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An Overall View

By itself a single neuron is not intelligent. But a 
vast network of neurons can think, feel, remem-
ber, perceive, and generate the many remarkable 

phenomena that are collectively known as “the mind.” 
How does intelligence emerge from the interactions 
between neurons? This is the central question moti-
vating the study of neural networks. In this appendix 
we provide a brief historical review of the field, intro-
duce some key concepts, and discuss two influential 
models of neural networks, the perceptron and the cell 
assembly.

Starting from the 1940s researchers have proposed 
and studied many brain models in which sophisti-
cated computations are performed by networks of 
simple neuron-like elements. Most models are based 
on two shared principles. First, our immediate experi-
ence is rooted in ongoing patterns of action potentials 
in brain cells. Second, our ability to learn from and 
remember past experiences is based at least partially 
on long-lasting modifications of synaptic connections. 
Although these principles are widely accepted by 
neuroscientists, they immediately suggest many dif-
ficult questions.

For example, to our conscious minds, perceiving 
an object or moving a limb is experienced as a single, 
unitary event. But in the brain either act is the result of 
a collection of a stupendous number of neural events—
the discharge of action potentials or the release of neu-
rotransmitter vesicles—indiscernible by the conscious 
mind. How are these events united into a coherent per-
ception or movement?

Storage of our immediate experience in long-term 
memory is presumed to occur with changes in synap-
tic connections. But how exactly is a memory divided 
up and distributed across many synapses? If some 
synapses are used to store more than one memory, 
how then is interference between memories avoided? 
When past experiences are recalled from memory, how 
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might synaptic connections evoke a pattern of firing 
that is similar to a pattern that occurred in the past? 
Finally, when we reason, daydream, or otherwise float 
in the stream of consciousness, our mental state is not 
directly tied to any immediate sensory stimulus or 
motor output. How do networks of neurons dynami-
cally generate the patterns of activity related to such 
mental states?

These are profound questions. Many hypotheti-
cal answers have been proposed in the form of neural 
network models, a body of work that spans many dec-
ades and which we survey here. Although they are far 
from being tested conclusively, these hypotheses have 
influenced the research of a number of experimental 
neuroscientists and are being developed further today 
by theoretical neuroscientists.

Early Neural Network Modeling

Perhaps the first attempt to explain behavior in terms 
of synaptic connectivity was Sherrington’s reflex arc. 
A reflex behavior is defined as a rapid, involuntary, 
and stereotyped response to a specific stimulus (see 
Chapter 35). For any reflex behavior one can generally 
identify a reflex arc, a chain of synapses starting from 
a sensory neuron and ending with a motor neuron. 
The sequential activation of neurons in this chain is a 
series of causes and effects that connect the stimulus 
to the response. The reflex arc can be regarded as an 
ancestor of neural network models.

In 1938 Rafael Lorente de Nó, a student of Santiago 
Ramón y Cajal, argued that synaptic loops (“internun-
cial chains”) were the basic circuits of the central nerv-
ous system. A synaptic loop is a chain of synapses that 
starts and ends at the same neuron. It is a closed chain, in 
contrast to the open chain of a reflex arc. Lorente de Nó 
suggested that the purpose of these loops was to sustain 
“reverberating” activity patterns. In fact, Sherrington’s 
student, Graham Brown, in his studies of spinal cord 
rhythmicity, proposed a related view of the brain, 
involving intrinsic generation of neural activity rather 
than stimulus-response relationships. These scientists 
emphasized that the brain has an intrinsic dynamic 
richer than that of reflex arcs, which are inactive until 
stimulated by the outside world.

In an influential book published in 1949, Donald 
Hebb proposed the idea of a “cell assembly” as a func-
tional unit of the nervous system and discussed the 
form of synaptic plasticity that would become known 
as Hebb’s rule. (The rule had previously been formu-
lated by several other thinkers, of whom the earliest 

was perhaps the philosopher Alexander Bain in 1873.) 
Hebb argued that repeated synaptic communication 
between neurons could strengthen the connections 
between the neurons, creating synaptic loops that were 
capable of supporting the reverberating activity pat-
terns of Lorente de Nó.

These ideas of Sherrington, Graham Brown, 
Lorente de Nó, and Hebb were later formalized in 
mathematical models of neural networks. Two famous 
classes of models are perceptrons and associative 
memory networks. Perceptrons have been popular as 
models of the visual system because they illustrate 
how recognition of an object can be decomposed into 
many feature detection events. A perceptron can be 
organized hierarchically, so that the decomposition 
process begins with simple features at the bottom of 
the hierarchy and proceeds to complex features at the 
top, as is thought to occur in the visual system (see 
Chapter 28).

Associative memory networks have been used to 
model how the brain stores and recalls long-term 
memories. Central to these models is Hebb’s concept of 
the cell assembly, a group of excitatory neurons mutu-
ally coupled by strong synapses. Memory storage occurs 
with the creation of a cell assembly by Hebbian synap-
tic plasticity (see Chapter 66), and memory recall occurs 
when the neurons in a cell assembly are activated by a 
stimulus.

The perceptron and the cell assembly have very 
different synaptic connectivities. As in Sherrington’s 
reflex arc, the polysynaptic pathways in a perceptron 
all travel in the same overall direction, from the input 
layer to the output layer. The perceptron generalizes 
the reflex arc, because it allows many synapses to 
diverge from a neuron and converge onto a neuron.

The perceptron is a special case of a feed-forward 
network, defined as one with no synaptic loops. As 
noted above, a synaptic loop is defined as a polysyn-
aptic pathway that starts and ends at the same neuron. 
Networks with loops are called recurrent or feedback 
networks, to distinguish them from feed-forward net-
works. A cell assembly typically contains loops, and is 
therefore recurrent. 

Lorente de Nó and Hebb postulated that neural 
activity can persist longer in the brain by circulating 
through synaptic loops. Thus a cell assembly can main-
tain a persistent activity pattern resembling patterns 
observed by neurophysiologists in studies of short-
term and working memory. In other words, loops could 
be important for the generation of persistent mental 
states in the brain, which are required for behaviors in 
which stimulus and response are separated by a long 
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time delay. In contrast, the direct pathways of the per-
ceptron are suited for modeling behavioral responses 
that immediately follow a stimulus.

Only very simple neural networks are described 
in this appendix. The “neurons” in these models are 
much simpler than biological neurons, and the “syn-
apses” do not do justice to the intricacies of biological 
synapses. When modeling a complex system, simplify-
ing its elements helps one to focus on the properties 
that emerge from the interactions between them. This 
strategy has historically been used by neural networks 
researchers focusing on emergent properties of brain 
function. More realistic models of how neurons inte-
grate synaptic inputs are described in Appendix F.

Neurons Are Computational Devices

Action potentials and synaptic potentials are dynamic 
events that involve a complex interplay between the 
membrane voltage of a neuron and the opening and 
closing of its ion channels. Computational neuroscien-
tists often ignore these complexities in their thinking 
and instead rely on the following simplification: A neu-
ron fires an action potential when a sufficiently large number 
of excitatory synapses onto it are activated simultaneously.

This statement is based on the fact that a single 
excitatory postsynaptic potential is typically much 
smaller in amplitude (less than 0.5 mV) than the gap 
of many millivolts that separate the resting potential 
from the threshold for an action potential. Therefore, 
many simultaneous excitatory postsynaptic potentials 
need to sum in the postsynaptic neuron to drive its 
voltage over the threshold for firing.

The above simplification of the conditions for neu-
ronal firing has inspired a great deal of mathematical 
formalism. In 1943 Warren McCulloch and Walter Pitts 
proposed a model of the computation performed by a 
neuron and the excitatory synapses converging onto it. 
The McCulloch-Pitts neuron takes multiple inputs and 
produces a single output. All inputs and the output are 
binary variables, 0 or 1. The neuron is characterized by 
a single parameter θ, its threshold. If a subset of θ or 
more inputs is equal to 1, then the neuron’s output is 1; 
otherwise the output is 0.

