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in motor skill learning
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A brief introduction to reinforcement learning

Imagine a young skier in a tight turn on fast terrain. If they fall at the apex of
the turn, how do they determine where the error occurred? Many factors could
have contributed to this error (e.g., leaning too far back, not enough weight on
the outside ski) and it can be difficult for the athlete to determine these errors
on their own. Imagine then, that you are the coach of this athlete. What sort of
feedback do you provide and when? Do you try to correct only the most egre-
gious errors or reward the near-misses and successful performances?
Popularly, we believe that we learn from our mistakes. As it turns out, a more

correct way to frame this belief is that we learn when outcomes deviate from
expectations. Consider the above skiing example – learning occurs when the
outcome (falling) is different from the expectation (not falling). These differ-
ences between expectations and outcomes are coined prediction errors. Predic-
tion errors, if successfully identified, are a valuable signal that our behavior
needs to change in order to increase the likelihood of being successful. This pro-
cess of adjusting behavior based on errors to optimise rewards is referred to as
reinforcement learning (Rescorla & Wagner, 1972; Sutton & Barto, 1998).
Reinforcement learning, alongside unsupervised and supervised learning, is one
of the dominant modes of learning and is a critical component of motor
skill acquisition (Seidler, Kwak, Fling, & Bernard, 2013; Yarrow, Brown, &
Krakauer, 2009). In this chapter, we will argue that reinforcement learning is
probably the most important learning model for understanding skill acquisition.
Before explaining how reinforcement learning affects the acquisition of motor

skills, and how coaches/teachers can use these reinforcement principles in prac-
tice, it is important to define some terms and models of motor skill learning.
Unsupervised learning is when a series of inputs (e.g., sensory information) get
mapped onto a series of outputs without any formal teaching “signal” (Dayan,
2009). In the brain, many neurons in the cortex operate on unsupervised learn-
ing principles (e.g., the neurons that fire together increase the strength of their
connection; Hebb, 1961). For instance, many aspects of perception and multi-
sensory integration rely on unsupervised learning, grouping inputs based on
statistical regularities rather than explicit training. Indeed, this kind of learning
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relates to why we are often subject to optical illusions (when statistical regular-
ities are violated) or why an athlete might have strong tendencies toward certain
behaviors (e.g., I might adopt my most habitual/comfortable movement pat-
terns, even when they are inappropriate for the context).
Supervised learning is when a set of inputs produces an output that can be

immediately contrasted against a known, “correct” output (Sutton & Barto,
1998). This process is analogous to being corrected by a teacher, hence “super-
vised” learning. In motor learning, supervised learning mechanisms are thought
to work in the cortico-cerebellar networks (Doya, 2000; Haith & Krakauer,
2013), which are critical for motor adaptation. Actual sensory feedback arrives
in the cerebellum from the ascending afferent pathways of the spinal cord.
Around the same time, in theory, the expected/anticipated sensory feedback
arrives in the cerebellum through descending pathways. This predicted sensory
feedback is generated by a hypothetical forward model of the motor skill and
can be compared against the actual outcome. This comparison creates
a prediction-error. This prediction-error is the difference between actual and the
predicted sensory consequences of the movement. If the error is small (or zero),
this would mean that the movement is well calibrated, because the predicted
sensory information matches the actual sensory information. If the error is large,
this error serves as a signal for recalibrating our movement. An everyday example
of this is picking up a jug of milk that we think is full but turns out to be
empty. We initially generate forces appropriate for a full jug, which are too
much, and the sensory feedback tells us we are moving the jug faster than pre-
dicted. This rapidly generated error is a signal to reduce the force and can lead
to faster corrections than errors signaled by other longer feedback loops (e.g.,
correcting errors through visual feedback). These error signals can also be used
to adapt subsequent movements. In sport, these error signals are critical for
adaptation to different conditions such as an over-inflated versus a normal ball,
a wet pitch or a dry pitch, or picking up a pool cue that is lighter/heavier than
the one we typically use (e.g., our first attempts might be off, but we can
quickly recalibrate these movements through cortico-cerebellar networks).
In reinforcement learning, an action (which could also be a long sequence

