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Online Chapter 14 
ERP Localization 

A Note About This Chapter 

This is a slightly revised reprint of Chapter 7 from the first edition of An Introduction to the Event-Related 

Potential Technique (and is subject to the copyright of that edition).  I chose not to update this chapter for the 

second edition of the book because nothing has fundamentally changed in source localization since I wrote the 

first edition.  There is one major new approach, in which “spatial filters” are used to estimate activity at 

individual cortical locations, but this approach does not solve the primary shortcoming of source localization 

techniques (i.e., that it is typically impossible to know whether a given solution is actually correct).  Also, the 

most common version of this new approach, the beamforming technique, is described in detail in a very 

readable chapter by Jessica Green and John McDonald (Green & McDonald, 2009).  Bayesian approaches 

have also been evolving, but the field has not yet reached a consensus about these approaches.  So keep in mind 

that this chapter is a little out of date, but the fundamental principles described here are still useful to know. 

Overview 

The ultimate goal of cognitive neuroscience is to understand how the neural circuitry of the brain gives rise 

to cognitive processes.  This is a challenging enterprise, and one of the central difficulties is to measure how 

specific populations of neurons operate during the performance of various cognitive tasks.  The best techniques 

for measuring activity in specific populations of neurons are invasive and cannot usually be applied to human 

subjects, but it is difficult to study many aspects of cognition in nonhuman subjects.  PET and fMRI provide 

noninvasive means of localizing changes in blood flow that are triggered by overall changes in neural activity, 

but blood flow changes too slowly to permit most cognitive processes to be measured in real time.  ERPs 

provide the requisite temporal resolution, but they lack the relatively high spatial resolution of PET and fMRI.  

However, ERPs do provide some spatial information, and many investigators are now trying to use this spatial 

information to provide a measurement of the time course of neural activity in specific brain regions.  

The goal of this chapter is to explain how this process of ERP source localization works in general and to 

provide a discussion and critique of the most common source localization techniques. Before I begin, however, 

I would like to provide an important caveat: I tend to be extremely skeptical about ERP localization, and this 

chapter reflects that skepticism.  Many other researchers are also skeptical about ERP localization (see, e.g., 

Snyder, 1991), but I am more skeptical than most. Consequently, you should not assume that my conclusions 

and advice in this chapter represent those of the majority of ERP researchers.  You should talk to a broad range 

of ERP experts before making up your mind about source localization. 

Source localization is very complex, both in terms of the underlying mathematics and the implementation 

of the procedures, and an entire book would be required to provide a detailed description of the major 

techniques.  This chapter therefore focuses on providing a simple description of the two major classes of 

techniques—including their strengths and weaknesses—so that you can understand published research using 

these techniques and decide whether to pursue localization yourself. 

My main advice in this chapter is that beginning and intermediate ERP researchers should not attempt to 

localize the sources of their ERP data.  ERP localization is a very tricky business, and doing it reasonably well 

requires sophisticated techniques and lots of experience.  Moreover, the techniques currently in wide use are not 

completely satisfactory.  However, many smart people are working to improve the techniques, and some 

promising approaches are on the horizon.  Thus, you may eventually want to do some source localization, and 

you will certainly be reading papers that report localization results.  The goal of this chapter is therefore to make 

you an informed and critical observer of source localization efforts rather than a participant in these efforts. 
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The Big Picture 

If a single dipole is placed in a conductive sphere, relatively simple equations can be used to predict the 

precise distribution of voltage that will be observed on the surface of the sphere.  This is called the forward 

problem, and it is relatively easy to solve.  Voltages summate linearly, which means that the forward problem is 

also easy to solve for multiple simultaneously active dipoles – the voltage distributions for the individual 

dipoles are simply added together to derive the distribution for the set of dipoles.  The forward problem can also 

be solved for realistic head shapes.   

The problem arises in solving the inverse problem of determining the positions and orientations of the 

dipoles on the basis of the observed distribution of voltage over the scalp.  If only one dipole is present, and 

there is no noise, then it is possible to solve the inverse problem to any desired degree of spatial resolution by 

comparing forward solutions from a model dipole with the observed scalp distribution and then adjusting the 

dipole to reduce the discrepancy between the predicted and observed distributions.  However, it is not possible 

to solve the inverse problem if the number of dipoles is unknown (or if the activity is distributed rather than 

dipolar) because there is no unique solution to the inverse problem in this case.  In other words, for any given 

scalp distribution, there is an infinite number of possible sets of dipoles that could produce that scalp 

distribution (Helmholtz, 1853; Plonsey, 1963).  Thus, even with perfectly noise-free data, there is no perfect 

solution to the inverse problem.   

Several investigators have proposed ways around this uniqueness problem, and their solutions fall into two 

general categories.  One approach is to use a small number of equivalent current dipoles, each of which 

represents the summed activity over a small cortical region (perhaps 1–2 cm
3
), and assume that these dipoles 

vary only in strength over time; this is called the equivalent current dipole category of source localization 

methods.  The second category divides the brain’s volume (or the cortical surface) into a fairly large number of 

voxels (perhaps a few thousand), and computes the set of strengths for these voxels that can both explain the 

observed distribution of voltage over the scalp and satisfy additional mathematical constraints; this is called the 

distributed source category. 

The Forward Solution 

Early forward solutions assumed that the head was a sphere, which makes the computations relatively 

simple.  That is, if we assume that the head is a sphere and that the head’s resistance is homogeneous, it is very 

easy to compute the voltage created at every point on the scalp by a single dipole or an arbitrarily large set of 

dipoles.  The skull and scalp have a higher resistance than the brain, but this is easily accommodated by a  

model in which a homogeneous spherical brain is covered by skull and scalp layers.  A spherical approximation 

is often used for computing forward solutions because it is easy to generate the model and because the forward 

solution can be computed very rapidly.  However, this model is obviously an oversimplification, and many 

researchers are now using more detailed models of the head, such as finite element models.  In a finite element 

model, the volume of the head is divided up into thousands or even hundreds of thousands of individual cubes.  

The resistance within each cube is assumed to be homogeneous (which is a reasonable approximation given that 

each cube is very small), but the resistances are different for each cube.  In addition, the set of cubes that define 

the head are not constrained to form a large sphere, but instead take into account the shape of each subject’s 

head (as determined by a structural MRI scan). 

Once the head has been divided into a set of cubes and the resistances of the individual cubes have been 

determined, simple equations can be used to determine the surface voltages that would be produced by a dipole 

in a known location.  Given the large number of cubes in a realistic model of the head, a lot of computer power 

is needed to do this sort of modeling, but as computers become faster, this sort of modeling will fall within the 

means of more and more researchers.  The hard part is to determine the resistances of the individual cubes.  The 

resistances can’t actually be measured for a living human subject, but they can be estimated by performing an 

MRI scan, dividing up the head into regions of different tissue types on the basis of the MRI scan, and using 
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normative resistance values for each tissue type (i.e., resistance values that have been determined invasively 

from cadavers, from nonhuman animals, and possibly from human neurosurgical patients). 