In the biological interpretation of the McCulloch-Pitts 
model each input variable represents the activation of an 
excitatory synapse at the neuron. The input is equal to 1 
when the excitatory synapse is activated. The parameter 
q is used to model the threshold of a biological neuron 
and is equal to the minimum number of excitatory syn-
apses that must be simultaneously activated to produce 

an action potential. In this interpretation the McCulloch-
Pitts model formalizes the above caricature of a biological 
neuron.

Two McCulloch-Pitts neurons can be connected so 
that the output of one neuron is the input of another. 
This corresponds to the biological fact that excitatory 
synapses converging onto a neuron are activated by 
the discharging of the presynaptic neurons. By mak-
ing many such connections, it is possible to construct a 
model of a neural network.

In the McCulloch-Pitts model, neurons are either 
active (“1”) or inactive (“0”). This is admittedly a crude 
way of describing neural activity, because it does not 
distinguish between active neurons with different fir-
ing rates. But this coarse description is used not only 
by theorists but also by experimental neurophysiolo-
gists, who often speak of active and inactive neurons in 
the exploratory phases of their experiments before they 
make precise measurements of firing rates. Although 
the graded nature of firing rates can be captured using 
more realistic model neurons (Box E–1), here we will 
limit ourselves to the McCulloch-Pitts model to mini-
mize the use of mathematical equations.

This simplification also allows the application of 
ideas from Boolean logic, in which the binary values 0 
and 1 correspond to “false” and “true.” Boolean logic, 
named after the British mathematician George Boole, 
is a formalization of deductive reasoning that is based 
on manipulations of binary variables that represent 
truth values. Boolean logic is the mathematical foun-
dation of digital electronic circuits. Using their model, 
McCulloch and Pitts argued that the activity of each 
neuron signifies the truth of some logical proposition. 
They concluded that neurons (and by extension net-
works of neurons) perform logical computations.

A Neuron Can Compute Conjunctions  
and Disjunctions

If we accept the idea that biological neurons can per-
form logical computations, then it is natural to ask 
what types of computations are possible. We will 
answer this question by studying the behavior of the 
McCulloch-Pitts model neuron. Of course, biological 
neurons are more complex and therefore likely to be 
more powerful computational devices. But by ana-
lyzing the McCulloch-Pitts neuron we can expect to 
establish lower bounds on the computational power of 
biological neurons. In other words, if a computation 
is possible for a McCulloch-Pitts neuron it should be 
possible for a biological neuron, although the converse 
is not necessarily true.
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Box E–1 Mathematics of Neural Networks

The McCulloch-Pitts neuron is simple enough that its 
behavior can be described in words. More sophisticated 
models require the precision of mathematics for a clear 
formulation.

The linear-threshold (LT) model neuron corrects a 
shortcoming of the McCulloch-Pitts neuron that all exci-
tatory inputs are equally effective in bringing the neu-
ron to its firing threshold; the number of active inputs 
is important, but their identities are not. For a biological 
neuron in which some synapses are stronger than oth-
ers, such a simplification is not realistic.

To model this aspect of synaptic function, the LT 
neuron takes the weighted sum of its inputs, where the 
weights of the sum represent synaptic strengths. If the 
sum exceeds a threshold, the LT neuron becomes active.

To model a network of LT neurons, assume that 
their activities at time t are given by the N variables, 
x1(t), x2(t) ..., xN(t) which take on the values 0 or 1, that 
is, a neuron is either active (“1”) or silent (“0”). Then the 
activities at time t + 1 are given by
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where H is the Heaviside step function defined by 
H(u) = 1 for u ≥ 0 and H(u) = 0 otherwise, Wij is the 
strength or weight of the synapse between neuron i 
and the presynaptic neuron j, and qj is the threshold 
of neuron i. For a network of N neurons, the synaptic 
weights Wij form an N × N matrix, and the thresholds qj 
an N-dimensional vector.

The LT and McCulloch-Pitts models are equivalent 
if the synaptic strengths of the LT model satisfy two 
conditions. First, the strengths of all excitatory synapses 
must equal one to yield the uniformity of strengths dis-
cussed above. Second, each inhibitory synapse must 
be so strong that activating it is enough to keep the LT 
neuron below threshold, no matter how many excitatory 
inputs are active. This second condition is in accord with 
the behavior of inhibition in the original McCulloch-
Pitts neuron and could be regarded as a crude model of 
shunting inhibition (see Chapter 10).

The LT neuron of Equation E–1 can perform many 
different types of computation, depending on the choice 
of synaptic weights and thresholds. By arguments similar 

to those given in the main text, any Boolean function can 
be realized by combining LT neurons into a network. A 
perceptron network can be implemented by a synaptic 
weight matrix in which certain elements are constrained 
to be zero. (Such elements would give rise to “back-
wards” pathways in the perceptron model illustrated 
in Figure E–1.) An associative memory network can be 
constructed by choosing Wij to be a correlation matrix 
(see Box E–3).

The LT neuron is either active or inactive, but the 
firing rates of biological neurons are continuously 
graded quantities. This can be modeled by replacing 
the Heaviside step function H in Equation E–1 by some 
other function F with graded output. Neural activity 
is described by continuously graded variables r1 ... rN 
rather than binary variables, which are interpreted as 
rates of action-potential firing. Furthermore, time can be 
treated continuously in the differential equation
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rather than discretely as in Equation E–1. This type of 
model is discussed in more detail in Appendix F.

In Equation E–2 the soma of the neuron is regarded 
as a device that converts input current into the cell’s rate 
of firing. This point of view is often taken by electro-
physiologists, who characterize a neuron by its f-I curve, 
plotted by injecting current into a neuron and recording 
the resulting firing rate. The dendrite of the neuron is 
assumed to linearly combine the currents produced by 
its synapses, a good approximation in some biological 
neurons. Each synapse generates a current that is pro-
portional to the firing rate of its presynaptic neuron.

Equation E–2 is still quite crude in its description 
of neural activity as an overall firing rate. More sophis-
ticated models have differential equations governing 
voltages and conductances and generate individual 
action potentials. For example, the voltages in the 
numerical simulations of Figure E–5 were generated by 
leaky integrate-and-fire model neurons. More about this 
and other spiking model neurons can be found in works 
listed in the bibliography at the end of the appendix, as 
well as in Appendix F.
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Suppose that the threshold parameter θ of a 
McCulloch-Pitts neuron is set at a high value, equal to 
the total number of inputs. Then the neuron is active 
if, and only if, all of its synaptic inputs are active. In 
other words, the output of the neuron is the conjunction 
of its input variables, which is also known as the logi-
cal AND operation. Alternatively, the threshold can be 
set at a low value, equal to one, such that activation of 
one or more synaptic inputs is enough to activate the 
neuron. In this case the output of the neuron is the dis-
junction of its input variables, which is also known as 
the logical OR operation.

Although a McCulloch-Pitts neuron can compute 
some logical functions, it cannot compute others. A 
famous example is the exclusive-or (XOR) operation. 
By definition the XOR operation on two inputs results 
in “1” if, and only if, exactly one of its inputs is “1.” 
Thus if both inputs are “1,” the XOR function outputs 
“0,” while the OR function outputs “1.” Proving that 
a single McCulloch-Pitts neuron cannot compute the 
XOR operation is left as an exercise to the reader. How-
ever, XOR can be computed by a network of McCul-
loch-Pitts neurons, as is explained below.

A Network of Neurons Can Compute Any Boolean 
Logical Function

What functions can be computed by a network of 
McCulloch-Pitts neurons? Conjunctions and dis-
junctions are basic building blocks of Boolean logic. 
The original definition of a McCulloch-Pitts neuron 
included both inhibitory and excitatory synapses. It 
turns out that synaptic inhibition can be used for the 
operation of negation (logical NOT).

Consider a neuron that is spontaneously active 
and receives a single strong inhibitory synapse. When 
the inhibitory synapse is inactive, the neuron is spon-
taneously active. But when the inhibitory synapse is 
active, the neuron is inactive, silenced by inhibition. 
In other words, the neuron responds with 1 when its 
input is 0 but with 0 when its input is 1. This is exactly 
the NOT operation.

