations (which had
already been trained on color naming and word reading), add-
ing a new pathway that was used for shape naming. This path-
way was identical in all respects to the two preexisting pathways,
except that it had not received any training (see Figure 10). As
with the color and word pathways, it was given a set of initial
connection strengths from the input to the intermediate units
that allowed it to generate a useful representation at the level of
the intermediate units, whereas small random strengths were
assigned to the connections between the intermediate and out-
put units.

Using this expanded network, we examined how practice on
a novel task (shape naming) affects its interaction with another
task that has already received a moderate amount of training
(color naming). The word pathway was not used in this simula-
tion.

The simulation involved a series of alternating phases of
training and testing, as in the empirical study. During each
training phase, the network was presented with only the two
control shape patterns. Both of these patterns were presented
in every training epoch. Although only two shape stimuli were
used in the simulation, the network received exactly the same
number of training exposures per stimulus that subjects re-
ceived in the experiment. During testing, the network was pre-
sented with the conflict and congruent stimuli as well as the
control stimuli in each task condition (color naming and shape

13 For the shape-naming task, these were (a) shapes in a neutral color
(control condition), (b) shapes in a color that was inconsistent with the
shape name (conflict condition), and (c) shapes in a color that was con-
sistent with the shape name (congruent condition). The same stimuli
were used for the color-naming task, except that the control condition
used a neutral shape (square).
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Figure 9. Training data for the shape-naming task in Experiment 3 of MacLeod and Dunbar (1988, p. 133),
and the results of two simulations of this data. (A: Empirical data and the results of simulations with and
without the indirect pathway for shape naming [see text]. B: Log-log plot of the empirical data and the
results of the simulation using the indirect pathway for shape naming, with regression lines computed
independently for each set of data.)

naming). Reaction times to each stimulus type were recorded
and averaged over each condition.

In the empirical study, test sessions gave subjects additional
practice with the stimulus items, including conflict and congru-
ent stimuli. To accurately simulate these circumstances, we al-
lowed the network to continue to adjust its connection strengths
(in both the color and shape pathways) during each test phase.
The network received exactly the same number of exposures to
each test stimulus as did human subjects. Furthermore, these
were blocked by task and presented in the same sequence as in
the empirical study. The network was tested after it had received
the same number of training exposures per stimulus received
by subjects on Days 1 (72), 5 (504), and 20 (2,520).

We simulated two components of the MacLeod and Dunbar
(1988) data: changes in the speed of shape naming with practice
and changes in interference effects between shape naming and
color naming. We consider each of these in turn.

Practice effects. According to the findings for other tasks in
which practice leads to automaticity, improvements in reaction
time for shape naming should have followed a power law. Mean
reaction time for shape naming on each day of training are
shown in Figure 9A (solid squares). These data are reasonably
well fit by a power function (see Figure 9B). Figure 9A also
shows the performance of the model as we have described it so
far (open triangles). The network exhibited significantly longer
reaction times than did subjects early in training. This result
suggested that, early on, subjects might be performing the task
in a different way than they did later. This interpretation agrees
with the general idea that flexible, general-purpose resources
are required to perform novel tasks, and only with practice do
automatic mechanisms come into play. Strategic (e.g., Posner
& Snyder, 1975), controlled (Shiffrin & Schneider, 1977) and
algorithm-based (Logan, 1988) processes would all fit into this
category. This model was not intended to address the mecha-
nisms underlying such processes in detail. However, to explore
the influence that they might have, we added an auxiliary path-
way to the model (see later discussion). We do not mean to sug-

gest, in having added this pathway, that something as simple
as our implementation underlies strategic processes; rather, we
included it as a way of approximating the influence that we as-
sume strategic processes would have on the time course of infor-
mation processing.

The new pathway was comprised of connections from the in-
termediate units in the shape pathway to a new set of intermedi-
ate units in a separate module, and connections from this mod-
ule to the model's output units (see Figure 11). We call this new
pathway the indirect pathway to distinguish it from the usual
direct pathways used by the network. The indirect pathway was
meant to represent the involvement of a general-purpose mod-
ule (or even set of modules) that has been committed to the
shape-naming process for the current task. The connections in
the indirect pathway were assigned a set of strengths that al-
lowed it to be used for shape naming, before the effects of train-
ing had accrued in the direct pathway. This captured the as-
sumption that such a mechanism can be rapidly programmed
to perform a given task. Because the indirect pathway relied on
an extra set of units, processing was slower than in the direct
pathway. This conforms to the common assumption that pro-
cessing relying on general-purpose mechanisms is slower than
automatic processing (e.g., Posner & Snyder, 1975).

The results of adding the indirect pathway to the network are
shown in Figure 9A (open circles): The simulation's perfor-
mance is now much closer to that of the subjects. Figure 9B
shows that the best fitting power functions for the empirical data
and the simulation are almost identical. By comparing the
model's performance with and without the indirect pathway,
it can be seen that as training progresses, performance relies
increasingly on the direct pathway. This increased reliance oc-
curs because, as the connection strengths in the direct pathway
increase with training, processing in this pathway becomes
faster. Our finding that such a transition from one processing
mechanism to another follows a power law is similar to one
described by Logan (1988), in which the transition from an al-
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Figure 10. The network architecture used to simulate the shape-naming experiments
conducted by MacLeod and Dunbar (1988).

gorithm-based to a memory-based process also produced a
power law.

Interference effects. Figure 12 shows the interference and fa-
cilitation effects that were observed for the two tasks after 1,5,
and 20 days of practice on shape naming. The top shows the
empirical data from MacLeod and Dunbar (1988, Experiment
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Figure 11. Detail of the pathways used for shape naming. (Highlighted
elements make up the indirect pathway.)

4), and the bottom shows the model's performance. Most im-
portant, we observe that the model captures the reversal of roles
of shape naming and color naming. For the subjects and for the
simulation, shape naming was initially much slower than color
naming. Shape naming also showed interference and facilita-
tion from colors early on, whereas color naming was not
affected by shapes. At the final point in training, the relation-
ship between the two processes reversed: Shape naming became
the faster process, whereas its sensitivity to interference was re-
duced and its ability to produce interference (with color nam-
ing) increased. At the intermediate point, the two processes
were more comparable in their overall speed and were able to
influence each other.

In the model, shape naming started out as the slower process
because early in training the strength of the connections in this
pathway were still much smaller than those in the color pathway.
The relationship between the two processes at this point was
directly analogous to the relationship between word reading
and color naming in Simulation 1. Note, however, that in this
simulation, color naming started out with the opposite role: Ini-
tially, color naming was the process that was insensitive to inter-
ference or facilitation and that was able to produce these effects.
Color naming assumed this opposite role without any change in
the strength of connections in its pathway. This makes it clear
that the absolute strength of a pathway (i.e., the magnitude of
connection strengths) is not the only relevant variable. Relative
strength, compared with a competing pathway, is also impor-
tant in determining whether a process will produce or be subject
to interference in a Stroop-like task. This finding is further sub-
stantiated by the patterns of performance at the end of training.
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By this point, the strength of the shape pathway exceeded that
of the color pathway. Accordingly, shape naming became faster
than color naming, insensitive to colors, and able to facilitate
and interfere with color naming.

On the basis of their data, MacLeod and Dunbar (1988) sug-
gested that the Stroop effect can be understood in terms of the
relative position of competing tasks along a continuum of auto-
maticity and that the position of the tasks along this continuum
can be influenced by training. The results of this simulation are
consistent with such a view and demonstrate that the observed
effects can be explained by increases in pathway strength that
accompany training. This is an important finding, for it suggests
that the same process can appear to be automatic (faster and
able to influence a competing process) or controlled (slower and
influenced by a competing process), depending on the context
in which it occurs.