of smaller actions) leads either to a success and thus reward, or a failure and
thus no reward (or even a punishment; Rescorla & Wagner, 1972; Sutton &
Barto, 1998). Unlike supervised learning, there is no teaching signal that tells
us what the “correct” output should be, so the actor must make a change to
the action, but it is often not clear how or what to change. Consider a discus
thrower who is learning to improve her technique. When her throw comes up
shorter than desired (i.e., failure), what is the correct change to make? The
obvious, but unhelpful, answer is “throw farther,” but the real question is
how can this be accomplished in a skill that unfolds over time with so many
redundant degrees of freedom? Under supervised conditions, this question is
aided through some sort of model or feedback specifying the “correct” tech-
nique. Another source of difficulty is that the feedback is delayed from where
the error/s occurred; errors could arise anywhere from the initiation of the
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throw to the moment of release. The actor must decide where the movement
got off track and how it needs to be corrected. As such, reinforcement learn-
ing error signals can be employed for offline movement corrections. That is,
following an error, new movements are explored and discovered, hopefully
taking the learner closer to success.
The example above serves to highlight some key components of reinforce-

ment learning models. First, it is often not clear exactly what mistake was made
or when (referred to as the “credit assignment” and “temporal credit assign-
ment” problems respectively; Dam, Kording, & Wei, 2013). Second, this ambi-
guity means that an actor often must go through some trial-and-error search to
find out which changes bring them closer to success. Third, the actor needs to
learn from delayed reward. This delay means that the actor might have to go
through many attempts, getting progressively closer to the goal. However, since
there is a reward prediction error on each trial, attempts that come closer to
achieving a goal are rewarded, even if the goal is not actually achieved. Delayed
reward also means that the actor might have to tolerate a temporary reduction
in reward to find a movement pattern that is even more successful. In reinforce-
ment learning terms, this means leaving a “local” maxima to find the “global”
maxima for rewards. In coaching terms, this means convincing an athlete that
changing their technique will ultimately be worth it, despite a temporary reduc-
tion in performance. Importantly, the coach should reward an athlete for trials
wherein proper technique is exhibited even if the athlete is far off target, rather
than trials wherein the athlete comes close to the target but uses incorrect tech-
nique. Within a person’s brain, unsupervised, supervised and reinforcement
learning are operating simultaneously in neural networks. All these ways of
learning contribute to our ability to adjust/update our behavior, but we argue
that reinforcement learning principles are the most important for coaches and
practitioners to understand in skill acquisition.
Below, we briefly discuss mechanisms of reinforcement learning in the human

brain and how they help us to adjust our performance over a short time-scale,
which we will refer to as adaptation, see Figure 3.1A. We also discuss how these
error signals help us make relatively permanent changes in performance over
a long time-scale, which we will refer to as learning (Adams, 1971; Schmidt &
Lee, 2011). It is important to separate adaptation during practice from learning
over the long-term, because behavioral research shows that these changes are not
necessarily correlated (sometimes even being negatively correlated; Kantak &
Winstein, 2012). Next, we will talk about the concept of “reward” and provide
examples to show its breadth. In animal studies, rewards are often associated with
obtaining sweet foods. In human studies, however, successful actions may be
rewarded with money (extrinsic motivators) or more abstract concepts like feel-
ings of competence (intrinsic motivators). In the latter half of the chapter, we will
review applied research on how reinforcement learning principles have been used
to improve motor learning and performance. Finally, we will comment on some
exciting future directions for research and address how reinforcement learning
principles can be used by coaches and practitioners.
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Reinforcement learning in the brain and behavior

One of the major drivers of reinforcement learning are reward-prediction
errors. Reward-prediction error is the degree to which an actual reward differs
from the anticipated/predicted reward (Holroyd & Coles, 2002). These errors
can result from rewards being better (positive) or worse (negative) than pre-
dicted, and both positive and negative reward-prediction errors influence future
behavior. For instance, when you are first learning a skill, you make many
errors, so the brain predicts a low probability of reward. We phrase it as “the
brain” rather than “the learner”, because these rapid assessments are non-