It is well known that any function of Boolean logic 
can be synthesized by combining the AND, OR, and 
NOT operations. Because McCulloch-Pitts neurons 
can compute all of these operations, it follows that net-
works of McCulloch-Pitts neurons can compute any 
function of Boolean logic, including XOR.

Why is it important that these models compute 
Boolean functions? Boolean logic lies at the heart of 
modern digital computers. The computers on our 
desktops, and in fact all digital electronic circuits, are 
designed to implement Boolean logic. When a digital 

computer runs a software program, it simply executes 
sequences of logical operations. Thus networks of 
McCulloch-Pitts neurons can compute the same func-
tions as digital computers.1

These facts about networks of McCulloch-Pitts 
neurons were discovered in the 1940s and 1950s when 
neural network models played a role in the formal the-
ory of automata and computation. This line of research 
showed that neural network models have great com-
putational power in principle. Nevertheless, a difficult 
question remains: How are computations actually per-
formed by brains? This question cannot be answered 
by formal arguments alone. It is now being addressed 
both by theoretical and experimental neuroscientists 
who try to understand how the brain works, and by 
computer scientists and engineers who create artificial 
systems that emulate capabilities of the brain.

The notion that a neuron is a device for comput-
ing conjunctions and disjunctions is prominent in the 
ensuing discussion of neural network models of the 
visual system.

Perceptrons Model Sequential and Parallel 
Computation in the Visual System

The term perceptron was coined in the 1950s by Frank 
Rosenblatt to describe his neural network models of 
visual perception. In a perceptron neurons are organ-
ized in layers (Figure E–1).2 The first layer is the input 
to the network and the last layer the output. Each 
layer sends synapses only to the next layer, so that 
information flows in the “forward” direction from 
the input to the output. Although perceptrons can be  
constructed from various kinds of model neurons, we 
will use the simple McCulloch-Pitts neurons.

The computations in a perceptron, as in the visual 
system, occur through both sequential and parallel 
processing of information. The layers of a perceptron 
can be regarded as a sequence of steps in a computa-
tion. The neurons within each layer perform similar 
operations that are executed in parallel during a single 

1A formal model of a digital computer called a Turing machine is more 
powerful than a network of McCulloch-Pitts neurons because it has 
a memory with an infinite capacity. But any real digital computer 
has finite memory and is therefore less powerful than the idealized 
Turing machine.
2There is some variation in the use of the term “perceptron”. Some 
people call the network in Figure E–1 a “multilayer perceptron,” and 
use “perceptron” to refer only to a network with a single layer of 
synapses. Here we use perceptron as a generic term covering both 
multilayer and single-layer perceptrons.
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step of the computation. Because vision is often quite 
fast compared to other cognitive tasks, it may require 
only a few sequential steps, but each step involves a 
large number of operations performed by many neu-
rons working in parallel. It is natural to represent this 
kind of computation by a perceptron with a small 
number of layers, each with many neurons.

Simple and Complex Cells Could Compute 
Conjunctions and Disjunctions

We shall develop the analogy between perceptrons 
and the visual system by exploring its implications 
for primary visual cortex (V1). As discussed in  
Chapter 27, the “simple cells” of V1 respond selec-
tively to stimuli in the visual field that have a certain 
spatial orientation. A simple cell responds to a bar of 
light close to a particular orientation but not to bars 
with other orientations.

In a classic 1962 paper David Hubel and Torsten 
Wiesel described this property of orientation selectiv-
ity in V1 and also proposed the first model of how 
it is achieved. They assumed that what they called a 
“simple” cortical cell receives synaptic inputs from 
cells in the lateral geniculate nucleus (LGN) and sug-
gested that orientation selectivity of the simple cell in 
V1 depends on the spatial arrangement of the receptive 
fields of the LGN cells. Thus, if the center-surround 
receptive fields of the LGN cells were arranged along 
a straight line (see Figure 27–3), a bar of light with the 
same orientation as this line would activate all the LGN 
inputs of the simple cell simultaneously, driving the 

cortical simple cell that receives these inputs above the 
threshold for firing action potentials. Conversely, a bar 
of light at nonpreferred orientations would stimulate 
only some of the LGN inputs, leaving that simple cell 
below threshold for firing.

The preceding model of a simple cell can be inter-
preted as a McCulloch-Pitts neuron computing an AND 
operation (Figure E–2A) because a simple cell fires when 
all of its LGN inputs are activated. Recall that a McCul-
loch-Pitts neuron computes a conjunction if its thresh-
old is set sufficiently high, and intuitively it makes sense 
that a high threshold goes along with high selectivity.

In addition to simple cells, V1 also contains “com-
plex” cells, also first described by Hubel and Wiesel. 
Like simple cells, complex cells are orientation selec-
tive, but their responses are not sensitive to the loca-
tion of the stimulus within the receptive field, whereas 
simple cells are quite sensitive to the precise alignment 
of the stimulus within the excitatory subregions of 
their receptive field.

Hubel and Wiesel proposed that a complex cell 
receives synaptic input from simple cells with simi-
lar orientation selectivity (Figure E–2C). The recep-
tive fields of the simple cells add together to form the 
receptive field of the complex cell. If a visual stimulus 
with the preferred orientation activates any one of the 
simple cells, the complex cell is driven over the thresh-
old for firing. This model is intended to explain why 
spatial location of the stimulus in the receptive field is 
not a factor in activating the complex cell.

This model of a complex cell can be interpreted 
as a McCulloch-Pitts neuron computing an OR opera-
tion (Figure E–2B) since a complex cell fires when any 

Figure E–1 The perceptron model. A perceptron is a network 
of idealized neurons arranged in layers with synaptic connec-
tions from each layer to the succeeding one. In general, any 
number of “hidden layers” may intervene between the input 

and output. Each disk represents a neuron. An arrow pointing 
from the presynaptic neuron to the postsynaptic neuron repre-
sents a synapse. There are no loops in the network.

Input layer Ouput layerHidden layers
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of its simple cell inputs is activated. A McCulloch-
Pitts neuron computes a disjunction if its threshold 
is set sufficiently low, and it makes sense that a low 
threshold is appropriate for nonselective responses.

In effect, Hubel and Wiesel imagined simple and 
complex cells as McCulloch-Pitts neurons, although 
they did not use such language. For a McCulloch-Pitts 
neuron the threshold determines whether responses 
are selective or invariant. The simple cell’s high thresh-
old is responsible for the cell’s orientation selectivity, 
while the complex cell’s low threshold accounts for the 

invariance of its response to the location of the stimu-
lus within its receptive field.

The Primary Visual Cortex Has Been Modeled As a 
Multilayer Perceptron

If the Hubel-Wiesel model is extended to many neu-
rons, each with a receptive field that covers a differ-
ent location in the visual field and tuned to a preferred 
orientation, then it amounts to a perceptron with three 
layers of neurons (Figure E–3).