Because finite element models are so computationally intensive, a less intensive variant has been 

developed, the boundary element model.  This approach takes advantage of the fact that the brain itself has a 

relatively constant resistance, and most of the action is in the boundaries between the brain, the skull, and the 

scalp.  The model therefore consists of boundary surfaces for these tissues, with the assumption that the 

resistance within a tissue is constant throughout the extent of that tissue.  As in finite element models, the 

boundaries are estimated from structural MRI scans and the conductivities of each tissue type are based on 

normative values. 

Equivalent Current Dipoles and the BESA Approach 

The Brain Electrical Source Analysis (BESA) technique is the prototypical example of an equivalent 

current dipole technique.  In addition, BESA has been the most commonly used method for localizing ERP 

sources over the past 20 years, in part because it is relatively simple and inexpensive (both in terms of 

computing resources and money).  Thus, this section will focus on the BESA technique.  The interested reader 

may also want to learn about the MUSIC (multiple signal characterization) technique, which provides a more 

sophisticated approach to computing equivalent current dipole solutions (see Mosher, Baillet, & Leahy, 1999; 

Mosher & Leahy, 1999; Mosher, Lewis, & Leahy, 1992). 

BESA is based on the assumption that the spatiotemporal distribution of voltage can be adequately 

modeled by a relatively small set of dipoles (<20), each of which has a fixed location and orientation but varies 

in magnitude over time (Scherg, Vajsar, & Picton, 1989; Scherg & von Cramon, 1985).  Each dipole has five 

major parameters, three indicating its location, and two indicating 

its orientation.  A magnitude parameter is also necessary, but this 

parameter varies over time and is treated differently from the 

location and orientation parameters. 

The Essence of BESA 

The BESA algorithm begins by placing a set of dipoles in an 

initial set of locations and orientations, with only the magnitude 

being unspecified.  The algorithm then calculates a forward 

solution scalp distribution for these dipoles, computing a 

magnitude for each dipole at each point in time such that the sum 

of the dipoles yields a scalp distribution that fits the observed 

distribution as well as possible for each point in time. 

The scalp distributions from the model are then compared 

with the observed scalp distributions at each time point to see how 

well they match.  The degree of match is quantified as the 

percentage of the variance in scalp distribution that is explained 

by the model; alternatively, it can be expressed as the percentage 

of unexplained variance (called the residual variance).  The goal 

of the algorithm is to find the set of dipole locations and 

orientations that yields the lowest residual variance, providing the 

best fit between the model and the data.   

This is accomplished in an iterative manner, as shown in 

Figure 14.1.  On each iteration, the forward solution is calculated, 

leading to a particular degree of residual variance, and then the 

positions and orientations of the dipoles are adjusted slightly to try 
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to reduce the residual variance.  This procedure is iterated many times using a gradient descent algorithm so that 

the positions and orientations will be adjusted in a way that tends to decrease the residual variance with each 

successive iteration.  In the first several iterations, the residual variance drops rapidly, but after a large number 

of iterations, the residual variance stops declining much from one iteration to the next and the dipole positions 

and orientations become stable.  There are various refinements that can be added, but this is the essence of the 

BESA technique. 

An example of a BESA solution is shown in Figure 14.2 (from the study of Di Russo, Martinez, Sereno, 

Pitzalis, & Hillyard, 2002).  The goal of this source localization model was to characterize the generators of the 

early visual sensory components.  The top of the figure shows the scalp distribution of the ERP response to a 

checkerboard stimulus in the upper left visual field in various time ranges, and the bottom of the figure shows 

the BESA model that was obtained.  Each dipole is represented by a dot showing its location and a line showing 

its orientation; three different views of the head are shown so that the dipoles can be seen in three dimensions.  

Each dipole is also associated with a source waveform, which shows how the estimated magnitude for that 

dipole varies over time. 
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Figure 14.2. Example of an equivalent current dipole model generated using the BESA technique (from the study of 

Di Russo et al., 2002).  The top shows the scalp distributions of voltage measured in various time ranges in response to a 

checkerboard in the upper left visual field.  This time-space-voltage data set is modeled by a set of 7 dipoles.  The 

locations and orientations of the dipoles are shown in three different views in the lower right region, and the magnitude of 

each dipole over time is shown in the lower left region.  (Copyright 2002 Wiley-Liss, Inc.)  Thanks to Francesco Di Russo 

for providing electronic versions of these images. 

The Starting Point 

Before this iterative procedure can be initiated, it is necessary to decide how many dipoles to use and what 

their starting positions will be.  These are important decisions, and they will have a very substantial impact on 

the solution ultimately reached by the model.  In fact, the most problematic aspect of the BESA technique is the 

fact that the user has a lot of control over the results (this is called operator dependence); consequently the 

results may be biased by the expectations of the user. 

Several different strategies can be used to select the number of dipoles.  One approach is to use principal 

components analysis (PCA) to determine how many underlying spatial distributions of activity contribute to the 

observed distribution of voltage over the scalp.  This technique can work well in some cases.  However, if the 

magnitudes of two dipoles are correlated with each other over time, they may be lumped together into a single 

component.  Thus, the number of components identified by PCA can only provide a lower bound on the number 

of dipoles. 

Another strategy is to start by using one or two dipoles to create a model of the early part of the waveform, 

under the assumption that the response begins in one or two sensory areas.  Once a stable solution is reached for 

the early part of the waveform, the time window is increased and new dipoles are added while the original 

dipoles are held constant.  This procedure is then repeated with a larger and larger time window.  This 

procedure makes some sense, but it has some shortcomings.  First, at least a dozen visual areas are activated 

within 60 ms of the onset of activity in visual cortex (Schmolesky, Wang, Hanes, Thompson, Leutgeb, Schall, 

& Leventhal, 1998), so representing the early portion of the waveform with one or two dipoles is clearly an 

oversimplification.  Second, some error is likely in any dipole solution, and small errors in the initial dipoles 

will lead to larger errors in the next set of dipoles, and the location estimates will become increasingly 

inaccurate as more and more dipoles are added. 

A third strategy is to use preexisting knowledge about the brain to determine the number of dipoles.  For 

example, if difference waves are used to isolate the lateralized readiness potential, it would be reasonable to 

start with the assumption that two dipoles are present, one in each hemisphere. 

There are also several strategies that can be used for determining the starting positions and orientations of 

the dipoles, and different strategies will lead to different results.  Unfortunately, most papers using the BESA 

technique describe the model produced by one or two different starting positions.  Almost every time I have 

read a paper that used the BESA technique, I wished the authors had provided a detailed description of the 

results that would have been obtained with a wide variety of different starting locations.   It would be possible 

for researchers to do this.  Indeed, Aine, Huang, and their colleagues have developed what they call a multi-start 

approach to localization, in which the localization algorithm is applied hundreds or even thousands of times 

with different starting parameters (Aine, Huang, Stephen, & Christner, 2000; Huang, Aine, Supek, Best, 

Ranken, & Flynn, 1998).  It is then possible to determine which dipole locations occur frequently in the 

solutions and are therefore relatively independent of the starting parameters. 