There is, however, one respect in which the behavior of the

model differs qualitatively from that of the subjects in MacLeod
and Dunbar's (1988) study. This concerns the degree of interac-
tion between processes that are of comparable strength. At the
intermediate point in training, the empirical data show that
each task interfered substantially with the other. In the simula-
tion, although there was some mutual interference, the amount
was rather small. This was a robust property of the model: Pro-
cesses of comparable strength showed less influence on one an-
other than stronger processes did on weaker ones. Thus, addi-
tional factors outside the scope of our model may be involved
when competing processes are of comparable strength. In fact,
it is difficult to account for these findings even on other, more
traditional grounds.14 In this light, the mutual interference

14 For example, mutual interference might be thought to reflect an
underlying probability mixture of trials involving unidirectional inter-
ference in each of the two directions. Thus, at an intermediate point in
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effect remains a general challenge to models of interference phe-
nomena and warrants further research.

Allocation of Attention

Simulation 5: Attention and Processing

A primary reason for studying interference effects is that they
can indicate something about the requirements of different pro-
cesses for attention. Thus, in the Stroop task, it is assumed that
information in the irrelevant channel is not attended to. To the
extent that this unattended information can produce interfer-
ence, it must not rely on attention in order to be processed. The
lack of a requirement for attention is one of the primary criteria
for automaticity (Posner & Snyder, 1975; Shiffrin & Schneider,
1977). It has often been assumed that automatic processes not
only do not require attention but also are not influenced by
attention (e.g., Posner & Snyder, 1975). Kahneman and Treis-
man (1984) referred to this as the "strong automaticity" claim.
They and others (e.g., Logan, 1980) have challenged this view,
providing a large body of evidence that suggests that few pro-
cesses, if any, occur entirely independent of attention (e.g., Kah-
neman & Chajczyk, 1983; Kahneman & Henik, 1981; Treis-
man, 1960). For example, Kahneman and Henik (1981) and
Kahneman and Chajczyk (1983) showed that in the Stroop task,
the allocation of attention can influence the degree to which
word reading interferes with color naming.

On the basis of these and related findings, Kahneman and
Treisman (1984) have argued that automatic processes are sub-
ject to control by attention, although individual processes may
differ in their degree of susceptibility to such control. Our
model presents a view of automaticity that concurs with both
of these points. In Simulation 1, we showed that although pro-
cessing can occur in absence of attention, capturing the invol-
untariness of automatic processes, this autonomy was limited:
Even though words were processed without the allocation of
attention, thereby interfering with color naming, they did not
determine the response. Thus, even the strongest processes were
controlled by attention. Furthermore, the model shows that
control by attention is a matter of degree: This was seen in the
gradual development of interference effects that occurred as
strength of processing increased with training in Simulation 4.

In the following simulations, we examined the relationship
between requirements for attention and strength of processing
more directly. First, we looked at the effects of reducing atten-
tion on performance of the color-naming and word-reading

training, the shape pathway might interfere with the color pathway for
some stimuli (or subjects), whereas the reverse is true for others. The
effect of averaging over items (or subjects) would be that interference
would appear to be bidirectional. However, the size of this average
should be less than the amount of interference produced by colors early
in training or by shapes late in training, because at the intermediate
point, only a subset of stimuli (or subjects) would be contributing to
interference in each direction, whereas performance should be more
homogeneous at the beginning and end of training. In fact, the data
indicate that mutual interference was of roughly the same magnitude as
the interference effects at the extremes of training. A probability mix-
ture cannot explain this finding.

tasks. The amount of attention allocated to a task was repre-
sented as the activation value of the task demand unit associated
with that task. Figure 13A shows reaction times to control stim-
uli in the word-reading and color-naming tasks as a function
of task demand unit activation for each of the corresponding
processes. Two phenomena are apparent. For a given level of
performance, color naming required more attention than did
word reading. However, both tasks were influenced by the allo-
cation of attention. Even the word-reading process showed deg-
radation with reduced attention. Indeed, the fact that stronger
pathways are controlled by attention is what allows the model
to perform a task using the weaker of two competing pathways.

Although stronger pathways rely less on attention, require-
ments for attention are influenced by more than just the abso-
lute strength of a pathway; they are also affected by the circum-
stances under which a process occurs. Figure 135 shows the
requirements that color naming had for attention under three
different conditions: (a) no competing information, and con-
flicting information from (b) a weaker process (shape naming,
early in training) and (c) a stronger process (word reading). In
the two conflict conditions, color naming showed very different
requirements for attention, depending on the strength of the
competing pathway. For a given level of performance, greater
activation of the task demand unit was required for competition
with the stronger process than with the weaker process.

The performance of the model under these conditions dem-
onstrates that although processing can occur in the absence of
attention, all processes are affected by attention. Like the other
attributes of automaticity, requirements for attention vary ac-
cording to the strength of the underlying pathway and the con-
text in which the process occurs. The stronger a process is, the
less are its requirements for attention and the less susceptible it
is to control by attention, increasing the likelihood that it will
produce interference.

Simulation 6: Response-Set Effects—Allocation of
Attention at the Response Level

In the preceding simulations, we explored the role that atten-
tion plays in selecting information from one of two competing
pathways. Attentional selection occurred at the level of the in-
termediate units, where information in the two pathways was
still separate. However, the attention-allocation mechanism
used in this model is a general one and can be applied to other
levels of processing as well. In the following simulation, this
mechanism was used to select a particular set of responses at
the output level of the network. This simulation provides an
account for response-set effects that have been observed in em-
pirical studies (e.g., Dunbar, 1985; Klein, 1964; Proctor, 1978).

Response-set effects reflect the fact that information related
to a potential response leads to more interference (and facilita-
tion) than information unrelated to the task. In the standard
Stroop experiment, information in the irrelevant dimension is
always related to a potential response. Potential responses are
said to make up a response set. For example, in the color-nam-
ing task, when the word RED is written in green ink, although
"red" is an incorrect response in that particular trial, it will be
a correct response on other trials. Thus, both "red" and "green"
are in the response set. However, if the color blue never appears,
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then the word BLUE is not in the response set, because it is never
a response in the task. Several studies, using both the color-nam-
ing task (e.g., Proctor, 1978) and a picture-naming task (Dun-
bar, 1985), have shown that words that are not potential re-
sponses produce significantly less interference than do words
that are in the response set.

An explanation that is commonly offered for this effect is that
members of the response set are primed, either by instructions
for the task (i.e., by informing the subjects of the stimuli to
which they will have to respond) or through experience with
the stimuli in the course of the task itself (e.g., Kahneman &
Treisman, 1984). The current model provides a related account
of response-set effects, in terms of the selective allocation of at-
tention to members of the response set. The same mechanism
that we used to allocate attention to a particular pathway in
previous simulations can be used to allocate attention to a par-
ticular response or set of responses at the output level. In the
previous simulations, allocation of attention to a processing
pathway placed the intermediate units in that pathway on a
more responsive part of their activation curve. This placement
occurred through the activation of a task demand unit that off-
set the negative bias on intermediate units in that pathway. The
same mechanism can be implemented at the response level by
adding a negative bias to each of the output units and having
the allocation of attention to a response offset the negative bias
on the appropriate output units.15

We simulated the response-set effects observed for a picture-
naming task used in an experiment by Dunbar (1985). In this
task, a word was placed in the center of a picture, and subjects
were required to name the picture and ignore the word. Sub-
jects' performance in this task was almost identical to that in
the standard color-naming task: Picture naming was slower than
was word reading, the word both interfered with and facilitated
picture naming, and the picture had no effect on word reading
(for similar studies, cf. Fraisse, 1969; W. R. Glaser & Diingel-

hoff, 1984; and Lupker & Katz, 1981). In Dunbar's experiment,
there were five pictures of animals (horse, bear, rabbit, sheep,
and cat16) and thus five possible responses. Some of the word
stimuli used were potential responses (e.g., HORSE and BEAR),
whereas others were animal words that were not in the response
set (e.g., GOAT and DONKEY). Dunbar found that words in the
response set produced significantly more interference than did
words that were not (see Table 3).