A   Conjunction B   Disjunction

DisjunctionConjunction 

C  Hubel-Wiesel model  

High 
threshold
neuron

Low 
threshold
neuron

Simple cells Complex cellLGN cells

Figure E–2 A perceptron implementing 
conjunction (AND), disjunction (OR), 
and the Hubel-Wiesel neurobiological 
model of simple and complex cells in 
visual cortex. Neurons are represented 
by disks and synapses by arrows. Active 
neurons and synapses are colored red.
A. A neuron with a high threshold can 
compute the conjunction of three inputs. 
The neuron does not respond to only one 
input (top) or two inputs (not shown). It 
becomes active only when all three inputs 
are active (bottom).
B. A neuron with a low threshold can 
compute a disjunction of three inputs. The 
neuron remains inactive if all of its inputs 
are inactive (top). It becomes active if a 
single input neuron is active (bottom) or 
more than one input neuron is active (not 
shown).
C. In this realization of the Hubel-Wiesel 
model a disjunction neuron (right) 
receives inputs from a set of conjunction 
neurons (middle), which in turn receive 
inputs from a grid of neurons (left). The 
neurons in the grid represent lateral 
geniculate nucleus (LGN) cells, which are 
assumed to be either all ON-center or 
OFF-center cells and retinotopically organ-
ized so that the location of each cell in 
the grid corresponds to the location of its 
receptive field on the retina. A horizon-
tally oriented visual stimulus activates 
three LGN cells in a row, which activate 
a “simple cell” (conjunction) that in turn 
activates a “complex cell” (disjunction). 
Like actual simple cells of primary visual 
cortex, each conjunction neuron responds 
selectively to stimuli with a particular 
orientation (horizontal in this case) and at 
a particular location. Likewise, like actual 
complex cells, the disjunction neuron 
responds selectively to stimuli with a 
particular orientation but is invariant to the 
exact location of the stimulus.
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Indeed, like this perceptron, visual areas of the 
brain generally have a retinotopic organization: Neigh-
boring cells have receptive fields that cover adjacent 
areas in the visual field. This means that a sheet of cor-
tical tissue functions like a map of the visual field, and 
patterns of activity can actually resemble images. Simi-
larly, each layer of the model in Figure E–3 is retino-
topically organized so that at any moment a map of the 
overall activity pattern of its neurons depicts the stim-
ulus image. Connections between the layers respect 
the spatial arrangements of receptive fields described 
above and shown in Figure E–2. The thresholds are set 
to yield conjunctions and disjunctions in simple cell 
and complex cell layers, respectively.

The structure of the model is idealized in a number 
of ways to facilitate understanding. All cells are 
arranged in uniformly spaced grids. Furthermore, the 
simple cell and complex cell layers each have a number 
of “feature maps.” Each cell in a feature map detects 
exactly the same feature but in a different location 
of the visual field (Figure E–3). In the cortex the cells 
detecting different features would be intermingled, 
but in the model they are segregated for convenience.

A map of active neurons in the LGN layer of the 
model accurately represents the visual stimulus, 
whereas the simple and complex cell layers contain 
more abstract representations of the stimulus because 
of the orientation selectivity of neurons. In particular, 
the representation of the stimulus in the complex cell 
layer is robust and does not reflect small variations in 
the stimulus (see Figure E–3).

Selectivity and Invariance Must Be Explained by 
Any Model of Vision

The dichotomy between selectivity and invariance has 
been important in our discussion of the primary visual 
cortex and simple stimuli like bars. More generally, this 
dichotomy is relevant throughout the visual system 
and even for complex stimuli like entire objects. Let’s 
step back and think about the computations that the 
entire visual system must accomplish.

Even though the act of seeing appears effortless 
for humans and animals, vision is a difficult compu-
tational problem. In spite of enormous progress in  

Conjunction Disjunction

Simple cells
14×14×4

Complex cells
7×7×4

LGN cells
16×16

Figure E–3 A perceptron implementing 
the Hubel-Wiesel model of selectivity and 
invariance. The network in Figure E–2C can be 
extended to grids of many cells by specifying 
synaptic connectivity at all locations in the vis-
ual field. The resulting network can be repeated 
four times, one for each preferred orientation 
(horizontal, vertical, and two diagonals). This 
yields four retinotopically organized grids of 
simple cells, one for each preferred orientation, 
as well as four grids of complex cells. Each 
grid is called a feature map. Throughout the 
network the responses to two slightly different 
images of the numeral 2 are superimposed for 
comparison. A yellow pixel indicates a neuron 
that responds to both stimuli. A red pixel 
indicates a neuron that responds to one of the 
stimuli, and a green pixel indicates a neuron 
that responds to the other.
 In the LGN layer the difference between 
the two stimuli is evident (see red and green 
pixels at the top of the numeral). In the simple 
cell layer the bottom two feature maps show 
different responses to the images (red and 
green pixels), but the top two are the same 
(all yellow pixels). Finally, the responses of the 
complex cells are the same for both images 
(all yellow pixels). Thus invariance and selectiv-
ity occur together in one network, although 
the invariance is limited (it does not hold for all 
distortions) and the selectivity is fairly simple.
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algorithms, speed, and memory capacity, modern 
digital computers are still far from equaling the per-
formance of biological vision systems. In particular, 
one of the main functions of vision is the recognition 
of objects. One reason this task is difficult for comput-
ers is that the images of a single object are highly vari-
able. Factors such as lighting, location, and distance all 
cause changes in retinal images that the visual system 
must ignore in order to recognize an object—recognition 
requires some invariance in responding. However, 
the visual system cannot ignore all changes because it 
has to distinguish between different objects—it must 
therefore also be selective for certain aspects of images. 
Although the properties of invariance and selectivity 
may seem conflicting, they are somehow reconciled by 
the visual system.

How does the visual system accomplish object rec-
ognition? Neurophysiologists have investigated this 
question by recording from high-level visual areas, 
such as inferotemporal cortex. To give one example of 
their findings, certain inferotemporal neurons respond 
selectively to images of faces. These face-selective 
neurons have large receptive fields and the exact loca-
tion of the face within the receptive field is not a factor 
in the cells’ responses. Instead, the responses appear to 
be closely related to complex features or entire objects 
rather than simple features like bars or edges.

How are selectivity and invariance achieved by 
the face-selective neurons? According to one theory, all 
visual areas of cortex are arranged in a hierarchy (see 
Figure 28–2) and the Hubel-Wiesel model of simple 
and complex cells in the primary visual cortex (V1) can 
be generalized to the higher levels of the visual system. 
In this hierarchical model V1 is at the bottom and areas 
in the inferotemporal cortex are near the top. Neurons 
near the bottom of the hierarchy are selective for sim-
ple features, have small receptive fields, and are sen-
sitive to small changes in stimulus location. Neurons 
near the top of the hierarchy are selective for complex 
features, have large receptive fields, and are invariant 
to large changes in stimulus location. Neuronal con-
nections from each level to the next are organized so as 
to carry out computations analogous to the ones per-
formed by simple and complex cells in V1. As we shall 
see, this hierarchical conception of visual recognition 
of objects has been formulated precisely in a number 
of neural network models.

Visual Object Recognition Could Be Accomplished 
by Iteration of Conjunctions and Disjunctions

Could perceptrons be used to model not just V1 but 
also the rest of the visual system? We introduced the 

idea that conjunctions create selectivity in V1 and 
disjunctions create invariance. Repeated alternation 
between conjunctions and disjunctions can be used to 
build up progressively greater selectivity and invari-
ance, culminating in invariant recognition of entire 
objects.

Indeed, this idea was implemented in 1980 by Kuni-
hiko Fukushima in the Neocognitron, a network model 
designed to recognize handwritten digits. Handwritten 
numbers may be less complex than images of natural 
stimuli such as faces or animals, but they are still quite 
challenging to recognize, as postal workers or anyone 
who has ever graded handwritten exams can attest. 
Indeed, digits produced by different writers often look 
very different, and even repetitions by a single writer 
can vary considerably.

The Neocognitron has a multilayer, feedforward 
architecture like that of a perceptron (although inhibi-
tion is treated somewhat differently).3 The first layer 
functions like a retina in which neurons represent an 
image of a handwritten digit, and subsequent layers 
contain multiple feature maps (Figure E–4). Although 
the first layers are analogous to the layers of simple 
cells and complex cells of the network in Figure E–3, 
the subsequent layers are meant to model visual areas 
of cortex beyond V1. Using Boolean logic as an approx-
imation of the operations performed by the elements 
in the Neocognitron, one can say that layers alternate 
between computing conjunctions and disjunctions.4 In 
other words, the conjunction-disjunction scheme of the 
Hubel-Wiesel model is cascaded to form a hierarchi-
cal system. In the output layer retinotopic organiza-
tion disappears completely. There are only 10 output 
neurons, each of which is selective for one of the digits 
“0” through “9.” In a number of simulations the output 
neurons show an impressive degree of invariance to 
the location of the digit in the retina as well as to dis-
tortions of the digit.

A similar model was later developed by Yann 
LeCun and his colleagues. This model, called LeNet, 
adheres closely to the standard definition of a per-
ceptron. The backpropagation algorithm was used to 
change the synaptic strengths of LeNet so as to reduce 
the error rate in recognizing images (Box E–2). LeNet 
achieved sufficient accuracy in recognizing handwritten 
characters to be used in some commercial applications.  

