EPHE 591: Biomedical Statistics

Bayesian Statistics: Bayes Factors

```
EPIDEMIOLOGY
```

Evaluation of breast cancer service screening programme with a Bayesian approach: mortality analysis in a Finnish region

Anyone for bayesian integration?

A Boosted Bayesian Multiresolution Classifier for Prostate Cancer Detection From Digitized Needle Biopsies

Bayesian Model Combination and Its Application to Cervical Cancer Detection

Miriam Martínez, Luis Enrique Sucar, Hector Gabriel Acosta, Nicandro Cruz

More Problems with P

Frequentist Approach
p(Data/Ho)
"How likely are the data if we assume the null hypothesis is true"

Bayesian Approach
p(Ho/Data)
"How likely is the null hypothesis given the data"

The p - value does not answer p (Ho/Data), even though a lot of people think it does.
p(pregnant/female) versus p(female/pregnant)

How viable is our hypothesis given our data?

Frequentist Approach

THIS IS CLEARLY WRONG

Bayesian Approach

Rev. T. Bayes [1707-1761]

Bayesian Logic would compute the odds of the next flip being heads as 50%

Bayesian methods generate conclusions using statistics generated from the data.

Using Bayesian Statistics:
 The Bayes Factor

The Bayes Factor

$\frac{p(\text { Ho/Data })}{p(H 1 / \text { Data })}=\frac{p(\text { Data } / \mathrm{Ho})}{p(\text { Data } / \mathrm{H} 1)} \times \frac{p(\mathrm{Ho})}{p(\mathrm{H} 1)}$
posterior odds

Bayes
Factor odds

Typically, we assume the prior odds the same both hypotheses are equally likely so that terms goes to 1.

The Bayes Factor

The Bayes Factor reflects a change in the prior odds based on the data.

Essentially, it will tell you the relative likelihood of Ho relative to H 1 .

Because the prior odds are 1, the Bayes Factor becomes the posterior odds.

Bayes Factor Logic

Prior
$\mathrm{Ho}=\mathrm{H} 1$
Both hypotheses are equally likely

Bayes Factor
Collect some data, compute Bayes Factor

Posterior
Determine likelihood of Ho relative to H1

Example

Let's say you are going to flip a coin 20 times. You have begun to think you are really good at calling heads, so you think you can do better than chance.

Ho	$\mathrm{pr}=0.5$
H 1	$\mathrm{pr}=0.7$

NOTE! This is our PRIOR. Or, our PRIOR ODDS.

So, you flip the coin 20 times and get 10 heads.

Computing the Bayes Factor

$$
\mathrm{BF}_{01}=\frac{\mathrm{p}(\text { Data } / \mathrm{Ho})}{\mathrm{p}(\text { Data } / \mathrm{H} 1)}=0.17620 / 0.03082=5.717
$$

How do we interpret this?

Ho is 5.717 times more likely than H 1

But what if our prior is not a constant value?

Let's take the same example, but assume that H 1 just means better than chance ($\mathrm{pr}=0.6,0.7,0.8,0.9$). So, in the first example the prior was $\mathrm{pr}=0.6$ but what do we do if it is a range of numbers? We use a DISTRIBUTION.

But what if our prior is not a constant value?

Computing the Bayes Factor is more tricky.

You need to know p(Data/H1) for each value of pr.

Recall, the DATA - the data was 10 heads out of 20 flips

Computing the Bayes Factor

$\mathrm{P}($ Data $/ \mathrm{H} 1)=0.117$ * $0.25+0.031$ * $0.25+$ 0.002 * $0.25+0.000$ * 0.25 $P($ Data $/ H 1)=0.0375$
$\mathrm{P}($ Data $/ \mathrm{Ho})=0.1762$ (as before)

Bayes Factor $=0.1762 / 0.0375=4.699$

Ho is 4.699 times more likely than H 1 given the data.

But...

What about $\mathrm{pr}=0.67$, $\mathrm{pr}=0.73$, etc...
We use distributions as priors as opposed to numbers. For example:

Prior Distributions

Comparison of Potential Beta Priors

Interpreting the Bayes Factor

Statistic		Support for \mathbf{H}_{1}	
Bayes Factor	Inverse of Bayes Factor	Raftery	Jeffreys
$1-.33$	$1-3$	Weak	Anecdotal
$.33-.10$	$3-10$	Positive	Substantial
$.10-.05$	$10-20$	Positive	Strong
$.05-.03$	$20-30$	Strong	Strong
$.03-.01$	$30-100$	Strong	Very Strong
$.01-.0067$	$100-150$	Strong	Decisive
$<.0067$	>150	Very Strong	Decisive

Other Thoughts

Your choice of prior matters (sometimes)

JASP will give you $B F_{10}$ not $B F_{01}$ (the inverse)

Some stats programs give you the $\operatorname{Ln}(B F)$

Credit

Credit to Mike Masson for all of this material and information!