To simulate this experiment, the model used for Simulation
1 was extended in the following ways. First, we increased the
number of units at each level of processing in each of the two
pathways to 10 (see Figure 14). One pathway was used to repre-
sent picture naming, and the other was used to represent word
reading. Five output units were used to represent potential re-
sponses and were labeled "horse," "bear," "rabbit," "sheep,"
and "cat." The remaining 5 were used to represent words that
were not part of the response set, and these were labeled "goat,"
"donkey," "dog," "mouse," and "seal." The 10 input units in
each pathway corresponded to these output units and were la-
beled accordingly.17

The new network was trained in a way that was analogous to

15 This mechanism was implicit at the output level in the previous
simulations. To see this, imagine that a negative bias was associated with
each of the output units, just as it was with the intermediate units. How-
ever, because both output units were in the response set, attention was
maximally allocated to each. This would offset the negative bias on both
of them. That is, the bias terms on the output units would always be
equal to 0.

16 To reflect the analogy between picture stimuli in this task and color
stimuli in the classic Stroop task, we refer to picture stimuli in lowercase
letters, as we do for color stimuli.

17 The network was trained on input to the non-response-set picture
units, but because the corresponding stimuli were not in the response
set, they were never used in testing. These units were included strictly
to maintain symmetry between the two pathways in the network, so
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RESPONSE

Response set members Non-response set members

"horse" "bear" "goat" "donkey"

horse bear goat

PICTURE

HORSE BEAR GOAT DONKEY

WORD

Picture
Naming

Word
Reading

Figure 14. The network used to simulate response-set effects. (Numbers that appear inside each output
unit are the bias terms that were assigned to these units during testing.)

training in Simulation 1. Both pathways were trained on all 10
of their inputs, with stimuli in the picture pathway receiving
10% of the amount of training received by those in the word
pathway. During training, attention was allocated maximally to
all of the units in both pathways, as was the case in previous
simulations. During testing, however, several adjustments were
made in the allocation of attention. First, to simulate the some-
what smaller effects of words on picture naming (Dunbar, 1985)
than on color naming (Dunbar & MacLeod, 1984), we in-
creased the size of the attentional effect at the level of the inter-
mediate units, much as we did in Simulation 2 (resting negative
bias on all intermediate units of -4.5; strengths from the task
demand units to intermediate units of 4.5).I8 In addition, atten-
tion was allocated differentially among the output units: Non-
response-set units (e.g., "goat" and "donkey") were given a par-
tial negative bias (-0.1). This differential allocation corre-
sponded to the hypothesis that, during testing, subjects allocate
attention maximally to relevant responses and disattend to ir-
relevant responses, although not completely (cf. Deutsch, 1977;
Kahneman & Treisman, 1984). The amount of negative bias
applied to nonresponse items was chosen to capture the empiri-
cal data as accurately as possible. However, the fact that the size

that differences in processing between them could not be attributed to
architectural asymmetries.

of the bias (—0.1) was smaller than the negative bias for interme-
diate units in the disattended pathway (—4.0) is consistent with
empirical data demonstrating that selection by stimulus set is
easier than selection by response set (cf. Broadbent, 1970; Kah-
neman & Treisman, 1984; Keren, 1976). The difference in bias
between intermediate and output units is also consistent with
the view that subjects are less able to allocate attention selec-
tively to different representations within a module than to rep-
resentations in different modules (e.g., Navon & Miller, 1987;
Wickens, 1984).

Table 3 shows data from Dunbar's (1985) experiment as well
as the results of the simulation. In both cases, stimuli that were
not in the response set produced less interference than did re-
sponse-set stimuli. In the model, this difference was due to the
partial negative bias on the non-response-set output units,
which simulated failure to maximally attend to corresponding
responses. This negative bias led to partial inhibition of these
units, reducing the degree to which they were activated by input
stimuli. As a result, they contributed less to competition within
the response mechanism than did output units that were in the

18 This difference does not seem to be due to a difference in strength
between picture naming and color naming, because both have compara-
ble reaction times in the control condition (approximately 650 ms). The
comparability of naming times for colors and pictures was first noted
byCattell(1886).
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Table 3
Response-Set Effects

Condition Dunbar(1985) Simulation

Response-set conflict
Non-response-set conflict
Control
Congruent

781
748
657
634

777
750
664
628

Note. Empirical data are reaction times in milliseconds. Simulation
data are cycles X 4.5 + 488.

response set. The simulation demonstrated that attention can
be allocated to the response units with exactly the same mecha-
nism that was used to allocate attention to a pathway. When
attention is allocated with this mechanism, standard response-
set effects are obtained.

General Discussion

We have shown that the mechanisms in a simple network-
based model can explain many of the phenomena associated
with attention and automaticity. With regard to the Stroop
effect, the model shows that these mechanisms can capture a
wide variety of empirical effects. Among these are the asymme-
try of interference effects between word reading and color nam-
ing, the fact that interference effects are typically larger than
facilitation effects (Dunbar & MacLeod, 1984), that presenting
the color before the word produces substantially less interfer-
ence than would be expected simply from differences in the
speed of processing (M. O. Glaser & Glaser, 1982), and that
words that are not in the response set produce less interference
with color naming than words that are (Dunbar, 1985; Klein,
1964). In addition, the model exhibited many of the phenom-
ena associated with the development of automaticity, including
reductions in reaction time and variance that follow a power
law (Logan, 1988; Newell & Rosenbloom, 1981), gradual devel-
opment of the ability to produce interference accompanied by a
reduction in susceptibility to interference (MacLeod & Dunbar,
1988), and a reduction of the requirements for attention as
learning occurs (Logan, 1978; Shiffrin& Schneider, 1977).

The model provides a common explanation for these findings
in terms of the strength of processing pathways. This account
goes beyond many other theories of automaticity by describing
an explicit set of processing mechanisms from which the empir-
ical phenomena are shown to arise. These mechanisms provide
a basis for learning, the time course of processing, and the in-
fluence of attention. Several important features of automaticity
emerge from this account, including the facts that the properties
of automaticity are continuous and that their emergence de-
pends largely on the strength of a process relative to the
strengths of competing processes.

The model is not perfect in its present form. For example, it
does not account for the fact that presenting a word sufficiently
in advance of the color reduces interference (M. O. Glaser &
Glaser, 1982). It also shows less interaction between processes
of comparable strength than the available data seem to indicate
(MacLeod & Dunbar, 1988). Some of these shortcomings may

be due to the fact that the model does not include mechanisms
for the processing of strategic components in a task (e.g., inter-
pretation of task demands, evaluation of the response set, and
compensation for a preceding conflicting stimulus). Further re-
search and development are needed to capture these and other
aspects of performance. Nevertheless, the successes of the
model to date indicate the usefulness of the general approach.
In the remainder of this discussion, we consider the implica-
tions of the approach for issues beyond those directly addressed
in our simulations.

Reconsidering Controlled and Automatic Processing

The model demonstrates that differences in interference
effects are not sufficient to make a distinction between different
types of processes. A common assumption is that if one process
interferes with another, the process that produces interference
is automatic and the other is controlled. However, the model
shows that this disparity can be explained by differences in the
strength of two processes that use qualitatively identical mecha-
nisms. Furthermore, both the model and recent empirical evi-
dence demonstrate that the same process can, according to in-
terference criteria, appear to be controlled in one context and
automatic in another.

In this respect, our model provides a very different account
of the Stroop effect from other models, such as one described
by Hunt and Lansman (1986; also, see Reed & Hunt, 1986).
Their model is based on a production-system architecture that
is a modified version of the one used in ACT* (Anderson, 1983).
Their model distinguishes between controlled and automatic
processing on the basis of the manner in which one production
influences the firing of others. In controlled processing, one
production activates a representation in working memory that
matches the criteria for another, increasing the activation value
for that production, and hence its likelihood of firing. In auto-
matic processing, however, productions can influence each
other without relying on working memory through the direct
spread of activation from one production to another. In the
Hunt and Lansman model, color naming is assumed to be a
controlled process, which relies on working memory. As such,
it is highly influenced by the contents of working memory. In
particular, in the conflict condition, when there is competing
word information in working memory, processing is slowed, re-
sulting in Stroop-like interference. In contrast, word reading is
assumed to be automatic, and thus to occur largely through the
direct spread of activation between production rules. This
makes it less susceptible to influence by the contents of working
memory.