4Boolean logic is just an approximation, as the model neurons in the 
Neocognitron are actually analog rather than binary.

3The strengths of the synapses in the Neocognitron were not specified 
by its designer. Instead, the Neocognitron learned from a sequence 
of visual stimuli through synaptic modifications based on a model of 
Hebbian plasticity (see Box E–2).
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Its descendants are still being used today in the field of 
computer vision and are competitive with other state-
of-the-art approaches.

In the Neocognitron and LeNet the Hubel-Wie-
sel neurobiological model of V1 is elaborated to the 
entire process of object recognition. In spite of several 
decades of intense scrutiny, there remain significant 
hurdles to testing neural network models of visual 
processing. To test a model two questions must be 
addressed. Are there synaptic connections in the brain 
like those of the model? Is the model a good approxi-
mation without other types of connections that are not 
included? Much experimental evidence concerning 

these questions is rather indirect and circumstantial. In 
particular, anatomical techniques for determining the 
connectivity of cortical circuits are still in their infancy. 
For example, there is no direct anatomical evidence for 
the hypothesis that simple cells in V1 are driven by 
LGN neurons with receptive fields lined up in a row, 
as originally proposed by Hubel and Wiesel, although 
there is some indirect physiological evidence.

As mentioned earlier, attempts have been made to 
arrange visual areas of cortex in a hierarchy that is con-
sistent with the known anatomical connections between 
areas. When the visual system is modeled as a percep-
tron, only “bottom-up” connections are included. In 
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21×21×8
21×21×3813×13×19

13×13×35
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Input 
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Recognition 
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Figure E–4 The Neocognitron model of digit recognition. 
Each layer in the network is composed of a set of feature 
maps, and alternating layers contain “S-cells” or “C-cells.” All 
feature maps are retinotopically organized because each cell 
receives input from neighboring cells of the previous layer. Each 
cell in a feature map detects the same feature but at different 
locations in the image.
 An S-cell is analogous to a simple cell in the Hubel-Wiesel 
neurobiological model. It detects conjunction of features 
detected by C-cells in the previous layer. A C-cell is analogous 
to a complex cell in the Hubel-Wiesel model. It can be activated 
by any of the S-cells in the previous layer, which detect the 
same feature but at slightly different locations in the image. 

Receptive fields of cells become larger until the retinotopic 
organization vanishes completely in the final (recognition) layer.
 The Neocognitron was constructed for the purpose of rec-
ognizing images of handwritten digits. Accordingly, the output 
neurons are detectors for the digits “0” through “9” and are 
highly invariant to small variations. Each S-cell layer generates 
more complex feature selectivity, and each C-cell layer yields 
more spatial invariance.
 The images at the bottom are examples of preferred stimuli 
of cells in each layer. S1 and C1 cells respond selectively to 
oriented bars; S2 and C2 cells are selective for more complex 
features, such as the conjunction of bars; S3 and C3 cells are 
selective for still more complex features.



Box E–2 Learning in Neural Networks

The brain can perform many computational tasks that 
are beyond the capabilities of today’s electronic comput-
ers, but it is also remarkable for another reason: It is a 
self-assembled system, wiring up its own synaptic con-
nections, unlike an electronic computer that is actually 
built by external agents (humans or machines).

To emulate this process of self-assembly or self-
organization, many neural models are equipped with 
dynamic processes that continually reorganize their 
synaptic connections. Some processes create or elimi-
nate neurons or their connections, whereas others adjust 
the strengths of existing synaptic connections or change 
other properties of neurons.

To describe the process of self-organization, it is 
helpful to introduce some terminology for describing 
the synaptic organization of neural networks. The term 
synaptic weight is often used to refer to the strength of a 
particular synaptic connection, whereas the term synap-
tic weight matrix applies to the set of all synaptic weights 
in a network. The strength of the synapse onto neuron i 
from neuron j is written as Wij. This is the element of the 
weight matrix located at the intersection of row i and 
column j (see Box E–1).

In many neural network models the weight matrix 
evolves in time according to a synaptic plasticity rule, a 
mathematical model governing the modifications of 
synaptic strengths. This is often called a learning rule, 
although strictly speaking, learning is a behavior of a 
network rather than a synapse.

The network typically starts out in a naïve state, 
that is, the weight matrix is initialized with random val-
ues. Then the network is exposed to a series of stimuli, 
each of which causes the weight matrix to be modi-
fied by the learning rule. Learning rules can take many 
forms. Much effort has been devoted to devising them 
and exploring their properties. The Hebbian rule is pop-
ular in neurobiological models; with this rule synapses 
are modified based on temporally contiguous activity of 
presynaptic and postsynaptic neurons.

It is common to apply the same learning rule to all 
synapses (or sometimes all excitatory synapses). In spite 
of this uniformity, the weight matrix becomes hetero-
geneous because the learning rule depends on activity, 
and activity patterns are typically nonuniform across a 
network. Therefore, very complex networks can be pro-
duced by a simple learning rule.

In some cases the life of the network is separated into 
training and operating phases. In the training phase syn-
apses change, whereas in the operating phase the learning 
rules are turned off. This is analogous to natural devel-
opment in which plasticity seems particularly strong in 
juvenile animals. In other cases the learning rules may be 
turned off gradually. In fully online learning the learning 

rules are never turned off, so that the network is always 
able to adapt to new situations.

It is commonly assumed that reorganization of 
neural networks in the brain is a decentralized proc-
ess in which synapses are modified as a result of the 
interaction of the pre- and postsynaptic neurons rather 
than in response to signals from some central author-
ity. The Hebbian rule is an example. A consequence 
of such localized self-organization is that one synapse 
on a neuron can be modified while another remains 
unchanged. Such specificity is generally observed in 
biological experiments on Hebbian plasticity, although 
some exceptions have been reported.

In addition to signaling in the pre- to postsynaptic 
direction, retrograde messengers such as nitric oxide may 
also play a role in synaptic plasticity (see Chapter 11), 
although their role has not been extensively explored in 
models. The diffuse neuromodulatory systems also have 
effects on synaptic plasticity (see Chapter 13), and some 
neural network models have attempted to include inter-
action between global signals from a central source and 
local signals as a factor in synaptic modification.

Learning rules are sometimes classified as unsu-
pervised or supervised. Supervised learning involves an 
external “teacher” that evaluates the performance of 
the entire network and sends a reward or error signal 
that somehow reaches the synapses. The learning rule is 
devised so that it produces synaptic modifications that 
improve the performance of the network as evaluated 
by the teacher.

One of the most popular supervised learning meth-
ods is known as backpropagation. When implemented in 
a perceptron an error signal is propagated back through 
the network, starting with the output neurons and mov-
ing toward the input neurons. The synapses are then 
modified based on neural activity and the backpropa-
gated error signal.

Backpropagation has been used by engineers for 
practical applications, such as a computer system for 
recognizing handwritten numbers based on LeNet. 
However, it is unclear whether backpropagation is a bio-
logically plausible learning mechanism, even if it may 
be useful for engineers.

Using Unsupervised learning rules, such as the Heb-
bian rule, the network learns from sensory inputs with-
out an explicit error signal. These learning rules can 
have a number of computational functions, such as asso-
ciative learning, discovering useful stimulus features, or 
reducing the dimensionality of complex stimuli. They 
have been used to model the self-organization of feature 
maps in the primary visual cortex during the course of 
neural development (see Box E–3), as well as to train 
networks like the Neocognitron.
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reality, however, there are also “top-down” connec-
tions. In some cases, such as the pathways between 
LGN and V1, the top-down connections far outnumber 
the bottom-up ones. It is thought that top-down con-
nections are important for allowing cognitive factors 
such as expectation to influence perception.