Another strategy is to start with dipoles in locations that are based on preexisting knowledge about the 

brain.  The locations could be based on general knowledge (e.g., the location of primary and secondary auditory 

areas), or they could be based on specific results from previous experiments (e.g., activation centers from a 

similar fMRI experiment).  When the latter approach is used, researchers sometimes say that the solution is 

based on seeded dipoles, and some studies have explicitly shown that similar results were obtained with random 
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dipole locations and seeded dipoles (e.g., Heinze, Mangun, Burchert, Hinrichs, Scholz, Münte, Gös, Scherg, 

Johannes, Hundeshagen, Gazzaniga, & Hillyard, 1994).  This is, in some ways, a reasonable approach.  

However, it seems likely to lead to a confirmation bias, increasing the likelihood that the expected results will 

be obtained even if they are not correct. 

Shortcomings of the BESA Approach 

The BESA approach has several shortcomings, but the most significant problem is that there is no 

mathematically principled means of quantifying the accuracy of a solution.  Specifically, in the presence of 

noise, it is possible for a substantially incorrect solution to have the same (or lower) residual variance than the 

correct solution.  Even with minimal noise, it is possible for a substantially incorrect solution to have a very low 

residual variance (especially when more than a few dipoles are used).  One reason for this is that each BESA 

dipole has five free parameters (plus a time-varying magnitude parameter).  Thus, a model with only six dipoles 

has 30 free parameters, and a relatively large error in one of these parameters can easily be offset by small 

adjustments in the other parameters, resulting in low residual variance.  Even if only one dipole is present, the 

BESA solution may be inaccurate due to noise in the data and errors in the head model.  Without some means of 

quantifying the likelihood that a solution is correct or even nearly correct, it’s hard to use a BESA solution to 

provide strong support for or against a hypothesis.   

The second most significant shortcoming of the BESA technique is the operator dependence of the 

technique (as mentioned briefly in the previous section).  In addition to setting the number and initial positions 

of the dipoles, a researcher can adjust several other parameters that control how the algorithm adjusts the 

positions and orientations of the dipole while searching for the configuration with the least residual variance.  

Moreover, at several points in the process, the researcher makes subjective decisions about adding or deleting 

dipoles from the solution or changing various constraints on the dipoles.  I have seen ERP researchers spend 

weeks applying the BESA technique to a set of data, playing around with different parameter settings until the 

solution “looks right.”  Of course, what “looks right” is often a solution that will confirm the researcher’s 

hypothesis (or at least avoid disconfirming it). 

Another significant shortcoming of the BESA technique is that it will produce an incorrect solution if the 

number of dipoles is incorrect.  It is difficult or impossible to know the number of dipoles in advance, especially 

in an experiment of some cognitive complexity, so this is a significant limitation.  Moreover, BESA uses a 

discrete dipole to represent activity that may be distributed across a fairly large region of cortex, and this 

simplification may lead to substantial errors. 

A Simulation Study 

There have been a variety of tests of the accuracy of equivalent current dipole localizations, but they have 

mostly used only one or two simultaneously active dipoles (see, e.g., Cohen & Cuffin, 1991; Leahy, Mosher, 

Spencer, Huang, & Lewine, 1998).  These simulations are useful for assessing the errors that might be likely in 

very simple sensory experiments, but they do not provide meaningful information about the errors that might 

occur in most cognitive neuroscience experiments. 

The most informative simulation study in the context of cognitive neuroscience was performed by Miltner 

et al. (1994).  This study used BESA’s spherical, 3-shell head model to simulate a set of dipoles and produce 

corresponding ERP waveforms from 32 electrode sites.  From these ERP waveforms, nine participants 

attempted to localize the dipoles using BESA.  The participants consisted of ERP researchers with various 

levels of expertise with BESA (including three with very high levels of expertise)1.  The participants were told 

that the data were simulated responses from left somatosensory stimuli that were presented as the targets in an 

oddball task, and they were given the task of trying to localize the sources.  The simulation comprised 10 

                                                 
1 A physicist with no knowledge of BESA or ERPs was also tested, but his localizations were both unrepresentative and far from 

correct, so his results will not be included in the discussion here. 
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dipoles, each of which was active over some portion of a 900-ms interval.  White noise was added to the data to 

simulate the various sources of noise in real ERP experiments.  The simulation included two dipoles in left 

primary somatosensory cortex (corresponding to the P100 wave and an early portion of the N150 wave), a 

mirror-symmetrical pair of dipoles in left and right secondary somatosensory cortex, midline dipoles in 

prefrontal and central regions, and mirror-symmetrical pairs of dipoles in medial temporal and dorsolateral 

prefrontal regions.   

This is a fairly large set of dipoles2, but the participants’ task was made easier by at least seven factors: (1) 

the solution included several dipoles that were located exactly where they would be expected (e.g., the primary 

and secondary somatosensory areas); (2) three of the dipole pairs were exactly mirror-symmetrical (which 

matches a typical BESA strategy of assuming mirror symmetry at the early stages of the localization process); 

(3) the spherical BESA head model was used to create the simulations, eliminating errors due to an incorrect 

forward solution; (4) the temporal overlap between the different dipoles was modest (for most of the dipoles, 

there was a time range in which only it and one other dipole or mirror-symmetrical dipole pair were strongly 

active); (5) with the exception of the two dipoles in primary somatosensory cortex, the dipoles were located 

fairly far away from each other; (6) the white noise that was added was more easily filtered out than typical 

EEG noise and was apparently uncorrelated across sites; and (7) the simulation used discrete dipoles rather than 

distributed regions of activation. 

Despite the fact that the simulation perfectly matched the assumptions of the BESA technique and was 

highly simplified, none of the participants reached a solution that included all 10 dipoles in approximately 

correct positions.  The number of dipoles in the solutions ranged from 6 to 12, which means that there were 

several cases of missing dipoles and/or spurious dipoles.  Only two of the nine participants were able to 

distinguish between the midline prefrontal and midline central dipoles, and the other seven participants tended 

to merge them into a single dipole even though the actual dipoles were approximately 5 cm apart.   

Across all dipoles that appeared to be localized by the participants, the average localization error was 

approximately 1.4 cm, which doesn’t sound that bad.  However, this was a simplified simulation based on the 

BESA head model, and the errors with real data are likely to be greater.  Moreover, there were many cases in 

which an individual dipole’s estimated location was 2-5 cm from the actual dipole’s location, and the mean 

errors across dipoles for individual participants were as high as 2 cm. To be fair, however, I should note that 

most of the participants provided a reasonably accurate localization of one of the two primary somatosensory 

dipoles, the secondary somatosensory dipoles, the medial temporal lobe dipoles, and the dorsolateral prefrontal 

dipoles. But each of the nine participants had at least one missing dipole, one spurious dipole, or one 

mislocalization of more that 2 cm. 