The Hunt and Lansman (1986) model provides an explicit
account of the nature of controlled processing (in terms of
working memory and productions), which our model does not.
However, their model faces serious limitations. First, it fails to
capture some of the basic features of the Stroop task: In the
control conditions, color naming and word reading are per-
formed at the same speed. Furthermore, the color can interfere
with and facilitate word reading, neither of which occurs in em-
pirical studies. It is not clear whether these failures to fit the
empirical data result from fundamental limitations in their
overall approach or the particular implementation they report.
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Most important, however, is that their model accounts for
differences in interference effects between color naming and
word reading by assuming that these tasks represent different
types of processes: One is controlled, the other is automatic. By
making such qualitative distinctions, it seems that this ap-
proach cannot in principle account for the MacLeod and Dun-
bar (1988) findings, which show that color naming can appear
to be controlled in one context but automatic in another (i.e.,
when it is in competition with a less practiced task). In contrast,
our model accounts for these findings in terms of differences in
the relative strengths of two competing pathways, both of which
might be considered to be automatic.

Although our model indicates that there is a continuum of
automaticity, it does not reject the existence of controlled pro-
cessing. At the extreme low end of the automaticity continuum,
where there is no preexisting pathway to perform a task, pro-
cessing must occur in a very different way. Consider, for exam-
ple, a subject who is told to say "red" when a particular random
figure is presented and to say "green," "blue," and so forth for
each of several other shapes. Initially, the subject will lack the
relevant connections for performing the task. At this point, the
task might be performed with the assistance of the experi-
menter (e.g., the subject may be reminded of the color word that
corresponds to the shape on the screen). The subject might try
to learn each correspondence, using verbal associations to the
shapes (e.g., orange is the name of the shape that looks like Flor-
ida) or other mnemonics. We assume that such processes rely
on indirect pathways that can be used to establish at least a few
arbitrary associations relatively quickly, but we also assume that
processing in such pathways is slow and requires effort to main-
tain. At the same time, as practice progresses and the subject
receives feedback regarding responses, connections would be
starting to build in a pathway that will ultimately allow the
shape to directly activate the correct response, without recourse
to indirect verbal mediation, mnemonic mediation, or both. Al-
though learning occurs more gradually in such direct pathways,
it leads to processing that is faster and stronger than is possible
using indirect pathways.

Thus, whereas subjects can respond correctly without exter-
nal help after only a few trials, we assume that the direct path-
way would generally not at this point be sufficient to produce
the response. The activation of a response would be based on the
combination of information from both the direct and indirect
mechanisms, with the relative importance of the direct pathway
growing steadily over trials and the contribution made by the
indirect pathway diminishing. In summary, what we see during
the early phases of practice may reflect a gradual transition
from a reliance on indirect to direct pathways.

There is a partial correspondence between our direct-indi-
rect distinction and the traditional distinction between con-
trolled and automatic. As already noted, a process based on
indirect pathways would have all the earmarks of what is typi-
cally called a controlled process: It would be slow, it might con-
sist of a series of steps that could be disrupted or interfered with,
and it might depend on declarative (verbal) memory (e.g.,
"Florida is orange") or other explicit mnemonics requiring
effort and the allocation of attention. On the other hand, at high
extremes of practice, direct performance would correspond
closely to what typically has been called automatic: Processing

Novel Tasks

Indirect 1

Controlled -

Hiehlv Practiced Tasks

(Indirect with
very weak direct) Weak Direct

Controlled

Strong direct

Automatic

Figure 15. Types of processing: The relationship of the proposed dis-
tinction between direct and indirect processing to the traditional dis-
tinction between controlled and automatic processing with regard to
degree of practice.

would be much faster, less susceptible to interference, more ca-
pable of producing interference, and less influenced by the allo-
cation of attention. In between, however, the correspondence
between these distinctions breaks down. As the simulations pre-
sented in this article demonstrate, a process that is completely
direct can, under some circumstances, exhibit all of the proper-
ties usually ascribed to a controlled process. Thus, we propose
that processes that have previously been classified as controlled
might more profitably be segregated into those that are direct
and those that are indirect. Within the range of direct processes,
there would be a continuous spectrum of pathway strengths that
span the range of different degrees of automaticity. Figure 15
illustrates the correspondence between traditional usage and
the terms proposed here.

The model provides an explicit account of direct processes
and shows how changes in the strength of these processes, which
result from practice, can lead to seemingly qualitative changes
in performance. The model is less explicit about indirect pro-
cesses. Because our focus was on the nature and interaction of
direct processes, indirect processes were included in only one
simulation (Simulation 4) to capture performance of the shape-
naming task early in training.

The significant aspects of our implementation of an indirect
process (see Simulation 4) were that it relied on an extra module
in the processing pathway and that the connections in this path-
way were available early in training, before connections had de-
veloped in the direct pathway. This implementation captured
the slower dynamics of indirect processes that commonly have
been observed. However, it did not capture other features of
indirect processes, such as their flexibility, and the general-pur-
pose nature of the mechanisms involved. Nevertheless, there
are extensions of our model that might capture some of these
features. For example, the single additional module used in
Simulation 4 could be replaced with a series of modules—per-
haps participating in several different processing pathways—
that had highly adaptive but quickly decaying connections.
These properties would capture the flexible, general-purpose,
but slower and less stable, nature of indirect processing. Al-
though PDF research in this area is just beginning, several PDF
models that use such mechanisms have already begun to appear
(e.g., Hinton & Plaut, 1987; Schneider, 1985; Schneider & Det-
weiler, 1987).

Attention and the Control of Processing
We have argued that an important difference between our di-

rect-indirect distinction and the traditional dichotomy be-
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tween controlled and automatic processing is that in our dis-
tinction, processes of either type can exhibit performance char-
acteristics traditionally associated with controlled processing,
such as slower speed and susceptibility to interference. The
same difference can be found between these two approaches
concerning attentional control of processing.

At the heart of the theoretical distinction between controlled
and automatic processing are two basic assumptions: Con-
trolled processing depends on the allocation of attention; auto-
matic processing occurs independently of attention. As we dis-
cussed in Simulation 5, there is reason to believe that few, if any,
processes are entirely immune to the affects of attention. In the
simulations we present, even the strongest pathways, in which
processing exhibited all of the other attributes of automaticity,
processing was affected by the allocation of attention. For exam-
ple, in Simulation 1, although processing in the word pathway
occurred without the allocation of attention, leading to interfer-
ence with color naming, this processing was only partial and
was insufficient to determine which response was made. Simu-
lation 5 showed that the word-reading process was directly in-
fluenced by changes in the allocation of attention.

The proposal that direct processes are subject to attentional
control is quite different from the proposal that a particular task
is subject to attentional control. Thus, others (e.g., Shiffrin,
1988) have attempted to explain the fact that automatic pro-
cessing tasks such as word reading are subject to attentional
control by arguing that behavior relies on numerous processes,
some of which are automatic and some of which may be con-
trolled. In this view, control over the performance of a task
could be explained by the allocation or withdrawal of attention
from the controlled processes involved, preserving the indepen-
dence of the automatic processes from the effects of attention.
Although we do not dispute the claim that behavior is com-
posed of many component processes, our model asserts that all
of these processes may be subject, in varying degrees, to control
by attention.

Attention as the Modulation of Processing

Given that all cognitive processes are subject, in some degree,
to attentional control, the question arises about how this control
is achieved. Attention is implemented in the model as the mod-
ulation of processing in a pathway. This occurs by input from
attention (task demand) units, which cause a shift in the respon-
siveness of units in a processing pathway.