Given these uncertainties and limitations, how 
useful are perceptrons as models of vision? Although, 
perceptrons are simplistic—they encompass only a 
subset of the connections in the visual system—they 
may capture some essence of the way that neural  
circuits perform visual computations. Indeed, percep-
trons perform impressively on visual tasks such as 
recognizing handwritten digits, although they still fall 
short of human performance. Such engineering appli-
cations show how far one can push the simple ideas 
embodied in the perceptron.

Neural networks like the Neocognitron and LeNet 
model the visual system as a perceptron organized into 
a hierarchy of feature detectors. These models propose 
an answer to one of the questions posed at the begin-
ning of this appendix: How is the psychological event 
of recognizing an object related to the huge number 
of neural events that underlie it? In a hierarchical per-
ceptron the recognition of an object involves a rela-
tively small number of sequential steps, each of which 
consists of a large number of operations executed in 
parallel. Each operation is very simple, carried out 
by a neuron that is activated when its synaptic inputs 
drive it above threshold. The sequential steps alter-
nate between selectivity for more complex features 
and invariance to small distortions of these features. 
The neurons at the end of this sequence are selective 
for entire objects, ignoring variations in their appear-
ance. Thus object recognition can be considered as an 
emergent property of the network, one that requires 
the coordinated activation of many neurons, located at 
many different steps.

Fifty years after Rosenblatt’s pioneering work it is 
clear that perceptrons have been important in develop-
ing models of computations in the visual system. In 
the study of visual perception, as in other fields of sci-
ence, formal models have proved to be valuable aids to 
experimentalists.

Associative Memory Networks Use Hebbian 
Plasticity to Store and Recall Neural Activity 
Patterns

The sight of a familiar face evokes a name. A simple odor 
triggers the vivid recollection of a past meal and the 
persons who were there. These everyday experiences  

illustrate that the facts and ideas stored in our memo-
ries are associated with each other. Philosophers and 
psychologists have argued that association is the basic 
principle of all mental activity. Neuroanatomists have 
studied the way that neurons are bound together in a 
web of synaptic connections. The two traditions con-
verge in an intuitively appealing idea: Perhaps syn-
aptic connections are the material substrate of mental 
associations.

This idea has been formalized in a number of neu-
ral network models of associative memory. A funda-
mental assumption in these models is that information 
is transferred back and forth between neural activity 
and synaptic connections. When novel information 
first enters the brain it is encoded in a pattern of neu-
ral activity. If this information is stored as memory, the 
neural activity leaves a trace in the brain in the form 
of modified synaptic connections. The stored informa-
tion can be recalled when the modified connections 
again become active. This scheme assumes that synap-
tic connections remain stable for long periods of time, 
whereas neural activity is ephemeral and represents 
immediate experience only.

The transfer of information from neural activity 
to synapses is hypothesized to occur through Hebbian 
synaptic plasticity: A long-lasting increase in synaptic 
efficacy is induced if the presynaptic neuron repeat-
edly participates in the firing of its postsynaptic neuron 
(Box E–3). Some prominent forms of long-term poten-
tiation involving the NMDA-type glutamate receptor 
are regarded as Hebbian (see Chapter 67). Conversely, 
the transfer of information from synapses to neural 
activity is thought to occur through a process of pat-
tern completion in which activity spreads through an 
assembly of neurons coupled by synaptic loops. This 
idea is explained in more detail below.

Hebbian Plasticity May Store Activity Patterns by 
Creating Cell Assemblies

How might Hebbian plasticity transfer information 
from neural activity into the synapses of a neural net-
work? One scenario is illustrated in Figure E–5, which 
depicts a population of excitatory neurons that could 
represent pyramidal neurons in the hippocampus 
or neocortex. It is common to assume that Hebbian 
plasticity modifies the synapses between pyrami-
dal neurons but does not modify synapses involving 
inhibitory neurons. According to this theory, inhibitory 
neurons play only a supporting role in memory stor-
age and recall by helping to prevent overexcitation of 
the network, or “confused” recall of multiple memories 
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Box E–3 Mathematical Models of Hebbian Plasticity

Associative memory networks were developed by a 
number of researchers.1 In their modern form they have 
two essential features. First, the synaptic strengths are 
specified by a special type of matrix, called a correla-
tion matrix. Second, the neurons are nonlinear, which 
enhances the ability of the models to perform the opera-
tion of pattern completion described in the main text.2

To store an activity pattern in long-term memory 
in a nonlinear network of the form written in Equation 
E–1 in Box E–1, synaptic strengths are changed by the  
Hebbian rule:

                   ∆ ∝W x xij i j   (E–3)

This synaptic learning rule is Hebbian because it 
depends on the simultaneous activation of the postsyn-
aptic neuron i and the presynaptic neuron j. (For binary 
neurons the change in Equation E–3 is only nonzero if xi 
and xj are both equal to 1.) If Equation E–3 is repeatedly 
applied with activity patterns drawn from an ensemble, 
then Wij becomes proportional to the statistical correla-
tion between the activities of neurons i and j (hence the 
term correlation matrix).

A popular modification of the basic Hebbian rule is 
to replace Equation E–3 by the Covariance rule:

 
∆ − 〈 〉 − 〈 〉W x x x xij i i j j∝( )( )

 (E–4)

where 〈 〉xi  is the average activity of neuron i. When 
this is applied to an ensemble of activity patterns, 
Wij becomes proportional to the statistical covariance 
between the activities of neurons i and j.

at the same time. For simplicity, inhibitory neurons are 
not included in the model in Figure E–5.

The initial state of this network has no connections 
between neurons (Figure E–5A). This should not be 
taken literally. It depicts an initial situation in which 
synapses exist but are all very weak. Now suppose that 
three neurons are stimulated by synapses from sources 

outside the circuit (Figure E–5B). This situation corre-
sponds roughly to activation of a distributed pattern 
of neural activity in the brain by a sensory stimulus, as 
is often observed in neurophysiological studies. Every 
synapse between a pair of active neurons is therefore 
exposed to coincident presynaptic and postsynaptic 
activity, thus strengthening the synapses.

1See J.A. Anderson and E. Rosenfeld, Neurocomputing: Founda-
tions of Research, 1988, IT Press.
2These two properties were first combined in associative mem-
ory networks by Shun-ichi Amari and Kaoru Nakano working 
independently in 1972.

The number of patterns that can be stored in syn-
aptic connections is limited because the patterns even-
tually interfere with each other (see Figure E–6). The 
maximal number that can be stored is called the capacity 
of the network. In 1985 Daniel Amit, Hanoch Gutfreund, 
and Haim Sompolinsky introduced techniques from the 
statistical physics of disordered systems to calculate 
memory capacity. Later researchers used these tech-
niques to find that the covariance rule of Equation E–4 is 
generally superior to the basic Hebbian rule of Equation 
E–3 because it reduces interference between patterns 
and therefore enhances storage capacity.

Physiologists have found that Hebbian plasticity 
can depend on the precise timing of presynaptic and 
postsynaptic spiking. One example of such a mechanism 
is spike timing-dependent plasticity (see Chapter 67). 
To incorporate this dependence, models more sophisti-
cated than Equations E–3 and E–4 have been proposed 
(see the bibliography at the end of the appendix).

The main text of this appendix focuses on the use of the 
Hebbian rule in models of associative memory. However, 
the Hebbian rule has also been used to model the develop-
ment of retinotopic maps in visual areas of cortex. Also, it 
is believed that Hebbian plasticity allows neuronal activ-
ity to influence the patterning and refinement of connec-
tions during neural development (see Chapter 56). In 1973 
Christoph von der Malsburg advanced a neural network 
model of primary visual cortex in which Hebbian plasticity 
underlies the self-organization of orientation maps when 
the model network is exposed to visual stimuli.