From this study, two main conclusions can be drawn.  First, in this highly simplified situation, dipoles were 

often localized with a reasonable degree of accuracy, with an average error of 1–2 cm for most of the 

participants (relative to  a 17-cm head diameter).  Thus, when reality does not deviate too far from this 

simplified situation, the BESA technique can potentially provide a reasonable estimate of the locations of most 

of the dipoles most of the time.  However, some of the simplifications seem quite far from reality, so it’s 

entirely possible that average errors will be considerably larger with most real data sets.   

The second main conclusion is that any single dipole in a given multiple-dipole BESA model has a 

significant chance of being substantially incorrect, even under optimal conditions.  Dipoles may be mislocalized 

by several centimeters or completely missed; multiple dipoles may be merged together, even if they are fairly 

                                                 
2 If two dipoles are assumed to be mirror-symmetrical, only 7 parameters are required to represent the two dipoles, rather than the 

twelve that would be otherwise required.  That is, 6 parameters are used to represent one of the two dipoles, as usual, but the other 

dipole requires only one additional parameter, representing its magnitude (which is the only parameter that may differ from the other 

dipole).  Moreover, because magnitude is treated differently from the other parameters in BESA, the assumption of mirror symmetry 

essentially removes all of the major parameters from one of the two dipoles.  Thus, this 10-dipole simulation is equivalent to an 

unconstrained 7-dipole simulation. 
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far apart; and spurious dipoles may be present in the model that correspond to no real brain activity.  Thus, even 

if the average error is only 1–2 cm for most dipoles, this simulation suggests that BESA solutions for 

moderately complex data sets may typically contain at least one missing dipole, one spurious dipole, or one 2-5 

cm localization error.  And the accuracy of the technique is presumably even worse for real data sets that 

deviate from the simplifications of this simulation. 

Although the BESA technique has been widely used over the past 20 years, most ERP researchers now 

appreciate the limitations of the BESA technique.  There is a clear trend away from this technique and toward 

more sophisticated equivalent current dipole approaches and distributed source approaches. 

Distributed Source Approaches 

General Approach 

Instead of using a small number of equivalent current dipoles to represent the pattern of neural activity, it is 

possible to divide the brain up into a small number of voxels and find a pattern of activation values that will 

produce the observed pattern of voltage on the surface of the scalp.  For example, you could divide the surface 

of the brain into 100 little cubes.  Each cube would contain three dipoles, one pointing upward, one pointing 

forward, and one pointing laterally (a single dipole of an arbitrary orientation can be simulated by varying the 

relative strengths of these three dipoles).  You could then find a pattern of dipole strengths that would yield the 

observed distribution of voltage on the surface of the head.  This would provide you with an estimate of the 

distribution of electrical activity throughout the brain. 

The problem with this approach is that even this relatively coarse parcellation of the brain requires that you 

compute 300 different dipole strengths.  That is, your model has 300 free parameters to be estimated.  Generally 

speaking, you need at least as many independent data points as you have free parameters, and even if you have 

voltage measurements from 300 electrodes, they are contaminated by noise and are not independent of each 

other.  Consequently, there are many different sets of strengths of the 300 dipoles that could produce the 

observed ERP scalp distribution.  This is the problem of non-uniqueness.  And it would get even worse if we 

wanted to divide the brain into even smaller voxels. 

Cortically Constrained Models 

Researchers have developed several strategies to avoid the non-uniqueness problem.  One strategy is to 

reduce the number of dipoles by assuming that scalp ERPs are generated entirely by currents generated in the 

cerebral cortex, flowing perpendicular to the cortical surface (which is a reasonable assumption in most cases).  

Instead of using a set of voxels that fills the entire volume of the brain, with three dipoles per voxel, this 

approach uses structural MRI scans to divide the cortical surface into hundreds or thousands of small triangles, 

each with a single dipole oriented perpendicular to the surface.  This cortically constrained approach 

dramatically reduces the number of free parameters in the model (although some error may be introduced by 

inaccuracies in the cortical surface reconstruction).  The result is a model of the distribution of electrical activity 

over the cortical surface. 

Figure 14.3 illustrates this approach, with a slice through a cartoon brain that shows the cortical surface and 

recording electrodes for the left hemisphere.  The cortical surface has been divided into a number of small 

patches, and each patch is treated as a dipolar current source pointing perpendicular to the cortical surface.  This 

reduces the number of dipole locations and orientations compared to dividing the entire volume of the brain into 

voxels, each of which contains three dipoles.  However, the number of dipoles needed in a real experiment is 

still very large (usually in the hundreds or thousands), and there is still no unique pattern of dipole strengths that 

can account for the observed distribution of voltage on the scalp.  That is, the use of a cortically constrained 

model reduces the number of internal patterns of activity that could explain the observed distribution of voltage 

over the scalp, but it does not bring the number all the way to one (i.e., to a unique solution). 
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The non-uniqueness problem in cortically constrained models can be appreciated by considering sources 15 

and 16 in Figure 14.3.  These sources are almost perfectly parallel to each other, but they are inverted in 

orientation with respect to each other (i.e., the outer surface of the cortex points downward for source 15 and 

upward for source 16).  This is a common occurrence given the extensive foldings of the human cerebral cortex.  

The non-uniqueness problem occurs because any increase in the magnitude of source 15 can be cancelled by an 

increase in the magnitude of source 16, with no change in the distribution of voltage on the surface. 

 

Figure 14.3. Example of the electrical sources and measurement electrodes used by cortically constrained 

distributed source localization methods.  A coronal section through the brain is shown.  The cortex is divided into a large 

number of patches that are assumed to be the electrical sources (labeled S0–S29 here).  Each source is modeled as a 

dipole that is centered in the corresponding cortical patch and oriented perpendicular to the patch.  The voltage 

corresponding to each source propagates through the brain, skull, and scalp to reach the recording electrodes (labeled 

E0–E6), and the voltages from the different sources simply sum together. 

The Minimum Norm Solution 

To get around the non-uniqueness problem (for both whole-brain and cortically constrained models), 

Hämäläinen and Ilmoniemi (1984) proposed adding an additional constraint to the system.  This constraint is 

based on the fact that the cancellation problem—as exemplified by sources 15 and 16 in Figure 14.3—allows 

the magnitudes of nearby sources to become huge without distorting the distribution of voltage on the scalp.  

These huge magnitudes are a biologically unrealistic consequence of the modeling procedure, and it therefore 

makes sense to eliminate solutions that have huge magnitudes.  Thus, Hämäläinen and Ilmoniemi (1984) 

proposed selecting the one solution that both produces the observed scalp distribution and has the minimum 

overall source magnitudes.  This is called the minimum norm solution to the problem of finding a unique 

distribution of source magnitudes. 
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One shortcoming of the minimum norm solution is that it is biased toward sources that are near the surface, 

because a larger magnitude is necessary for a deep source to contribute as much voltage at the scalp as a 

superficial source.  However, this problem can be solved by using a depth-weighted minimum norm solution 

that weights the magnitudes of each source according to its depth when finding the solution with the minimum 

overall source magnitudes.  