Attention uses exactly the same processing mechanisms as
the other components of the model. The connections from the
attention units to the units in a processing pathway are of the
same type as the connections within the pathway itself, and at-
tentional information is represented in the same way as any
other information in the network: as a pattern of activation over
a set of units. As such, the input that a pathway receives from
the attention units is qualitatively the same as input received
from any other source of information in the network. Attention
can be viewed simply as an additional source of information
that provides a sustained context for the processing of signals
within a particular pathway. Thus, attentional mechanisms are
not given special status in the model, and in general, an atten-
tional module can be thought of as any module that has a set

of connections that allow it to modulate processing in another
pathway. There may be many such modules within a system, a
given module may modulate one or many pathways, and it
might even participate directly in one set of processing path-
ways while it serves to modulate others. This view of attentional
control is similar to the multiple-resources view that has been
expressed by others (e.g., Allport, 1982; Hirst & Kalmar, 1987;
Navon& Gopher, 1979; Wickens, 1984).

Our implementation of attentional modulation is different
from several other recent accounts of attention. In Anderson's
(1983) ACT* theory, attention is related to the competition for
representation in working memory rather than the modulation
of processing in otherwise automatic pathways. Schneider
(1985) provided an account of attention as the modulation of
information in a PDF network. However, his model uses a
mechanism for attentional modulation (multiplicative connec-
tions) that is qualitatively distinct from other types of process-
ing in the network, unlike the model we have presented.

The notion of attention as a modulator, together with the idea
that processing is continuous and that the resulting activations
are graded in strength, has a long history in the attention litera-
ture; the idea is essentially the same as that suggested by Treis-
man (1960). Treisman claimed that messages outside of the fo-
cus of attention were not completely shut out; rather, the flow of
information was simply attenuated on the unattended channel.
This is exactly what happens in our model. Indeed, the very
same mechanisms of pathway modulation that we have used to
implement task selection in the Stroop task (color or word)
could be used to implement channel selection in dichotic listen-
ing (e.g., Treisman, 1960), spatial allocation of attention (e.g.,
Kahneman & Henik, 1981), category search (e.g., Schneider &
Shiffrin, 1977; Shiffrin & Schneider, 1977), or other tasks in-
volving selective attention.

Many of these phenomena have begun to be explored produc-
tively within the PDF framework (e.g., Mozer, 1988; Phaff, 1986;
Schneider & Detweiler, 1987). For example, Mozer (1988) has ad-
dressed the spatial allocation of attention using PDF mechanisms
similar to the ones we have described. By introducing a network
of units corresponding to retinal locations (rather than feature di-
mensions), and having attention bias units representing particular
locations, attention can be allocated to specific locations. As in our
model, information that is in the focus of attention is processed to
a greater degree than information that is not in the focus of atten-
tion. Extension of our model along these lines would provide a
means for simulating spatial allocation of attention in the Stroop
task (e.g., Kahneman & Henik, 1981).

Finally, with regard to the mechanisms of attentional modu-
lation, an important general issue is whether attention facili-
tates processing within the attended pathway, suppresses it in
the unattended pathway, or both. Our framework is, in princi-
ple, agnostic on this issue; attention could be implemented ei-
ther as a facilitative or an inhibitory effect, or a combination of
both. In the simulations we presented, however, attention had
primarily a facilitative effect: Task specifications put units in
the attended pathway in a more responsive portion of their dy-
namic range. This succeeded in capturing the central phenom-
ena of the Stroop effect and the relationship between practice,
automaticity, and attention that we set out to explain. However,
there are reasons to suspect that effort is also required to filter
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out potentially interfering messages. For example, processing is
typically slower on control trials if these are mixed with interfer-
ing trials. One way to account for this is to assume that attention
is required both to suppress the unattended channel and to en-
hance processing in the attended one and that suppressing one
requires resources that take away from the ability to facilitate
the other. The modeling framework we have described could be
used to explore, in simulations, which of these explanations can
best account for the relevant empirical data.

Continuous Nature of Processing

The assumption that information is graded and propagated
continuously from one level to the next distinguishes our model
from discrete stage models, in which processing must be com-
plete at one stage before information becomes available at oth-
ers. In the model presented here, information at one level is
continuously available at subsequent levels. As such, a process
need not be completed for it to affect performance. It is pre-
cisely the partial processing of information in the stronger of
two pathways that produces interference and facilitation effects.

In this respect, our model is similar to one proposed by Logan
(1980). Both models make use of continuous processing mecha-
nisms and explain interference (and facilitation) effects in terms
of the relative strength of the pathways used by competing pro-
cesses. According to Logan's (1980) model, "evidence is as-
sumed to accumulate over time in some composite decision
process until a threshold is exceeded and a response is emitted"
(p. 528). Different sources of evidence (e.g., different stimuli
or different stimulus dimensions) are weighted so that evidence
accumulates frorn each at different rates. This model accounts
for the Stroop effect by assigning stronger weights to word read-
ing than to color naming. The strength of the connections in a
pathway in our model are analogous to the weights assigned to
a process in Logan's (1980) model. In both models, attention
acts by modulating the effectiveness with which information ac-
cumulates from each process in a manner that is responsive to
the demands of the current situation.

However, our model differs from Logan's (1980) in several
important respects, some of which lead to significant differ-
ences in performance. First, Logan's (1980) model is a linear
model, with respect to the way in which information accumu-
lates both as a function of time and as a function of pathway
strength. The processing mechanisms in our model are nonlin-
ear in both of these respects. This allows the model to account
for the asymmetry between interference and facilitation. Lo-
gan's (1980) model cannot account for this finding. However,
perhaps the most important difference between the two models
is that Logan's (1980) model does not include any mechanisms
for learning. The weights associated with automatic processes
are fixed. One of the primary strengths of our model is that it
can directly address the relationship between training and auto
maticity in terms of an integrated set of learning and processing
mechanisms.

Strength and Instance-Based Accounts ofAutomaticity

The model presented in this article is based on the assump-
tion that direct processes develop through the strengthening of

connections between processing units. In this respect, it is one
of a general class of models that explain learning in terms of a
strengthening process. An alternative approach to learning and
automaticity is instance based (e.g., Hintzman, 1986; Logan,
1988). According to instance theory, each exposure to a stimu-
lus is encoded separately in memory. In Logan's (1988) model,
both encoding as well as the retrieval of stimulus-related in-
stances is obligatory. Retrieval times for individual instances
are normally distributed, with the first instance retrieved con-
trolling the response. Logan (1988) has demonstrated that in-
stance theory accurately predicts practice effects in nonconflict
tasks, accounting for the fact that both the mean and the stan-
dard deviation of reaction times decrease according to a power
law with the number of trials (i.e., instances encoded). The the-
ory also predicts that the exponent for both functions should be
the same.

Several strength-based accounts have provided fits to the
power law for mean reaction time (e.g., Anderson, 1983;
Schneider, 1985), and the model we present satisfies the addi-
tional constraint that standard deviation decrease at the same
rate as mean reaction time. However, Logan (1988) has ex-
pressed other concerns about strength-based theories of learn-
ing. For example, he claimed that strength-based accounts must
rely on fixed prototypes: It is the strengthening of the connec-
tion between "generic stimuli" and "generic responses" that
constitute learning in such systems (Logan, 1988). This criti-
cism applies primarily to theories using discrete, or local, repre-
sentations of stimuli. Elsewhere (McClelland & Rumelhart,
1985), it has been shown that this limitation of the strength-
based approach can be overcome with the use of distributed
representations. In such systems, memory for an event is not
encoded in a single connection between a generic stimulus and
a generic response, but in the strengths of a set of connections
involving several different units that are used to provide over-
lapping but nevertheless distinct representations of individual
stimuli and responses. In the current model, local representa-
tions were used. However, in preliminary investigations using
distributed representations, we have had no difficulty repro-
ducing the basic interference phenomena (resulting from un-
equal amounts of training) reported in this article. These effects
appear to be general to cascaded PDF networks composed of
continuous nonlinear processing units.

For the moment, instance- and strength-based theories seem
equally able to explain learning behaviors. However, it is not
clear how an instance-based account will explain some of the
interference phenomena we have addressed. As an assumption
of his theory, Logan (1988) stated that "attending to a stimulus
is sufficient to retrieve from memory whatever has been associ-
ated with it in the past" (p. 493). That is, retrieval is obligatory
and, by implication, unmodulated. Interference is produced in
this system when retrieved information associated with a stimu-
lus conflicts with the desired response, and this information is
retrieved before the relevant information. As with the simple
speed-of-processing account, this assumption suggests that
given sufficient time for retrieval, colors should interfere with
word reading as much as words do with color naming. However,
we know from M. O. Glaser and Glaser's (1982) data that this
is incorrect. Thus, instance theory faces the same difficulties
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that simple speed-of-processing accounts face in explaining
Stroop interference effects.