In 1982 Teuvo Kohonen proposed a simplification of 
von der Malsburg’s model, known as the self-organizing 
map (SOM). Kohonen showed how the SOM served as a 
general method of mapping the abstract high-dimensional 
space of stimuli onto a low-dimensional neural represen-
tation, as in a sheet of cortical tissue. Kohonen’s learn-
ing rule causes neighboring neurons in the network to 
develop preferences for similar stimuli. This yields a low-
dimensional map of the stimulus space based on similari-
ties between sensory inputs.
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After this strengthening has occurred, a group of 
three neurons that are strongly coupled by excitatory 
synapses form a cell assembly (Figure E–5C). Neurosci-
entists generally use this term rather imprecisely. One 
must look to mathematical models of networks for 
more precise definitions, which generally have some-
thing to do with the presence of strong mutual excita-
tory interactions within a group of neurons. The word 
“assembly” emphasizes that the group did not initially 
exist but was constructed through the strengthening 
of the synapses of the neurons in the group, which in 
turn was caused by the simultaneous activation of the 
neurons.

In effect, the information in the original activity 
pattern is transferred to the pattern of strong synapses 
in the cell assembly. If the synaptic changes persist, 
the information is maintained even after the original 
activity pattern has ceased. It could be said that the 

network has learned an activity pattern by storing 
it into its synaptic strengths. Because of this, the cell 
assembly can replicate the original activity pattern, as 
will be explained below.

Cell Assemblies Can Complete Activity Patterns

If inputs are limited to one neuron in the three-cell 
assembly, the neuron starts to generate action poten-
tials (Figure E–5D). Although the external inputs to the 
other two neurons do not change, they also become 
activated after a short latency because they are driven 
by synaptic input from the first neuron. This spreading 
of activation from one neuron to the other two is an 
example of pattern completion. Researchers have scaled 
up the same idea to very large networks. 

Such a neural process is thought to be respon-
sible for the psychological phenomenon of memory 

Voltage

Input 
current

1

2

3

4

5

1

2

3

4

5

Neuron #

A B C D F GE

1

3 5

Persistent activity 
without input

Memory
storage

Memory
recall

200 ms

Figure E–5 Associative memory and 
persistent activity in a network of model 
neurons. Numerical simulations were done 
using the leaky integrate-and-fire model 
neuron described in Appendix F. This model 
neuron generates spike times but not the 
detailed shape of the action potential.
A. The synaptic connections between five 
neurons are initially very weak or nonexist-
ent, and here are not drawn at all. Neurons 
1, 3, and 5 are about to be activated by 
external input.
B. Input current activates the three neurons 
and Hebbian plasticity causes the synap-
tic connections between the neurons to 
strengthen, a form of associative memory 
storage.
C. When the input current ceases neuronal 
activity also ceases. The Hebbian strength-
ening of connections occurs during this 
interval after some time delay.
D. Input current stimulates just one of the 
original three neurons, but the excitatory 
connections complete the entire pattern. 
All three neurons of the pattern become 
activated. 
E. Even after the input current has ended, 
the neurons remain persistently active.
F. A nonselective inhibitory input to all the 
neurons (circuit not depicted) quenches the 
persistent activity pattern. 
G. The circuit returns to a quiescent state.
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retrieval. Consider the example of seeing a friend and 
remembering his name and occupation. Partial infor-
mation triggers recall of more information based on 
the completion of a neural activity pattern.

In the simulation in Figure E–5, stimulating any 
one out of the three neurons would result in comple-
tion of the entire pattern. This is a kind of symmetry 
and is analogous to the way in which memory retrieval 
can be symmetric; it is equally possible for a face to 
evoke recall of a name and vice versa. Symmetric pat-
tern completion is possible for a cell assembly because 
of the lack of directionality in its connectivity. Activ-
ity can spread in any direction within a cell assem-
bly except that activity in the last layer cannot spread 
backward to the rest of the network.

In the CA3 region of the hippocampus, a brain 
area that has been implicated in episodic memory (see 
Chapter 65), pyramidal neurons make synapses onto 
each other in a recurrent fashion, and Hebbian plastic-
ity has been observed at these synapses. Therefore CA3 
seems a prime candidate for a network containing cell 
assemblies, as many theorists have speculated in the 
past. The hypothesis that Hebbian synaptic plasticity 
stores memories as cell assemblies in CA3 has been 
investigated in studies of hippocampal place cells in 
rodents, the connections between which are thought 
to store spatial memories (see Chapter 67). Susumu 
Tonegawa and his colleagues created mutant mice in 
which a subunit of the NMDA-type glutamate receptor 
was deleted from CA3 pyramidal neurons. Long-term 
potentiation was impaired at these synapses, support-
ing the idea that the NMDA receptor is critical for Heb-
bian synaptic plasticity. Interestingly, mutant mice are 
still able to form spatial memories but have difficulty 
recalling them if some of the original visual landmarks 
are missing. Tonegawa and his colleagues interpreted 
this deficit in recall as impaired pattern completion, 
and ascribed it to impaired formation of cell assemblies 
in CA3.

Cell Assemblies Can Maintain Persistent  
Activity Patterns

Up to now our discussion of memory storage in synaptic 
connections has focused on long-term memory. Recall of 
a long-term memory occurs through the reactivation of 
a previous activity pattern, triggered by activation of a 
subset of the pattern. Once the activity pattern has been  
reactivated it can persist even after the extrinsic drive 
has ended because the neurons excite each other 
through their mutual excitatory connections.

Such persistent activity could also function as a 
short-term memory trace of the input that activated it. 

Short-term memory is generally regarded as distinct 
from long-term memory. For example, the famous 
patient H.M. lost the ability to store new long-term 
memories but had intact short-term memory, evidence 
that these are two distinct functions (see Chapter 65).

A classic example of short-term memory is the 
temporary memorization of a phone number for a few 
seconds after reading or hearing it. After dialing the 
phone number the information is rapidly lost from 
memory. If the phone number becomes too long, as 
when dialing internationally, it can be difficult to retain 
for even a few seconds. As this example illustrates, 
short-term memories last for only a very short time 
and contain limited information. In contrast, long-term 
memories can last a lifetime, and our brains seem to 
have virtually unlimited capacity for them.

As described in Chapter 67, similar short-term per-
sistent activity has been observed in the primate brain 
during the performance of delayed-match-to-sample 
tasks that are designed to test short-term memory. For 
example, in each trial of an experiment a monkey views 
a sample image on a screen, then a blank screen during 
a delay period, and then another image. The monkey is 
trained to indicate whether the second image matches 
the first. In the primary visual cortex neural activity is 
observed only when the images are presented. How-
ever, in higher-level areas, such as inferotemporal and 
prefrontal cortex, persistent activity is also observed 
during the interval between images (see Figure 28–11). 
By sampling many neurons during this delay period, 
neurophysiologists have recorded distinct activity pat-
terns corresponding to different sample images, sug-
gesting that these activity patterns encode information 
about previously viewed images.

To summarize, the cell assembly concept has been 
used to explain both long-term and short-term memory. 
According to this concept a long-term memory is stored 
as strengthened connections between neurons in a cell 
assembly, while a short-term memory is maintained 
by persistent activity of the neurons in a cell assembly. 
Whether these ideas are correct remains uncertain, and 
some of their problematic aspects will be noted later. It 
should also be noted that not all associative memory 
networks depend on persistent activity. For example, 
in the network in Figure E–5 some numerical param-
eters could be changed so that pattern completion 
occurs during the stimulus presentation but not after 
the stimulus is gone.

Interference Between Memories Limits Capacity

Figure E–5 illustrates the storage and retrieval of a sin-
gle activity pattern. In fact, however, a single network 
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can store multiple patterns. If Hebbian synaptic modi-
fications store multiple patterns, many cell assemblies 
are created. A stored pattern can be retrieved by stimu-
lating some of the neurons in the corresponding cell 
assembly, leading to completion of the entire activity 
pattern.

However, the storage capacity of a network is not 
infinite. If the cell assemblies are completely nonover-
lapping (share no neurons in common) they will not 
interfere with each other (Figure E–6A), and in these 
cases the number of patterns that can be stored is equal 
to the total number of neurons in the network divided 
by the size of a cell assembly.

Higher storage capacity can be achieved if the cell 
assemblies overlap (share neurons). However, overlap 
means there is the possibility of interference (Figure 
E–6B). Interference can lead to corruption of memories, 
so that the activity patterns expressed by the network 
deviate from the original patterns that were stored by 
Hebbian plasticity. If we attempt to store too many pat-
terns in the network, interference eventually becomes 
catastrophic—the stored patterns disappear altogether. 
Therefore interference effects limit the storage capacity 

of the network, and mathematical theorists have stud-
ied these effects in detail.