Other researchers have proposed other types of minimum norm solutions that reflect different constraints.  

The most widely used of these alternatives is the low-resolution electromagnetic tomography (LORETA) 

technique, which assumes that the voltage will change gradually (across the volume of the brain or across the 

cortical surface) and selects the distribution of source magnitudes that is maximally smooth (Pascual-Marqui, 

2002; Pascual-Marqui, Esslen, Kochi, & Lehmann, 2002; Pascual-Marqui, Michel, & Lehmann, 1994).  The 

smoothness constraint may be reasonable in many cases, but sharp borders exist between adjacent 

neuroanatomical areas, and these borders would sometimes be expected to lead to sudden changes in cortical 

current flow.  Indeed, if an experimental manipulation is designed to activate one area (e.g., V3) and not an 

adjacent area (e.g., V4), then the goals of the experiment would be incompatible with an assumption of 

smoothness.  On the other hand, gradual changes in activity are probably the norm within a neuroanatomical 

area, so the smoothness constraint may be appropriate in many cases.  It should also be noted that, because of its 

smoothness constraint, the LORETA technique is appropriate only for finding the center of an area of activation 

and not for assessing the extent of the activated area.  In contrast, nothing about the original and depth-weighted 

minimum norm solutions will prevent sharp borders from being imaged. 

It is possible to combine empirical constraints with these mathematical constraints.  For example, Dale and 

Sereno (1993) describe a framework for using data from functional neuroimaging to provide an additional 

source of constraints that can be combined with the minimum norm solution (see also George, Aine, Mosher, 

Schmidt, Ranken, Schlitt, Wood, Lewine, Sanders, & Belliveau, 1995; Phillips, Rugg, & Friston, 2002; 

Schmidt, George, & Wood, 1999).  Like the LORETA approach, this approach has the advantage of using 

biological information to constrain which solution is chosen.  However, it is easy to conceive of situations in 

which an fMRI effect would not be accompanied by an ERP effect or vice versa (see Luck, 1999), so the 

addition of this sort of neuroimaging-based constraint may lead to a worse solution rather than a better one.  It 

may also produce a confirmation bias: When you use fMRI data to constrain your ERP localization solution, 

you’re increasing the likelihood of finding a match between the ERP data and the fMRI data even if the ERP is 

not generated at the locus of the fMRI BOLD signal. A simulation study suggested that the most problematic 

situation arises when an ERP source is present without a corresponding fMRI source (Liu, Belliveau, & Dale, 

1998).  This study also indicated that the resulting distortions are reasonably small if the source localization 

algorithm assumes a less-than-perfect correspondence between the ERP and fMRI data.  It remains to be seen 

whether the use of fMRI data to probabilistically constrain ERP source localization leads to substantial errors 

when applied to real data. 

Unlike equivalent source dipole approaches, minimum norm-based techniques will always find a unique 

solution to the inverse problem, and they do it largely automatically.  However, a unique and automatic solution 

is not necessarily the correct solution.  The correctness of the solution will depend on the correctness of the 

assumptions.  As discussed by Ilmoniemi (1995), an approach of this type will provide an optimal solution if its 

assumptions are valid, but different sets of assumptions may be valid for different data sets.  For example, if one 

applies the LORETA technique to the 3-dimensional volume of the brain without first creating a model of the 

cortical surface, the smoothness assumption will almost certainly be violated when areas that are distant from 

each other along the cortical surface abut each other due to the folding pattern of the cortex.  But if the 

smoothness constraint is applied along the reconstructed 2-D cortical surface, then this assumes that subcortical 

regions do not contribute to the data, which may be incorrect. 
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The Added Value of Magnetic Recordings 

As described in Chapter 1, the EEG is accompanied by a magnetic signal, the MEG, and event-related 

electrical potentials (ERPs) are accompanied by event-related magnetic fields (ERMFs).  Because the skull is 

transparent to magnetism, the MEG signal is not blurred by the skull, and this leads to improved spatial 

resolution for MEG recordings.  Another benefit of MEG is that, because magnetism passes unimpeded through 

the head, MEG/ERMF localization does not require a model of the conductances of the head; it simply requires 

a model of the overall shape of the brain.  Thus, it can be advantageous to use apply localization techniques to 

ERMFs rather than ERPs. 

ERMF localization faces the same non-uniqueness problem as ERP localization, but combining ERP and 

ERMF data provides a new set of constraints that can aid the localization process. The main reason for this is 

that the voltage field and the magnetic field run in different directions, and they therefore provide 

complementary information.  As illustrated in Figure 14.4A, the magnetic field runs in circles around the 

current dipole.  When the current dipole is oriented in parallel to the skull, the magnetic field exits the skull on 

one side of the dipole and reenters the skull on the other side (Figure 14.4B).  The strength of the magnetic field 

varies as a function of distance from the dipole, just like the strength of the electrical field, but the voltage 

distribution is broader due to the blurring of the scalp (Figure 14.4D).  In addition, the magnetic and electrical 

distributions are oriented at 90° with respect to each other.  As shown in Figure 14.4D, the positive and negative 

electrical potentials appear at the positive and negative ends of the dipole, and the line of zero voltage runs 

perpendicularly through the center of the dipole.  The efflux and influx of the magnetic field, in contrast, occur 

on the left and right sides of the dipole, and the zero flux line runs in parallel with the orientation of the dipole. 



© Steven J. Luck 
 

 

 

Figure 14.4. Relationship between an electrical dipole and its associated magnetic field.  An electrical dipole has a 

magnetic field running around it (A), and when the dipole is roughly parallel to the surface of the head, the magnetic field 

leaves and reenters the head (B).  If the dipole is oriented radially with respect to the head, the magnetic field does not 

vary across the surface of the head (C).  When a dipole runs parallel to the surface of the head (represented by the arrow 

in D), there is a broad region of positive voltage at the positive end (solid lines) and a broad region of negative voltage at 

the negative end (dashed lines), separated by a line of zero voltage (represented by the dotted line).  The magnetic field, in 

contrast, consists of magnetic flux leaving the head on one side of the dipole (solid lines) and reentering the head on the 

other side (dashed lines), separated by a line of no net flux (dotted line).  Thanks to Max Hopf for providing the electrical 

and magnetic distributions shown in D. 