Figure 3.1 (A) Our conceptual model showing the difference between adaptation, the
change in performance within a session, and learning, a relatively perman-
ent change in performance across sessions. (B) Example event-related
potentials for correct and incorrect trials (top panel) that can be subtracted
to create a difference wave, bottom panel, in which the reward positivity
component is visible and maximal at around 300 ms relative to onset of
augmented feedback at 0 ms. (C) The scalp topography shows that the
reward positivity component is maximal in the fronto-central region.
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conscious, although correlated with a learner’s conscious assessment of their
ability (Holroyd & Krigolson, 2007). Thus, the first time you are successful
(e.g., sink your first long putt; hit your first ace), there is a large positive
reward-prediction error, because that movement produced an unexpectedly
rewarding result. This positive reward-prediction error acts as a signal within the
brain to “stamp in” that movement pattern/decision. Conversely, if you are per-
forming well and make an error, this would lead to a large negative reward-
prediction error, because the brain predicted a high probability of reward. This
negative reward-prediction error can act as a signal to “stamp out” an erroneous
movement pattern/decision. Importantly, success is not only defined by sinking
a putt/hitting an ace, rather success (and failure) are relative to the performer,
such that a near miss may elicit a positive reward-prediction error for a novice,
but a negative reward-prediction error for an expert.
There are two important points to take away from the ideas of reward and

associated reward-prediction errors. First, unexpected rewards are going to pro-
duce the largest positive reward-prediction errors that help solidify a behavior
(involving a decision/movement pattern). Repetition of these positive signals
helps consolidate a behavior, perhaps even an incidental one, from a transient
experience into a stable memory. This is why gambling can be so addictive. The
random rewards of gambling lead to large positive reward-prediction errors
(Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003). Second, these reward-
prediction errors can assume three different “valences”: we can have positive sig-
nals that help consolidate successful behaviors; we can have negative signals that
help inhibit unsuccessful behaviors; and we can have neutral signals where pre-
dicted reward matches actual reward and therefore do not provide a strong
impetus to change behavior. As alluded to in the prior paragraph, large reward
prediction errors are common early in learning. These reward prediction errors
tend to be positive (unexpectedly sinking a putt) and may explain the rapid
improvements typically exhibited early in practice. Small prediction errors are
common late in learning (when a performance is close to ones’ expectations)
and may explain the relatively slow improvements commonly demonstrated late
in practice.
Much has been written about how reward-prediction errors work in the

human brain (for detailed reviews, see Holroyd & Coles, 2002; Walsh & Ander-
son, 2012; Wise, 2004). Using electro-encephalography (EEG), we can measure
voltages from the brain on the surface of the scalp. This powerful technique
allows us to measure neural correlates of behavior. For instance, we can look at
how the brain processes augmented feedback about successful versus unsuccess-
ful trials of a golf putting task in a hypothetical experiment (Figure 3.1B). By
time-locking the EEG signals to the onset of feedback (i.e., time = 0 is when
feedback appears) we can see some characteristic peaks in the EEG waveform
when we average all the successful (holed) trials together, average all the unsuc-
cessful (missed) trials together, and then take the difference between the two
(Luck, 2014). This positive going component in the difference wave (around
300 ms) is referred to as reward positivity (Holroyd, Pakzad-Vaezi, & Krigolson,
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2008; Proudfit, 2015). The term “reward positivity” is new, and was previously
known as “feedback-related negativity”. The change in terminology came about
due to a change in how the difference wave was computed (now a positive value
is observed based on subtraction of unsuccessful trials from successful trials; see
Proudfit, 2015). Activity in this range will either tend to be positive (following
successes) or negative (following errors). In most experiments, binary feedback
is provided, but there are a few studies wherein graded or continuous feedback
was given. In these studies, EEG activity may exhibit a negative deflection if the
feedback is framed as error magnitude (how far off target the participant was),
with greater errors eliciting larger negative deflections (Luft, Takase, & Bhatta-
charya, 2014). Conversely, EEG activity may exhibit a positive deflection if the
feedback is framed as success magnitude (how far on target the participant was),
with greater accuracy eliciting larger positive deflections (Frömer, Stürmer, &
Sommer, 2016).