More generally, as instance theory is currently developed, it
does not specify mechanisms for attentional influences on be-
havior. Logan (1988) suggested that "the retrieval process can
be controlled by manipulating retrieval cues or stimulus input,
or both, and the subsequent decision process can be inhibited
before it results in an overt response" (p. 513). However, no
mechanism is provided for these processes, nor has it been dem-
onstrated whether these processes can account for the interac-
tions between interference and practice effects that we have ad-
dressed in this article. Although we have not provided a mecha-
nism that determines how and where attention will be allocated,
we have specified a mechanism by which the allocation of atten-
tion can influence processing, and we have shown how this
mechanism interacts with learning.

Resources and Capacity

A final issue concerns the notions of processing resources and
capacity limitations. The model instantiates processes similar
to the multiple-resources view that has been expressed by others
(e.g., Allport, 1982; Logan, 1985; Navon & Gopher, 1979;
Wickens, 1984) and to the notion of functional cerebral dis-
tance described by Kinsbourne and Hicks (1978). These theo-
ries share the view that performance of a task typically involves
many processes, which in turn depend on a multiplicity of re-
sources. They predict that two behaviors will compete for pro-
cessing capacity and may interfere with one another to the ex-
tent that they rely on the same resources for different purposes.
Our approach suggests ways in which we can begin to think, in
more specific terms, about the nature of these resources and
how limitations in their capacity can affect performance. Thus,
the modules that make up processing pathways can be thought
of as a set of resources within the system. These resources are
shared by two or more processes to the extent that their path-
ways intersect—that is, they rely on a common set of modules.
In the model, when two signals to be processed by a particular
module are disparate (i.e., they involve different patterns of ac-
tivation), they will compete for representation within that mod-
ule. In this sense, the processing capacity of that module, or
resource, can be thought of as being limited; that is, it cannot
fully support the processing of both signals at once. Schneider
(1985; Schneider & Detweiler, 1987) has presented a similar
view of capacity limitations in terms of cross talk within mod-
ules (also see Navon & Miller, 1987).

Although we have not pursued a quantitative analysis of ca-
pacity in this article (see Rosenfeld & Touretzky, 1988, for an
example of how this can be done in PDF systems), the model
showed that when information from two sources converged on
a common module (the response module of the network), inter-
ference occurred. We have obtained similar results in other sim-
ulations, in which two stimuli (e.g., two words) processed con-
currently within the same pathway also led to interference.

As in the multiple-resources view, our account of interference
effects focuses on the capacity limitations of modules directly
involved in a processing pathway, that is, modules that lie in the
pathway along which information flows from input to output.
However, the model also suggests ways in which to think about

other types of capacity limitations. For example, the attention
module did not lie directly along one of the processing pathways
in the network. Nevertheless, it played an important role in pro-
cessing: Simulation 5 showed that all processes relied to some
extent on the allocation of attention. For a given process, this
required that a particular pattern of activation be present in
the attention module. This pattern was different for different
processes, so that any attempt to specify more than one process
would lead to competition of representations within the atten-
tion module. From this perspective, the capacity of the atten-
tion module can be seen as limited, it may not always be possi-
ble to allocate attention maximally to all processes at once. Be-
cause stronger processes have weaker requirements for
attention (see Simulation 5), such processes may be less suscep-
tible to capacity limitations in the corresponding attentional
module. This is consistent with the traditional notion that auto-
maticity is associated with greater independence from capacity
limitations of attentional resources. However, our approach al-
lows that there may be more than one attentional resource
(module) within the system and that different processes may
rely on different modules. As such, the extent to which limita-
tions in attentional capacity will affect performance will depend
on the particular processes involved in performance of the task
(or set of tasks), the extent to which these processes rely on at-
tentional resources, and whether the attentional resources are
the same or different for the various processes involved.

The significance of different sources of capacity limitations
(e.g., those arising directly within a pathway or within associ-
ated attentional modules) are in need of further clarification,
both theoretically and empirically. However, we reemphasize,
in this context, that attentional information is not qualitatively
different from other information in our framework. The compe-
tition between patterns of activation within an attentional mod-
ule is analogous to the competition that can occur between pat-
terns of activation in any other module. This suggests that mod-
ulatory resources, such as the attentional module in our model,
may be governed by the same sorts of principles and constraints
that govern more local resources within the system.

Conclusion

The model that we have presented provides not only an ac-
count of the empirical data on the Stroop effect, but also a more
general model of processing in highly practiced tasks and its
relation to attention. Like other theorists (e.g., Kahneman &
Treisman, 1984; Logan, 1980; Schneider, 1985), we have noted
that there are many problems with an all-or-none view of auto-
maticity. Our model suggests that a more useful approach is to
consider automaticity in terms of a continuum based on
strength of processing. We have outlined a set of mechanisms
that can produce gradual and continuous strengthening, and
we have shown how these mechanisms can account for various
empirical phenomena concerning automaticity. In particular,
these mechanisms capture the continuum that appears to exist
in the attributes of automaticity and relate this continuum di-
rectly to the effects of practice. Differences in practice lead to
differences in the strength of processing, and this makes it possi-
ble to capture asymmetries of performance such as those ob-
served in the Stroop task. The model also indicates that Stroop-
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like effects can arise from the competition between two qualita-
tively similar processes—which differ only in their strength—
leading us to question the traditional view that interference
effects can be used reliably to distinguish between controlled
and automatic processes. Finally, the model suggests ways to
characterize the notion of capacity in greater detail.

The mechanisms used in this model show how the principles
of continuous processing, expressed in terms of the PDF frame-
work, can be applied to the study of attention and the control of
what we have called direct processes. A challenge for our model,
however, and for the PDF approach in general is to characterize
the mechanisms underlying indirect processing. We see this as
an important direction for future research.

References

Allport, D. A. (1982). Attention and performance. In G. I. Claxton
(Ed.), New directions in cognitive psychology (pp. 112-153). London:
Routledge & Kegan Paul.

Allport, D. A., Antonis, B., & Reynolds, P. (1972). On the division of
attention: A disproof of the single-channel hypothesis. Quarterly
Journal of Experimental Psychology, 24, 225-235.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Re-
view, 89, 369-406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA:
Harvard University Press.

Blackburn, J. M. (1936). Acquisition of skills: An analysis of learning
curves (IHRB Report No. 73). Washington, DC: U.S. Government
Printing Office.

Broadbent, D. E. (1970). Stimulus set and response set: Two kinds of
selective attention. In D. I. Mostofsky (Ed.), Attention: Contemporary
theories and analysis (pp. 51-60). New York: Appleton-Century-
Crofts.

Brown, W. (1915). Practice in associating color-names with colors. Psy-
chological Review, 22, 45-55.

Bryan, W. L., & Harter, N. (1899). Studies on the telegraphic language.
The acquisition of a hierarchy of habits. Psychological Review, 6,
345-375.

Cattell, J. M. (1886). The time it takes to see and name objects. Mind,
11, 63-65.

Deutsch, J. A. (1977). On the category effect in visual search. Perception
& Psychophysics, 21, 590-592.

Dunbar, K. (1985). The role of multiple sources of interference in a pic-
ture-word analogue oftheStroop task. Unpublished doctoral disser-
tation, University of Toronto.

Dunbar, K., & MacLeod, C. M. (1984). A horse race of a different color:
Stroop interference patterns with transformed words. Journal of Ex-
perimental Psychology: Human Perception and Performance, 10,
622-639.

Dyer, F. N. (1973). The Stroop phenomenon and its use in the study of
perceptual, cognitive, and response processes. Memory & Cognition,
1, 106-120.

Fraisse, P. (1969). Why is naming longer than reading? Acta Psycholog-
ica, 30, 96-103.