MEG fields differ from EEG fields in another key way as well. If the current dipole is perfectly 

perpendicular to the skull, as in Figure 14.4C, the magnetic field does not exit and reenter the head, and it is 

essentially invisible. As the dipole tilts from perpendicular toward parallel, a recordable magnetic field begins 

to appear again.  In contrast, a large and focused voltage will be present directly over a perpendicular dipole. A 

dipole near the center of the head will act much like a perpendicular dipole, generating a reasonably large 

voltage on the surface of the scalp that is accompanied by a magnetic field that does not exit and reenter the 

head and is therefore effectively invisible.  Thus, magnetic signals are largest for superficial dipoles that run 

parallel to the surface of the skull, and fall off rapidly as the dipoles become deeper and/or perpendicularly 

oriented, but voltages do not fall off rapidly in this manner. 
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The different effects of dipole depth and orientation on electrical and magnetic signals provide an 

additional set of constraints on source localization solutions.  In essence, there are many internal source  

configurations that can explain a given electrical distribution, and there are also many internal source 

configurations that can explain a given magnetic distribution.  But there will be far fewer configurations than 

can explain both the electrical distribution and the magnetic distribution.  Consequently, the combination of 

magnetic and electrical data is substantially superior to either type of data alone.  The main drawbacks of 

combining magnetic and electrical data compared to using magnetic data alone are that (a) a more complex 

head model is needed for the electrical data, and (b) some effort is required to ensure that the electrical and 

magnetic data are in exactly the same spatial reference frame. 

Can We Really Localize ERPs? 

Each of the source localization techniques described in this chapter has shortcomings.  Of course, any 

scientific technique has limitations and shortcomings, but the shortcomings of source localization techniques are 

fundamentally different from the shortcomings of other techniques for localization of function.  This section 

will explore these differences and consider a new approach that seems more promising. 

Source Localization as Model Fitting 

To understand the essence of ERP source localization, it is useful to compare it with a “true” neuroimaging 

technique, such as PET.  In the most common PET approach, radioactively labeled water molecules travel 

through the bloodstream, where their diffusion properties are straightforward.  Consequently, the number of 

radioactive molecules in a given volume of the brain can be directly related to the flow of blood through that 

part of the brain.  When a labeled water molecule decays, it gives off a positron, which travels a known distance 

(or distribution of distances) before colliding with an electron.  This collision leads to a pair of annihilation 

photons that travel in opposite directions along the same line.  When these high-intensity photons are picked up 

simultaneously by two detectors within the ring of detectors around the subject, there is a high likelihood that 

they were generated somewhere along the line between the two detectors, and the decaying isotope is known to 

have been within a certain distance from this line.  Thus, by combining the known physics of radiation with 

various probability distributions, one can directly compute the maximum likelihood location of the radioactively 

labeled water molecules and the margin of error of this location.  The story is analogous, although more 

complicated, for fMRI. 

Because the ERP localization problem is underdetermined, mainstream ERP localization techniques 

employ a different approach.  That is, they do not simply compute the maximum likelihood location of an ERP 

source, along with a margin of error, on the basis of the physics of electricity and magnetism.  Instead, ERP 

localization techniques generate models of the underlying distribution of electrical activity, and these models 

are evaluated in terms of their ability to satisfy various constraints.  The most fundamental constraint, of course, 

is that a given model must recreate the observed distribution of voltage over the surface of the head.  However, 

a correct model may not fit the data exactly, because the observed distribution is distorted somewhat by noise in 

the data.  Consequently, any internal configuration that is, say, 95% consistent with the observed scalp 

distribution might be considered acceptable.  Unfortunately, there will be infinitely many internal 

configurations that can explain an observed scalp distribution, especially when only a 95% fit is required. 

Additional constraints are then added to select one internal configuration from the many that can explain 

the observed scalp distribution.  Each source localization technique embodies a different set of these additional 

constraints, and the constraints can be either mathematical (as in the use of the minimum norm) or empirical (as 

in the use of fMRI data to constrain ERP localizations).  The most straightforward empirical constraint is the 

use of structural MRI scans to constrain the source locations to the cortical surface.  However, this alone does 

not lead to a unique solution (and it may not always be the case that all scalp ERP activity arises from the 

cortex).  Other constraints are therefore added, but there is usually no way of assessing whether these 

constraints are correct and sufficient.   
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The bottom line is that ERP localization leads to a model of the internal configuration of electrical activity, 

not a measurement of the internal distribution of electrical activity.  In contrast, PET and fMRI provide 

measurements and not merely models.  PET, for example, provides a measurement of the internal distribution of 

radioactively labeled blood.  This measurement is derived from more basic measurements, but that is true of 

most sophisticated scientific measurements.  And although the PET measurements are not error-free, this is true 

of any measurement, and the margin of error can be specified.  It is more difficult to describe exactly what the 

BOLD signal reflects in fMRI, but the location of this signal is measured with a known margin of error.   In 

contrast, one cannot use surface electrodes to measure the distribution of internal electrical activity with a 

known margin of error.   

People occasionally ask me how accurately ERPs can be localized, hoping for a quantification of accuracy 

than can be compared with the accuracy of PET and fMRI.  My response is that the accuracy of ERP 

localization is simply undefined.  That is, in the absence of any constraints beyond the observed scalp 

distribution, radically different distributions of internal electrical activity would produce the observed scalp 

distribution, and the margin of error is essentially the diameter of the head.   

Once constraints are added, some source localization approaches could, in principle, quantify the margin of 

error.  For example, it would be possible to state that the estimated center of a region of activation is within X 

millimeters of the actual center of the activated region.  Or it would be possible to state that the amount of 

estimated current flow within each patch of cortex is within Y% of the actual current flow.  I’ve never seen 

anyone do this in the context of a serious experiment, but it would be an extremely useful addition to the source 

localization techniques.  However, the margin of error that could be specified in this manner would be 

meaningful only if the constraints of the model were fully adequate and the only sources of error arose from 

noise in the ERP data (and perhaps errors in specifying the head model).  If the constraints were insufficient, or 

if they reflected incorrect assumptions about the underlying neural activity, then the margin of error would be 

meaningless.  Thus, the source localization techniques that are currently in widespread use do not, in practice, 

provide a meaningful estimate of the margin of error. 

Probabilistic Approaches 

The commonly used source localization techniques attempt to find a single pattern of internal electrical 

activity that best explains the observed scalp distribution (along with satisfying other implicit or explicit 

constraints).  When I read a paper that reports source localization models, I always wonder what other 

distributions would fit the data as well as, or almost as well as, the reported solution.  Are all reasonable 

solutions similar to the reported solution?  Or are there other solutions that are quite different from the reported 

solution but fit the data and the constraints almost as well?  After all, the presence of noise in the data implies 

that the correct solution will not actually fit the data perfectly, so a solution that explains only 97% of the 

variance may be closer to the correct solution than a solution that accounts for 100% of the variance. Koles 

(1998) provided a nice simulation of this problem, showing that the difference in the percent of variance 

accounted for by a dipole can change very little over a fairly broad range of dipole locations. 

In my view, it is misguided to attempt to find a unique solution given the uncertainties inherent in ERP 

localization.  A better approach would be to report the entire range of solutions that fit the data and constraints 

to some criterion level (e.g., a fit of 95% or better).  Moreover, it would be useful to report the range of 

solutions that are obtained as various constraints are added and removed.  If, for example, one were to find high 

levels of estimated activity in a particular region in almost any solution, no matter what constraints were used, 

then this would give us considerable confidence that this region really contributed to the observed ERPs.   