Positive rewards

The reward positivity is proposed to be an index of the reinforcement learning
signal sent from the basal ganglia to the anterior cingulate cortex (Holroyd &
Coles, 2002; Holroyd & Yeung, 2012). The basal ganglia uses the midbrain
dopamine system to convey the reward-prediction error to the anterior cingulate
cortex, where it is used to adaptively modify behavior. Thus, the reward positiv-
ity is thought to reflect the impact of a phasic dopaminergic signal conveying
a reward-prediction error on the anterior cingulate cortex. This phasic increase
in dopamine following successful trials is thought to be the mechanism behind
consolidation of successful behaviors (Holroyd & Yeung, 2012), given dopa-
mine’s role in augmenting neuroplasticity and learning (Wise, 2004).
This positive reward signal is modulated by feedback valence (positive/success

versus negative/failure), reward magnitude (large rewards versus small rewards),
and the probability/expectation of success, giving evidence that it reflects
reward prediction error (Sambrook & Goslin, 2014). For example, unexpected
positive feedback elicited a larger reward positivity than expected positive feed-
back in a time-estimation task (Holroyd & Krigolson, 2007). Amplitude of the
reward positivity following successful feedback also correlated with the potential
monetary reward ($0–~$5) on that trial in a reaction time task (Meadows,
Gable, Lohse, & Miller, 2016). In a computerised throwing task, where partici-
pants received feedback about the location of their throw relative to a target on
a display monitor, reward positivity amplitude was largest for throws closest to
the bull’s-eye (Frömer et al., 2016). This scaling was apparent, even though all
throws were “on-target” in that feedback was only given for throws that hit the
target.
Both reward-prediction error and the reward positivity are sensitive to the

magnitude of a reward and the probability of that reward (see also Tobler,
Fiorillo, & Shultz, 2014). The results of Meadows et al. (2016), based on mon-
etary reward, and Frömer et al. (2016), based on accuracy, are consistent with
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the idea that the reward positivity is sensitive to the magnitude of reward. Thus,
actions with a low predicted probability of reward that lead to a large actual
reward are going to create the largest reward-prediction error. This will lead to
the largest reward positivity, the largest phasic release of dopamine, and thus
theoretically lead to consolidation (i.e., long term retention) of that behavior.
One way to think of this process with respect to reward-prediction error is as

an action “landscape,” as shown in Figure 3.2. Initially, this landscape is flat; all
actions are equally preferable because the effect of choosing a specific action, a,
is unknown for the given state, s. Actions that lead to rewards get elevated and
therefore are more likely to be used again. Actions that lead to failures get
depressed and thus are less likely to be used again. This model is mostly correct,
but has a problem. The problem is that rewards and punishments are not two
sides of the same coin. Non-human primate research shows dissociated effects of
rewards and punishments on different brain structures. For instance, midbrain
dopaminergic neurons only increase their activity for positive reward-prediction
errors (Bayer & Glimcher, 2005), whereas negative reward-prediction errors
might be reflected in serotonergic activity (Daw, Kakade, & Dayan, 2002).
Human research also shows that punishments are not merely the opposite of
rewards when it comes to learning (Frank, Seeberger, & Reilly, 2004).

Rewards versus punishments

We can see the difference between rewards and punishments in learning para-
digms that use financial incentives. These extrinsic rewards are relatively easy to
manipulate and allow researchers to create balanced experiments. For instance, in
a sequential tracking task where participants learned to regulate their grip force to
match a complicated pattern that unfolded over time, rewards and punishments
were shown to affect learning differently (Abe et al., 2011). Three groups were
compared: a neutral group (who were paid a flat rate for participation), a reward
group (who received money proportional to their accuracy), and a punishment
group (who were given money up front and then lost money proportional to
their inaccuracy). The exact payment rates were controlled so that all groups of
participants left with approximately the same amount of money at the end of
practice. Participants in all groups successfully adapted their behavior during prac-
tice, although the reward group was significantly more accurate than the neutral
group, which was significantly more accurate than the punishment group. None-
theless, the groups did not significantly differ on an immediate post-test. The crit-
ical finding, however, is that participants who practiced with financial rewards
showed superior learning compared to the other two groups when tested at
a 6-h, 24-h, and 30-day post-test. Notably, rewarded participants showed per-
formance gains from the immediate post-test to 24-h and 30-day post-test
(referred to as offline learning, see Figure 3.1A in Kantak & Winstein, 2012).
Conversely, the punishment and neutral groups exhibited performance loss from
immediate post-test to 6-h and 30-day post-test (as well as from 24-h to 30-day
post-test). Thus, rewards, but not punishments, during practice led to better
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Figure 3.2 An illustration showing the hypothetical relationship (A) between value
(expected total reward) of an action, a, in a given state, s. As the
action-space is explored (B), the brain updates the value of taking different
actions in that state. In order to select the appropriate action again in the
future, these changes need to be consolidated (C).
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consolidation of the motor skill. Moreover, there was no evidence that the pun-
ishment group showed worse learning than the neutral control group. Improved
consolidation would explain why the skill was more resistant to decay and,
indeed, exhibited offline gains, with the assumption being that dopaminergic sig-
naling was responsible (although dopamine was not measured in this study).