Gatti, S. V., & Egeth, H. E. (1978). Failure of spatial selectivity in vision.
Bulletin of the Psychonomic Society, 11, 181-184.

Glaser, M. O, & Glaser, W. R. (1982). Time course analysis of the Stroop
phenomenon. Journal of Experimental Psychology: Human Percep-
tion and Performance, 8, 875-894.

Glaser, W. R., &Dungelhoff, F.-J. (1984). The time course of picture-
word interference. Journal of Experimental Psychology: Human Per-
ception and Performance, 10, 640-654.

Gumenik, W. E., & Glass, R. (1970). Effects of reducing the readability

of the words in the Stroop color-word test. Psychonomic Science, 20,
247-248.

Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes
in memory. Journal of Experimental Psychology: General, 106, 356-
388.

Hinton, G. E., & Plaut, D. C. (1987). Using fast weights to deblur old
memories. In Program of the Ninth Annual Conference of the Cogni-
tive Science Society (yp. 177-186). Hillsdale, NJ: Erlbaum.

Hintzman, D. L. (1986). "Schema abstraction" in a multiple-trace
model. Psychological Review, 93, 411-428.

Hintzman, D. L., Carre, A., Eskridge, V. L., Owens, A. M., Shaff, S. S.,
& Sparks, M. E. (1972). "Stroop" effect: Input or output phenome-
non? Journal of Experimental Psychology, 95, 458-459.

Hirst, W., & Kalmar, D. (1987). Characterizing attentional resources.
Journal of Experimental Psychology: General, 116, 68-81.

Hunt, E., & Lansman, M. (1986). Unified model of attention and prob-
lem solving. Psychological Review, 93, 446-461.

James, W. (1890). Principles of psychology. New York: Holt.
Kahneman, D., & Chajczyk, D. (1983). Tests of the automaticity of

reading: Dilution of Stroop effects by color-irrelevant stimuli. Journal
of Experimental Psychology: Human Perception and Performance, 9,
497-509.

Kahneman, D., & Henik, A. (1981). Perceptual organization and atten-
tion. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptual organiza-
tion (pp. 181-211). Hillsdale, NJ: Erlbaum.

Kahneman, D., & Treisman, A. (1984). Changing views of attention and
automaticity. In R. Parasuraman, D. R. Davies, & J. Beatty (Eds.),
Varieties of attention (pp. 29-61). New \brk: Academic Press.

Keren, G. (1976). Some considerations of two kinds of selective atten-
tion. Journal of Experimental Psychology: General, 105, 349-374.

Kinsbourne, M., & Hicks, R. E. (1978). Functional cerebral space: A
model for overflow, transfer and interference effects in human perfor-
mance: A tutorial review. In J. Requin (Ed.), Attention and perfor-
mance VII (pp. 345-362). Hillsdale, NJ: Erlbaum.

Klein, G. S. (1964). Semantic power measured through the interference
of words with color naming. American Journal of Psychology, 77,
576-588.

Kolers, P. A. (1976). Reading a year later. Journal of Experimental Psy-
chology: Human Learning and Memory, 2, 554-565.

LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic
information processing in reading. Cognitive Psychology, 6, 293-323.

Link, S. W. (1975). The relative judgement theory of two choice re-
sponse time. Journal of Mathematical Psychology, 12, 114-135.

Logan, G. D. (1978). Attention in character classification: Evidence for
the automaticity of component stages. Journal of Experimental Psy-
chology: General, 107, 32-63.

Logan, G. D. (1979). On the use of a concurrent memory load to mea-
sure attention and automaticity. Journal of Experimental Psychology:
Human Perception and Performance, 5, 189-207.

Logan, G. D. (1980). Attention and automaticity in Stroop and priming
tasks: Theory and data. Cognitive Psychology, 12, 523-553.

Logan, G. D. (1985). Skill and automaticity: Relations, implications,
and future directions. Canadian Journal of Psychology, 39, 367-386.

Logan, G. D. (1988). Toward an instance theory of automatization. Psy-
chological Review, 95, 492-527.

Lupker, S. J., & Katz, A. N. (1981). Input, decision, and response factors
in picture-word interference. Journal of Experimental Psychology:
Human Learning and Memory, 7, 269-282.

MacLeod, C. M. (1989). Haifa century of research on the Stroop effect:
A critical review. Manuscript submitted for publication.

MacLeod, C. M., & Dunbar, K. (1988). Training and Stroop-like inter-
ference: Evidence for a continuum of automaticity. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 14, 126-135.

McClelland, J. L. (1979). On the time-relations of mental processes: An



CONTROL OF AUTOMATIC PROCESSES 359

examination of systems of processes in cascade. Psychological Re-
view, 86, 287-330.

McClelland, J. L. (1989). Parallel distributed processing: Implications
for cognition and development. In R. G. M. Morris (Ed.), Parallel
distributed processing: Implications for psychology and neurobiology
(pp. 8-45). Oxford, England: Oxford University Press.

McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory
and the representation of general and specific information. Journal of
Experimental Psychology: General, 114, 159-188.

Moray, N. (1969). Attention: Selective processes in vision and hearing.
London: Hutchinson.

Mozer, M. (1988). A connectionist model of selective attention in visual
perception. In Proceedings of the Tenth Annual Conference of the
Cognitive Science Society (pp. 195-201). Hillsdale, NJ: Erlbaum.

Navon, D., & Gopher, D. (1979). On the economy of the human pro-
cessing system. Psychological Review, 86, 214-255.

Navon, D., & Miller, J. (1987). Role of outcome conflict in dual-task
interference. Journal of Experimental Psychology: Human Perception
and Performance, 13,435-438.

Neely, J. H. (1977). Semantic priming and retrieval from lexical mem-
ory: Roles of inhibitionless spreading activation and limited-capacity
attention. Journal of Experimental Psychology: General, 106, 226-
254.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition
and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and
their acquisition (pp. 1-55). Hillsdale, NJ: Erlbaum.

Phaff, R. H. (1986). A connectionist model for attention: Restricting par-
allel processing through modularity. Unpublished doctoral disserta-
tion, Unit of Experimental Psychology, University of Leiden, The
Netherlands.

Pillsbury, W. B. (1908). Attention. New York: Macmillan.
Posner, M. I. (1975). Psychobiology of attention. In M. S. Gazzaniga &

C. KakemoK(Eds.),Handbookofpsychobiology(pv. 441-480). New
\brk: Academic Press.

Posner, M. I., & Snyder, C. R. (1975). Attention and cognitive control.
In R. L. Solso (Ed.), Information processing and cognition (pp. 55-
85). Hillsdale, NJ: Erlbaum.

Proctor, R. W. (1978). Sources of color-word interference in the Stroop
color-naming task. Perception & Psychophysics, 23,413-419.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review,
85, 59-108.

Reed, P., & Hunt, E. (1986). A production system model of response
selection in the Stroop paradigm. Unpublished manuscript.

Regan, J. (1978). Involuntary automatic processing in color naming
tasks. Perception & Psychophysics, 24,130-136.

Rosenfeld, R., & Touretzky, D. S. (1988). Coarse-coded symbol memo-
ries and their properties. Complex Systems, 2,463-484.

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general
framework for parallel distributed processing. In D. E. Rumelhart,
J. L. McClelland, & the PDF Research Group (Eds.), Parallel distrib-
uted processing: Explorations in the microstructure of cognition (Vol.
1, pp. 45-76). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by error propagation. In D. E. Rumelhart,
J. L. McClelland, & the PDF Research Group (Eds.), Parallel distrib-
uted processing: Explorations in the microstructure of cognition (Vol.
1, pp. 318-362). Cambridge, MA: MIT Press.

Schneider, W. (1985). Toward a model of attention and the development
of automatic processing. In M. I. Posner & O. S. M. Marin (Eds.),
Attention and'performanceXI'(pp. 475-492). Hillsdale, NJ: Erlbaum.

Schneider, W., & Detweiler, M. H. (1987). A connectionist/control ar-
chitecture for working memory. In G. Bower (Ed.), The psychology of
learning and motivation (Vol. 21, pp. 54-119). New \brk: Academic
Press.