This general sort of approach has been explored by a few investigators.  For example, as described in the 

section on equivalent source dipole approaches, Huang, Aine, and their colleagues have developed a multi-start 

approach in which the dipole localization procedure is run hundreds or thousands of times with different starting 

positions.  This makes it possible to see which dipole locations are found frequently, independent of the starting 
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positions or even the number of dipoles in the model.  This approach potentially solves the most significant 

shortcomings of equivalent source dipole approaches.  In particular, the solutions are largely operator-

independent, and it is possible to assess the likelihood that a given dipole location occurred because of the 

starting positions of the dipoles or because of incorrect assumptions about the number of dipoles. 

Although the multi-start approach addresses these shortcomings, it still falls short of providing a 

quantitative description of the probability that a particular brain area contributed to the observed ERP data.  

That is, a dipole may have been found in a given region in some percentage of the solutions, but the localization 

approach does not guarantee that the space of adequate solutions is sampled completely and evenly.  However, 

Schmidt, George, and Wood (1999) have developed a distributed source localization technique based on 

Bayesian inference that provides a more sophisticated means of assessing probabilities.  This technique is 

similar to the multi-start technique insofar as it generates thousands of potential solutions.  However, its basis in 

Bayes’s Theorem allows it to provide a more complete and quantitative description of the space of possible 

solutions.  This is the most promising localization technique that I have seen.  Unfortunately, it has not yet been 

widely applied to real experiments, and its limitations have not yet been thoroughly explored by other groups of 

researchers.  Nonetheless, the more general principle embodied by this approach and the multi-start approach—

in which the space of likely solutions is systematically explored—seems like the best direction for the 

development of source localization techniques. 

Recommendations 

I will end this chapter by providing some recommendations about whether, when, and how source 

localization techniques should be used.  My basic conclusion is that ERP localization is extremely difficult, and 

it should be attempted only by experts and only when the solution space can be reduced by well justified 

constraints, such as structural MRI data and the combination of electrical and magnetic data.  In addition, the 

most commonly used techniques are useful primarily for obtaining converging evidence rather than providing a 

conclusive, stand-alone test of a hypothesis, although ongoing developments may someday allow source 

localization data to provide definitive results. 

Source Localization and Scientific Inference 

To assess the value of source localization techniques, it is useful to put them into the context of general 

principles of scientific inference. Perhaps the most commonly cited principle of scientific inference is Popper’s 

(1959) idea of falsification.  A commonly used, although less commonly cited, extension of this idea is Platt’s 

(1964) notion of strong inference, in which the best experiments are those that differentiate between competing 

hypotheses, supporting one and falsifying the other.  

How do source localization techniques fare when judged by these standards?  Not well.  I don’t think 

anyone really believes that a single source localization model can be used to conclusively falsify a hypothesis or 

definitively decide between two competing hypotheses.  There are simply too many uncertainties involved in 

source localization.  On the other hand, it is rare that a single experiment using any method is 100% conclusive, 

so this standard may be unrealistic.   

A more flexible approach is to apply Bayes’s Theorem to scientific inference.  In this context, Bayes’s 

Theorem can be summarized by stating that a new result increases the probability that a hypothesis is true to the 

extent that (a) there is a high probability of that result being true if the hypothesis is true, and (b) there is a low 

probability of that result being true if the hypothesis is false.  In other words, a finding that is consistent with a 

hypothesis does not give us much more faith in the hypothesis if the finding is likely even if the hypothesis is 

wrong. 

In this context, a given source localization model will have value to the extent that it not only supports a 

specific hypothesis but is also unlikely to have been obtained if the hypothesis is false.  It’s the second part of 

this equation that is especially problematic for source localization models, at least as they are typically used.  As 
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discussed in the previous section, source localization models provide an estimate of the internal distribution of 

electrical activity, but they do not typically quantify the probability that the estimate is incorrect (which is 

related to the probability that the finding would be obtained even if the hypothesis is false).  However, this 

problem can be overcome, at least in principle.  For example, the probabilistic approaches described in the 

previous section are designed to provide information about the range of possible solutions, making it possible to 

assess the probability that activity would appear in a given location in the models even if the corresponding 

brain location were not truly active.  Thus, although most source localization methods are not well suited for 

this kind of scientific inference, this does not appear to be an intrinsic limitation of the entire source localization 

enterprise. 

Another commonly cited principle of scientific inference is the idea of converging evidence, which was 

first developed in the context of perception research (Garner, Hake, & Eriksen, 1956) but is now widely used in 

cognitive neuroscience.  The basic idea is that many interesting questions about the mind cannot be answered by 

means of any single method, but a clear answer can be obtained when many methods with different strengths 

and weaknesses converge on the same conclusion.  This is a common use of source localization models.  That 

is, the researchers understand that the models are not conclusive evidence that the ERPs are generated in 

specific brain regions, but they believe that the models are valuable insofar as they converge with data from 

other sources.  An example of this from my own research is provided in Box 14.1. 

Box 14.1- Converging Evidence 

The following is an example of how I have used source localization to provide converging evidence for a 

specific hypothesis.  My initial visual search experiments examining the N2pc component suggested that this 

component reflects the focusing of attention onto a target and filtering out irrelevant information from the 

distractor objects (Luck & Hillyard, 1994a, 1994b).  This seemed similar to the types of attention effects that 

had been observed in Moran and Desimone‘s (1985) single-unit recordings from area V4 and from 

inferotemporal cortex, but I had no way of localizing the N2pc to these areas.  Then a series of follow-up 

studies was conducted by Leonardo Chelazzi in Desimone’s lab using visual search tasks that were more similar 

to the tasks that I had used to study the N2pc component (Chelazzi, Duncan, Miller, & Desimone, 1998; 

Chelazzi, Miller, Duncan, & Desimone, 1993, 2001).  The onset of the attention effects in these single-unit 

studies was remarkably similar to the onset time of the N2pc component, and this suggested that the N2pc 

component might reflect the same neural activity as the single-unit attention effects.  To test this hypothesis, I 

conducted a series of N2pc experiments that paralleled Chelazzi’s single-unit experiments, and I found that the 

N2pc component responded to several experimental manipulations in the same way as the single-unit attention 

effects.  To provide converging evidence, I collaborated with Max Hopf and Hajo Heinze on a combined 

ERP/ERMF study of the N2pc component using the cortically constrained minimum norm approach (Hopf et 

al., 2000).  The resulting source localization model was consistent with a source in the general area of the 

human homologues of monkey V4 and IT (with an additional source in posterior parietal cortex).  In this 

manner, the source localization data provided converging evidence for a link between the N2pc component and 

a specific type of neural activity (see Luck, 1999 for an extended discussion of this general approach, in which 

traditional hypothesis testing is combined with source localization). 

 

Until source localization techniques routinely provide meaningful, quantitative information about the 

probability that a given model is correct, the main role of source localization models will be to provide 

converging evidence.  However, not all cases of converging evidence are created equal: If weak methods are 

used to create a given source localization model, then this model will provide only weak converging evidence.  