How broad is the context of reward?

The experiment by Abe et al. (2011) is just one example of how rewards have
been shown to affect skill acquisition, in terms of either adaptation or long-term
learning (Cashaback, McGregor, Mohatarem, & Gribble, 2017; Izawa & Shad-
mehr, 2011; Nikooyan & Ahmed, 2015; Wachter, Lungu, Liu, Willingham, &
Ashe, 2009). In Table 3.1, we present a summary of studies that have investigated
the effects of financial rewards/punishments during practice in the retention of
motor skills. Although the results are somewhat mixed, overall these data support
the benefit of rewards for long-term retention (which is further supported by
empirical work on reward in other domains and reinforcement learning theories;
Schultz, 2015; Suri & Schultz, 1998; Thorndike, 1927). However, it is important
to consider that “reward” is a relatively broad construct in reinforcement learning
models (Sutton & Barto, 1998). Mathematically, reward-functions constrain the
way an actor ought to behave in a given state, but these rewards are abstract. That
is, rewards have specific numerical values, but these values are abstract representa-
tions. If we think about reinforcement learning at the level of a person, these
could be rewards that satisfy basic needs (like food or water) or have symbolic
value (e.g., financial rewards as in Abe et al., 2011). However, rewards can also be
immaterial things like social status or the feeling of being successful. Introspect-
ively, succeeding at a task feels rewarding, even if there is no tangible, external
reward associated with the success. This feeling would suggest that for something
to function like a reward, it just needs to have some utility (usefulness, value, or
benefit) in the brain of the actor.

Debate over rewards and their functions is a very rich and detailed area of
research (Niv, 2009; Schultz, 2015). In fact, it is difficult to nail down a precise
definition of a reward, because rewards are usually defined by the behavioral and
neural responses they elicit, and not by their physical characteristics. For our
purposes, it will suffice to say that physical items that meet basic needs are
rewarding and symbolic items (like money) are also rewarding. However, even
abstract variables can be rewarding and formally modelled in reinforcement
learning (Singh, Barto, & Chentanez, 2004). For instance, electrophysiological
studies of the reward signals (reward positivity) have shown that it can be aug-
mented by increasing a person’s perceived autonomy (Meng & Ma, 2015), or
by the effort a person expends in order to achieve that reward (Ma, Meng,
Wang, & Shen, 2013).
Finally, it is important to reiterate that the same reward can have different

values for different people, or even the same person at different times (e.g.
a classic example is that food rewards are less effective when rats enter the task
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having recently eaten; Tolman & Hoznik, 1930). This is important not only in
experimental studies, but also in practice. The same system of rewards is not
likely to have the same effect for everyone, nor the same effect over time.