Schneider, W., & Oliver, W. L. (in press). An instructable connectionist/
control architecture: Using rule-based instructions to accomplish
connectionist learning in a human time scale. In K. Van Lehn (Ed.),
Architectures for intelligence. Hillsdale, NJ: Erlbaum.

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic hu-
man information processing: I. Detection, search, and attention. Psy-
chological Review. 84, 1-66.

Shaffer, L. H. (1975). Multiple attention in continuous verbal tasks. In
P. M. A. Rabbitt & S. Domic (Eds.), Attention and performance (pp.
157-167). New York: Academic Press.

Shiffrin, R. M. (1988). Attention. In R. C. Atkinson, R. J. Herrnstein,
G. Lindzey, & R. D. Luce (Eds.), Steven's handbook of experimental
psychology: Vol. 2. Learning and cognition (2nd ed., pp. 739-811).
New York: Wiley.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic hu-
man information processing: II. Perceptual learning, automatic at-
tending, and a general theory. Psychological Review, 84, 127-190.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions.
Journal of Experimental Psychology, 18,643-662.

Treisman, A. M. (1960). Contextual cues in selective listening. Quar-
terly Journal of Experimental Psychology, 12, 242-248.

Wickens, D. D. (1984). Processing resources in attention. In R. Para-
suraman, D. R. Davies, & J. Beatty (Eds.), Varieties of attention (pp.
63-102). New York: Academic Press.

(Appendix follows on next page)



360 J. COHEN, K. DUNBAR, AND J. McCLELLAND

Appendix

Parameters of the Model

Performance of the model depended on many different parameters.
Several of these were tightly constrained by the data, whereas the values
of others seemed to be less critical. Here, we review all of the parameters
that were relevant to the simulations reported and provide a rationale
for how the value of each was chosen, how critical that value was, and,
where appropriate, other parameters with which it interacted.

Number of Units per Module

This was essentially a free parameter. To keep the networks as simple
as possible, we chose the fewest number of units necessary to simulate
each task.

Ratio of Training Frequencies

The network used in the first 2 simulations was trained on words and
colors in a 10:1 ratio. This value was chosen to capture both the differ-
ence in the speed of processing between word reading and color naming
and the size of the interference and facilitation effects observed for color
naming (see Figure 5^4). This parameter interacted primarily with the
magnitude of the attentional influence in the model, the parameters of
the response mechanism, and the maximum response time (see later
descriptions). The actual value of this parameter did not appear to be
critical, and values ranging from 5:1 to 20:1 gave comparable results,
providing the size of the parameters just mentioned were adjusted to
compensate. The actual value was not considered to be crucial, but the
asymmetry in training that it represented is theoretically important:
It is differential amounts of training that lead to differential pathway
strengths. This is consistent with the common assumption that word
reading is more highly practiced than color naming.

Learning Rate

This parameter scaled the size of the changes made to connection
weights in each learning trial. Its value was tightly constrained by the
MacLeod and Dunbar (1988) data. The exact same number of training
trials per stimulus were used in the simulation as were used in the empir-
ical study. We chose a learning rate that, given this number of trials,
produced the closest fit to the interference data at each test point. This
parameter was the same for all of the connections in each direct pathway
in the network (including the input connections) in each simulation.
However, the connections in the indirect pathway used in Simulation 4
were fixed; that is, they had a learning rate of 0.

Maximum Response Time

This parameter functioned as our training criterion for Simulation 1.
After specifying a learning rate (see earlier description), we needed some
way of deciding when to stop training on colors and words. Training
ended when the network could respond accurately to all of the test stim-
uli (control, conflict, and congruent stimuli in each task) within a speci-
fied number of cycles, which we call the maximum response time. A
lower value (faster response) meant more training, and a higher value
meant less training. The value we used was 50 cycles. There were two
primary constraints on this value: (a) Test performance after training
had to simulate the basic Stroop effect (see Figure 5), and (b) regression
of simulation cycles on empirical reaction time data had to yield a posi-
tive intercept value of reasonable magnitude. A small or zero-valued

intercept would suggest, unreasonably, that our model simulates all of
the processes involved in human performance; a negative intercept
would indicate that the effects of interest were only a small part of the
model's overall performance. The intercept values for all simulations
reported were in the 200- to 400-ms range. Both of these constraints
on the maximum reaction time were relatively weak, and reasonable
performance was achievable with a broad range of values. This parame-
ter interacted with the training frequency ratio (see earlier description)
and the noise parameters in the network (see later descriptions).

Preset Input Weights

The weights from the input to the intermediate units in each pathway
were given preassigned values at the outset of training. This was re-
quired for changes in reaction time with training to follow a power law.
This finding is theoretically important, for it suggests that the power law
may only apply to the learning of simple mappings and that learning at
the early stages of processing (e.g., stimulus encoding) are not involved
in the tasks we have simulated. The actual values preassigned to the
input weights were picked on the basis of weights that are achieved when
the network is allowed to learn this set of weights on its own.

Indirect Pathway

This was the module and corresponding set of weights that was added
to the basic network for Simulation 4. The number of units in this mod-
ule was the same as in all others (two). The strengths assigned to the
connections in this pathway were chosen to best fit the empirical data
concerning reaction times and interference effects early in training on
shape naming.

Cascade Rate

This parameter determined the rate at which each unit accumulated
activation. Its value was the same for all units in the network (except
input units, which were always maximally excited or inhibited). The
cascade rate interacted with the response rate and response threshold
to determine both reaction time and the pattern of interference effects
between processes. Values for these parameters were chosen to provide
the best fit to the basic Stroop effect, given the constraints imposed by
the other parameters of the models (i.e., learning rate, maximum re-
sponse time, and attentional influence).

Noise

This scaled the magnitude of Gaussian distributed noise added to the
net input of each unit (except the input units). Values of this parameter
and the noise in the response mechanism (see later description) were
chosen to provide maximum variance without sacrificing accuracy of
performance. These parameters interacted with the maximum response
time to determine the amount of training received by the networks used
in Simulations 1,2,5, and 6. They also had an influence on the relation-
ship between mean reaction time and variance as a function of training.
Values were chosen to provide the closest match between the exponents
of the power functions describing the changes in mean reaction time
and standard deviation with practice.

Magnitude of Attentional Influence

Two parameters determined the magnitude of attentional effects in
the model. These were the size of the resting negative bias on intermedi-
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ate units in the two processing pathways and the size of the weights from
the task demand units to these intermediate units. The magnitudes of
these two parameters were constrained to be equal, so that with full
activation of a given task demand unit, intermediate units in the corre-
sponding pathway had a resting net input of 0 and an activation of 0.5
(the rationale for this is explained in the Attentional Selection subsec-
tion in The Model section). The main effect of varying these parameters,
therefore, was to change the resting activation level of intermediate units
in the unattended pathway (because their task demand unit was not
active, and therefore their negative bias was not offset). The magnitude
of the attentional influence affected the size of the interference and facil-
itation effects observed. A set of values was chosen that provided the best
fit to the empirical data in each experiment (see the Free Parameters
subsection of Simulation Methods).

Parameters of the Response Mechanism

Three parameters were associated with the response mechanism: the
rate at which evidence accumulated, the noise associated with this pro-

cess, and the threshold for a response. The rate and threshold parame-
ters were inversely related to one another: Doubling the accumulation
rate was equivalent to halving the response threshold. Together, these
values interacted with the maximum response time (see earlier descrip-
tion) to determine the network's performance for a given amount of
training. They also showed a complex interaction with the cascade rate
(see earlier description), which affected the relative magnitude of inter-
ference effects versus speed-of-processing differences between the path-
ways. Values for these parameters were chosen that provided the best fit
to the basic Stroop effect, given the constraints imposed by the other
parameters of the models (i.e., learning rate, maximum response time,
and attentional influence). The amount of noise associated with the re-
sponse mechanism interacted with the amount of noise added to the
net input of processing units. The constraints on both noise parameters
are discussed in the Noise subsection.
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