And the value of such models is questionable, especially given the time and expense that is often involved in the 

modeling process. At present, source localization models provide reasonably strong converging evidence only if 

they are the result of state-of-the-art methods and only if they are developed thoughtfully and carefully. 



© Steven J. Luck 
 

 

Specific Recommendations 

My first specific recommendation is to avoid techniques that involve substantial input from the operator 

(which is true of many, but not all, equivalent current dipole approaches).  These techniques are so prone to 

experimenter bias that they can provide only the weakest sort of converging evidence.  In fact, I would argue 

that these models are often worse than no models at all, because they provide the illusion of strong evidence 

when in fact the evidence is weak.  The one exception to this recommendation is that these approaches may be 

adequate when a combination of three criteria are met: (1) the data are very clean; (2) you can be sure that only 

one or perhaps two dipoles are present; and (3) you have good reason to believe that the electrical activity is 

relatively focused rather than being distributed over a large region.  Localization is fairly easy under such 

conditions, and validation studies have shown that localization errors average approximately 1 cm or less when 

these criteria are met (see, e.g., Cuffin, Cohen, Yunokuchi, Maniewski, Purcell, Cosgrove, Ives, Kennedy, & 

Schomer, 1991; Leahy et al., 1998). 

My second specific recommendation is to obtain structural MRI scans from each subject so that you can 

create a reasonably accurate head model and use one of the cortically constrained approaches (which typically 

involve distributed source solutions rather than equivalent current dipole solutions).  For most experiments in 

cognitive neuroscience, it is very likely that the activity is generated exclusively in the cortex with a 

perpendicular orientation, and this provides a powerful constraint that reduces the solution space considerably.  

The most common versions are the depth-weighted minimum norm and LORETA techniques, which were 

described previously in this chapter.  LORETA is well suited for situations in which (a) you want to determine 

the center of each activated region, (b) you do not care about the spatial extent of the activated regions, and (c) 

the activated regions are well separated from each other.   If these conditions are met, LORETA appears to 

work quite well (see, e.g., the impressive LORETA/fMRI correspondence obtained by Vitacco, Brandeis, 

Pascual-Marqui, & Martin, 2002). If these conditions are not met, I would recommend using the depth-weighted 

minimum norm approach. 

My third recommendation is to use difference waves to isolate a single component (or small set of 

components; see Chapter 2 for more discussion).  The more components are active, the more of a mess you will 

have to sort out.  Equivalent current dipole approaches become particularly problematic when more than a few 

sources are present, but this can also be a problem for distributed source approaches.  

My fourth recommendation is to record ERMFs in addition to ERPs.  ERMFs have two major advantages 

over ERPs.  First, they are not blurred and distorted by the high resistance of the skull, leading to greater 

resolution and a smaller space of possible solutions (see, e.g., the simulation results of Leahy et al., 1998).  

Second, because biological tissues are transparent to magnetism, it is not necessary to create a model of the 

conductivities of the brain, skull, and scalp, and this eliminates one possible source of error.  ERMF recordings 

do have a couple disadvantages, though.  First, they are very expensive, both in terms of the initial capital 

investment and the maintenance costs (particularly the coolant).  Second, ERMF recordings will not be able to 

detect sources that are deep or perpendicular to the surface of the head (note, however, that this becomes an 

advantage rather than a disadvantage when ERMFs are combined with ERPs).  In my experience, source 

localization is just too uncertain when based on ERPs alone. 

The bottom line is that source localization is extremely difficult, and any serious attempt at localization will 

require sophisticated methods and considerable costs (both in terms of time and money).  If you simply record 

ERPs from a large number of channels and try to fit a half dozen dipoles to the data with no additional 

constraints, it’s not clear what you will have learned.  At best, you will gain some weak converging evidence.  

At worst, you will be misled into believing in a solution that is simply incorrect. 

I would like to end by noting that the clear strength of the ERP technique is its temporal resolution, not its 

ability to localize brain function.  It is therefore sensible to use this technique primarily to answer questions that 

require temporal resolution, leaving questions about localization of function to other techniques.  When a 
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question requires a combination of temporal and spatial resolution, a combination of ERPs, ERMFs, structural 

MRI scans, and fMRI data may provide reasonably strong evidence, but the commonly used methods for 

localizing ERPs/ERMFs do not make it clear how strong the evidence is.  As new techniques are developed—

particularly those based on probabilistic approaches—we may eventually get to the point where we can have a 

reasonably high (and known) level of certainty. 

 

Suggestions for Further Reading 

The following is a list of journal articles and book chapters that provide useful information about ERP and 

MEG source localization. 

Dale, A. M., & Sereno, M. I. (1993). Improved localization of cortical activity by combining EEG 

and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive 

Neuroscience, 5, 162-176. 

Hämäläinen, M. S., Hari, R., Ilmonieni, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). 

Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of 

the working human brain. Review of Modern Physics, 65, 413-497. 

George, J. S., Aine, C. J., Mosher, J. C., Schmidt, D. M., Ranken, D. M., Schlitt, H. A., Wood, C. 

C., Lewine, J. D., Sanders, J. A., & Belliveau, J. W. (1995). Mapping function in the human 

brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional 

magnetic resonance imaging. Journal of Clinical Neurophysiology, 12, 406-431. 

Koles, Z. J. (1998). Trends in EEG source localization. Electroencephalography & Clinical 

Neurophysiology, 106, 127-137. 

Luck, S. J. (1999). Direct and indirect integration of event-related potentials, functional magnetic 

resonance images, and single-unit recordings. Human Brain Mapping, 8, 15-120. 

Mangun, G. R., Hopfinger, J. B., & Jha, A. P. (2000). Integrating electrophysiology and 

neuroimaging in the study of human brain function. In P. Williamson, A. M. Siegel, D. W. 

Roberts, V. M. Thandi & M. S. Gazzaniga (Eds.), Advances in Neurology (Vol. 84, pp. 33-50). 

Philadelphia: Lippincott, Williams, & Wilkins. 

Miltner, W., Braun, C., Johnson, R., Jr., Simpson, G. V., & Ruchkin, D. S. (1994). A test of brain 

electrical source analysis (BESA): A simulation study. Electroencephalography & Clinical 

Neurophysiology, 91, 295-310. 

Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002). Functional imaging with 

low-resolution brain electromagnetic tomography (LORETA): a review. Methods & Findings 

in Experimental & Clinical Pharmacology, 24 Suppl C, 91-95. 

Scherg, M., Vajsar, J., & Picton, T. (1989). A source analysis of the human auditory evoked 

potentials. Journal of Cognitive Neuroscience, 1, 336-355. 

Schmidt, D. M., George, J. S., & Wood, C. C. (1999). Bayesian inference applied to the 

electromagnetic inverse problem. Human Brain Mapping, 7, 195-212. 

Snyder, A. (1991). Dipole source localization in the study of EP generators: A critique. 

Electroencephalography & Clinical Neurophysiology, 80, 321-325. 
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