Reinforcement from intrinsic rewards

Succeeding at a task is rewarding, but subjective success is more important than
objective success, since feeling successful is what defines a rewarding experience
in the brain of an actor. One way to make learners feel as though they are suc-
ceeding is by providing positive feedback. For example, one might ask whether
an instructor should focus on providing feedback following good attempts and
near misses, or following the most egregious failures. Scientists have shown that
providing feedback about relatively well-performed attempts increases the learn-
er’s perceptions of competence relative to providing feedback about poorly-
performed attempts (Chiviacowsky, Wulf, & Lewthwaite, 2012; Saemi, Porter,
Ghotbi-varzaneh, Zarghami, & Maleki, 2012). Hypothetically, increased percep-
tions of competence could result in more positive reward-prediction errors
during practice, due to perceived competence’s relationship to intrinsic motiv-
ation. Perceived competence is positively related to intrinsic motivation, and
intrinsic motivation can be thought of as a multiplier for the reward-prediction
error. That is, the default reward-prediction error is a relatively objective assess-
ment by the motor system (e.g., how different was what we accomplished from
what we wanted?). However, the reward-side of this calculation can be aug-
mented by motivation (i.e., the more motivated I am, the more subjective
reward I experience for a given objective success). This hypothesis is consistent
with behavioral experiments where participants who receive feedback about their
best practice trials exhibit superior learning relative to counterparts who receive
feedback about poor trials, or a neutral mix of good and poor trials (Wulf &
Lewthwaite, 2016). For example, Abbas and North (2017) had participants
practice golf putting with vision of the putt’s outcome occluded. Participants
completed five blocks of six trials during practice. At the end of each block, par-
ticipants received (positive) feedback about the outcome of their three most suc-
cessful putts on the block, (neutral) feedback about the outcome of three
random putts, or (negative) feedback about the outcome of their three least suc-
cessful putts. The positive feedback group exhibited superior putting accuracy at
1-day and 7-day post-tests, indicating greater learning. These participants also
generally reported higher levels of intrinsic motivation and perceived
competence.
This hypothesis has been tested at a behavioral level by manipulating the psy-

chological determinants of intrinsic motivation during motor skill learning.
According to Self-Determination Theory (SDT), perceived competence in the
task, autonomy, and/or relatedness are positively associated with intrinsic motiv-
ation (Ryan & Deci, 2000). If a learner achieves a successful outcome while
experiencing competence, autonomy, and/or relatedness, then the learner could
have a larger reward-prediction error and dopaminergic signal, thus promoting
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superior learning relative to learners who are not experiencing those correlates
of intrinsic motivation. A number of experiments have revealed that participants
who practice under conditions designed to enhance perceived competence and/
or autonomy exhibit superior motor skill learning (see Wulf & Lewthwaite,
2016). For example, participants who are given positive feedback not only
experience the basic reward of success, but may be more intrinsically motivated
toward the task, which effectively augments the reward and the resulting
reward-prediction error.
Besides enhancing intrinsic motivation by increasing perceived competence,

Self-Determination Theory posits that increasing feelings of autonomy and/or
relatedness also enhance intrinsic motivation (Ryan & Deci, 2000). Autonomy
and social-relatedness could, therefore, have a similar effect on reward-
prediction errors to augment learning. Indeed, at the behavioral level, increasing
autonomy or relatedness during practice has been shown to increase learning,
but the underlying mechanisms for these effects are not clear. Autonomy sup-
port has been manipulated by allowing participants some degree of control over
their practice environment. For example, Leiker et al. (2016) had participants in
a self-control of practice group play a motion-controlled videogame while con-
trolling the level of game difficulty. This group was compared to a yoked-group,
which played the game with the level of difficulty matched to a self-controlled
group counterpart (i.e., no control). The self-controlled group exhibited super-
ior performance on 1-week delayed post-tests.
In a study designed to increase or reduce social-relatedness, a heightened sense

of relatedness was similarly found to improve learning (assessed 1-day later) in
comparison to a reduced sense of relatedness (Gonzalez & Chiviacowsky, 2016).
In this between-subjects study, participants practiced swimming at 50% maximal
speed in one of three groups; (a) relatedness support, wherein the experimenter’s
instructions emphasised acknowledgement, caring, and interest in participants’
experiences, (b) under conditions of relatedness reduction, wherein the instruc-
tions emphasised disinterest in the participants, or (c) under neutral conditions,
wherein no attempt to manipulate relatedness was made. Thus, positive feed-
back, autonomy and relatedness support, all appear to be means to increasing
learning, ostensibly by enhancing intrinsic motivation and, consequently,
reward-prediction errors.
Theoretically, the benefits of these three determinants of intrinsic motivation

are attributable (at least in part) to their effects on reward-processing and subse-
quent consolidation of successful behaviors. However, there is little direct evi-
dence linking the promotion of intrinsic motivation to reward-prediction errors.
Exceptions to this are from researchers who have been studying EEG, and
reward positivity in particular, in relatively simple tasks without a delayed post-
test. For example, Meng and Ma (2015) had participants perform a time estima-
tion task in a within-subjects design involving two conditions. In the choice
condition, participants were free to choose one of two time estimation tasks to
perform for a trial. In the no choice condition, participants were randomly
assigned a task for a trial. In both conditions, participants received augmented
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feedback about success/failure on the task trial. Results showed an enhanced
reward positivity for feedback about choice trials in comparison to no choice
trials. This result suggests autonomy enhances reward-prediction errors, as
indexed by reward positivity amplitude, presumably due to elevated intrinsic
motivation. However, there is no single study showing that the effects of intrin-
sic motivation on reward-processing actually explain the effects of intrinsic
motivation on learning.
Grand, Daou, Lohse, and Miller (2017) studied the relationship between

intrinsic motivation, reward positivity magnitude, and motor learning, with
a manipulation designed to increase autonomy. Participants in a task-irrelevant
“choice” condition were allowed to choose the color of a beanbag used during
practice of a throwing-task, whereas participants in a “yoked” condition received
a color-schedule matched to a choice group counterpart. Feedback about the
accuracy of throws was provided in practice and the reward positivity amplitude
elicited by that feedback was recorded. The groups did not differ in reward posi-
tivity amplitude during practice, nor did they differ in throwing accuracy when
tested in a 1-week post-test, see Figure 3.3. Additionally, reward positivity amp-
litude did not predict post-test performance. However, a composite of self-
reported intrinsic motivation, internalised motivation, and effort predicted the
magnitude of reward positivity, suggesting that increased motivation may indeed
make successful outcomes more rewarding. Reward positivity amplitude pre-
dicted changes during the acquisition phase, such that participants exhibiting
the largest amplitude showed the greatest improvement from the first block of
practice trials to the last block. This result is consistent with other studies dem-
onstrating a relationship between reward positivity amplitude and changes in
performance within a practice session (e.g., Holroyd & Krigolson, 2007;
Reinhart & Woodman, 2014; van der Helden, Boksem, & Blom, 2010). How-
ever, the task-irrelevant choice of bean-bag color did not significantly affect
intrinsic motivation. Unfortunately, this lack of an effect makes it difficult to
draw strong conclusions about the relations between these three variables
(motivation, reward positivity, and motor learning).
In summation, we think that integrating the rich history of reinforcement

learning with motor skill learning is a fruitful area for future research.
Although reinforcement learning models have certainly been discussed in the
context of motor skill learning (Doya, 2000; Seidler et al., 2013), relatively
few researchers have investigated reward-processing effects on long-term
learning at a mechanistic level. There has been a significant amount of
research on reward-prediction errors and their neurophysiological basis, but
almost all of those studies focused on adaptation within a session and not
long-term learning (e.g., Cohen & Raganath, 2007; Frank, Woroch, &
Curran, 2005; Miltner, Braun, & Coles, 1997). It is important to dissociate
adaptation from learning as we saw in the study by Grand et al. (2017),
where reward positivity magnitude was related to the degree of adaptation,
but not learning. Although reward-prediction errors and adjustments in
behavior during practice are important for learning, there are significant
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intervening psychological processes that make this relationship more complex (e.g.,
consolidation and retrieval; Kantak & Winstein, 2012). As such, we think there is
considerable “low-hanging fruit” for researchers studying motor learning to
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Figure 3.3 (Upper-left) Experiment set-up: Participants sat a table and completed 10
blocks of 10 non-dominant arm beanbag tosses to a target, which was
occluded from vision by a board. Participants received augmented feedback
(knowledge of results about toss accuracy) after each trial from a computer
on the table. Participants in the choice group chose the color beanbag they
tossed on each block, whereas participants in the yoked group were given
a color schedule matched to a choice group counterpart. (Upper-right)
Accuracy (radial error) as a function of group and experimental phase (Day
1: Pretest, Acquisition Blocks; Day 2: 7-day retention and transfer post-
test). Both groups improved their performance throughout acquisition
(Block 1 – Block 10), and both groups learned the skill, as evidenced by
superior performance on post-test relative to pre-test. There were no
group differences. (Lower-left) EEG-derived event-related potentials
(ERPs) for the choice and yoked groups time-locked to the onset of aug-
mented feedback, which occurred at 0 ms. The ERPs are averaged across
all trials for each participant and then averaged across participants within
groups. The time window in which the reward positivity was quantified is
highlighted. Reward positivity amplitude did not differ between groups.
(Lower-right) Reward positivity amplitude and acquisition improvement
from Block 1–10 were significantly correlated (controlling for group), with
higher reward positivity amplitude predicting greater acquisition improve-
ment (βunstandardized = 0.720 cm, p = .032).
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illuminate how reward-processing during practice affects the long-term retention of
motor skills.

Recommendations for practitioners

We think that more research into reinforcement learning principles in motor skill
acquisition will improve our ability to make specific and personalised recommenda-
tions for practitioners. As research in this area grows, we expect to be able to make
detailed prescriptions based on interactions of the individual, task, and environment.
In the interim, however, there are some general recommendations that can made
from burgeoning research in this area and decades of reinforcement learning studies
in other domains.
Reinforcement learning describes the process by which we adjust our behavior

based on prediction errors in order to maximise rewards and minimise punishments.
In this chapter, we offer empirical evidence and strong theoretical arguments to sup-
port the idea that this learning model is probably the most important for understand-
ing skill acquisition. Reinforcement learning principles can be used to explain
performance adaptation and long-term retention of motor skills and should, there-
fore, inform how instructors and practitioners design practice conditions. Specifically,
instructors should attempt to maximise reward-prediction errors by increasing the
reward associated with successful outcomes.

• If reward-prediction errors facilitate learning, then these errors should be maxi-
mised. To that end, we do not want success (or failure) to be too predictable.
Therefore, the difficulty of practice should be individualised. As success becomes
too predictable, the difficulty of the task should increase (see also Guadagnoli &
Lee, 2004).

Providing positive feedback after relatively good trials can increase a learner’s per-
ceptions of competence, thereby enhancing intrinsic motivation and learning
(potentially via augmenting reward-prediction errors). Perceived competence is
especially important for rehabilitation. Since low levels of motivation and engage-
ment are common issues faced by therapists, they may want to implement strategies
that make even the smallest improvement rewarding for their patients. This is an
important consideration for coaches as well as therapists when progressively increas-
ing difficulty. We encourage instructors and learners to embrace difficulty during
practice, but emphasise the need to support and maintain learners’ intrinsic motiv-
ation. When properly supported, difficult practice can create an engaging environ-
ment and produce prediction errors that provide the impetus for the nervous
system to adapt.

• It is not only objective success in a task or skill that matters, but also subjective
perceptions of success that matter for motor learning (e.g., Abbas & North,
2017). These successes are both psychologically and physiologically rewarding.
Thus, instructors should provide augmented feedback to enhance learners’
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perceptions of success, as long as these are meaningful and based on the perform-
er’s expectations.

Perceived competence is only one pathway to increasing intrinsic motivation. Auton-
omy and relatedness are also positively related to intrinsic motivation and may be
manipulated during practice sessions. Thus, instructors should provide learners with
some control over their practice environment and show support/interest in learners’
progress and experiences. Autonomy can be increased in a number of different ways.
For instance, learners can be given a modicum of control over the order of practice,
exercises during practice, when to receive feedback, or the progression of difficulty
during practice.

• Giving learners self-control over practice not only increases autonomy, but
it also gives learners a more personalised practice environment. Experimen-
tal research suggests that even novice learners are good at making decisions
about difficulty progression that benefit learning (e.g., Ste-Marie, Carter,
Law, Vertes, & Smith, 2017).

Summary

In psychology, a prediction error is the difference between an anticipated outcome
and the actual outcome. Neurologically, these prediction errors are an important
stimulus for learning and updating our behavior, the details of which have been
developed through decades of research on reinforcement learning. Coaches and ther-
apists can harness reinforcement learning principles to optimise practice conditions.
For instance, if outcomes become too predictable, prediction errors will move
toward zero reducing the impetus to update behavior. Thus in order to maintain
learning, the difficulty of practice should progressively increase in relation to the
learner’s skill level. While increasing the level of difficulty, perceptions of competence,
relatedness, and autonomy should be kept high to maintain intrinsic motivation in
challenging situations. Ultimately, we think it is important that instructors and learn-
ers understand that errors (specifically prediction errors) should not be considered
a threat to practice. On the contrary, they should be embraced and explored as they
can lead to better motor skill acquisition and learning.
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