Synaptic Loops Can Lead to Multiple Stable States

To describe how cell assembly can maintain different 
types of activity patterns, we use the concept of multi-
stability, a term from dynamical systems theory.

In Figure E–5 the circuit is active during interval E 
but quiescent during interval G. During the quiescent 
and active states there is no external input, yet the cir-
cuit has two very different firing patterns. Thus the net-
work possesses two possible stable states (active and 
inactive) for a single input, a phenomenon known as 
bistability. The transient currents at interval F in Figure 
E–5 switch the circuit from one stable state to the other.

A network with multiple cell assemblies is said to 
be multistable because activation of any one cell assem-
bly produces a distinct stable state of the network. 
When a multistable system is at a steady state, this state 
depends on past as well as present input. This depend-
ence on the past explains why the transient inputs of 
Figure E–5 can have a lasting effect on activity.

A B

Figure E–6 The potential for interference between overlap-
ping associative memory networks. Each link in the diagram 
represents a bidirectional pair of excitatory synapses.
A. Two nonoverlapping cell assemblies. Each assembly is a 
group of neurons that is fully coupled by strong excitatory syn-
apses. Because the cell assemblies share neither neurons nor 
synapses in common, they are completely independent. One 
cell assembly alone can be activated (red) or both assemblies 
can be activated simultaneously (not shown).

B. Two overlapping cell assemblies. Because some neurons 
are involved in both cell assemblies (dashed line), there is 
potential for interference. Activation of one cell assembly could 
potentially spread to the other cell assembly (lower drawing). 
This can be prevented. If the threshold for neural activation is 
sufficiently high, the neurons belonging uniquely to the second 
cell assembly remain below threshold. Conversely, if the 
threshold is low, then it will be impossible to activate a single 
cell assembly without the other (not shown).
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Multistability is caused by the connectivity of the cell 
assemblies. More generally, networks that contain syn-
aptic loops (a cell assembly is a special case of this) can 
have multiple stable states. In contrast, a perceptron is a 
type of network that has no loops and does not exhibit 
multistability. A network with multiple stable states is 
often called an attractor neural network, borrowing a term 
from dynamical systems theory.5 A stable steady state is 
called an attractor of the dynamics because dynamical 
trajectories (the temporal evolution of the activity of the 
network) that start from similar initial conditions will 
converge (are attracted) to the stable state.

Symmetric Networks Minimize Energy-Like 
Functions

Further insight into multistability can be gained from a 
physical analogy. If the curved surface shown in Figure 
E–7 is slippery, a small object placed on the surface will 
slide downhill, ultimately coming to rest near the bot-
tom of a valley, assuming that there is a little friction to 
damp the motion. The object could end up in any one 
of the valleys, depending on its starting point. There-
fore the dynamics of the object is multistable.

The object’s motion can be understood using the 
physical concept of energy. Because the gravitational 
potential energy of the object is a linear function of 
its height, the surface can be regarded as a graph of 
energy versus location in the horizontal plane. The 
object behaves as if its goal were to minimize its poten-
tial energy, in the sense that its downhill motion causes 

5Some apply the term attractor network rather loosely to any recurrent 
network, whereas others restrict application to recurrent networks 
with multistability.

Figure E–7 Multiple stable states 
can be depicted as minima of an 
energy-like function. The dynamics 
of a multistable dynamical system can 
be visualized as descent on an energy 
landscape with multiple valleys. In a 
neural network model, this landscape 
would represent the space of all 
potential activity patterns and the  
valleys, or “attractors” (ie, the patterns 
that are stable and “attract” the activ-
ity). Such attractors could represent 
memories or, more generally, solu-
tions to a computational problem.

the potential energy to decrease until a minimum is 
reached. The multiple stable states correspond to the 
multiple minima of the energy.

In an influential paper published in 1982, John 
Hopfield constructed a mathematical function that 
assigns a numerical value to any activity pattern of a 
neural network model. He proved mathematically that 
this number is guaranteed to decrease as the activity 
of the network evolves in time until a stable state is 
reached. Because of this property, Hopfield’s function 
represents the “energy of the network,” and we will 
call it an energy function.6 The energy of the network 
is analogous to the height of the sliding object in Fig-
ure E–7, and the activity of the network is analogous to 
the horizontal location of the sliding object. Of course, 
Figure E–7 is an impoverished depiction of a network 
energy function because the activity pattern of a net-
work of n neurons is an n-dimensional vector, not a 
two-dimensional location in the horizontal plane.

As a special case, Hopfield applied the energy 
function to associative memory networks, showing 
that the process of memory recall by pattern com-
pletion (Figure E–5) is analogous to an object sliding 
down an energy landscape (Figure E–7).

Hopfield’s construction of the energy function 
required that the interactions between neurons be sym-
metric: Any connection from one neuron to another is 
mirrored by another connection of equal strength in 
the opposite direction. This is the case, for example, 
in the cell assemblies of Figure E–5. Although perfect 
symmetry of interactions is not biologically plausible, 

6It should be stressed that this is an analogy, that the energy func-
tion is distinct from energy in the sense of physics. A minimum of 
the network energy function might actually correspond to an activ-
ity pattern in which neurons are firing at high rates and using large 
amounts of energy.
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approximate symmetry might be a property of some 
biological neural networks, so that Hopfield’s net-
works might be regarded as an idealization of them.

In 1986 Hopfield and David Tank pointed out that 
a neural network with an energy function can be used 
to perform a type of computation known as optimiza-
tion. Many interesting problems in computer science 
can be formulated as the optimization of some kind 
of function. For example, in the traveling salesman 
problem, a salesman would like to find the shortest 
route by which he can visit multiple cities and return 
to his starting point. In this problem the function to 
be optimized is the length of the route. Hopfield and 
Tank showed how to construct a network that finds 
solutions to the traveling salesman problem. The 
energy of their network is equal to the distance of the 
route, which is encoded by the activity of the network. 
Because the network converges to a minimum of the 
energy, it effectively searches for an optimal solution 
to the traveling salesman problem.

This general approach was applied by many oth-
ers to construct neural networks that solve a variety of 
optimization problems. The Hopfield-Tank approach 
could be viewed as an extension of the cell assembly to 
a general method of encoding a computational prob-
lem in the connections of a recurrent network, which 
solves the problem by converging to a steady state.

Hebbian Plasticity May Create Sequential  
Synaptic Pathways

In the simulations in Figure E–5 it is assumed that syn-
apses between pairs of neurons are strengthened when 
the two neurons are active simultaneously. If signal-
ing flows in both directions between the neurons, the 
synapses in both directions will be strengthened, pre-
serving the symmetry of the interactions between the 
neurons.

However, Hebb actually argued that a synapse is 
strengthened when the presynaptic neuron is activated 
immediately before the postsynaptic neuron (activity 
in the presynaptic cell leads to an excitatory postsy-
naptic potential that contributes to firing the postsyn-
aptic action potential). Hebbian plasticity that depends 
on temporal order has been observed in spike timing-
dependent plasticity (see Chapter 67). The temporal 
asymmetry of this learning rule can lead to synaptic 
connectivities that are asymmetric, as opposed to those 
shown in Figure E–5.

Such asymmetry in the connectivity could be appro-
priate for the storage and recall of motor sequences, 
needed in skills such as playing a musical instrument, 
and which consist of temporally structured steps. 

Motor sequences are presumably created by sequential 
activation of groups of neurons. One can imagine stor-
ing a sequence in a network by giving it extrinsic inputs 
that activate neurons in some order. Hebbian plasticity 
would lead to a set of strengthened connections that 
are organized like the perceptron of Figure E–1. Later 
on the sequence could be recalled by activating the 
first group of neurons, which would activate the sec-
ond group, and so on. The network would generate the 
sequence that had been stored by extrinsic input. This 
would be another example of pattern completion, one 
in which the pattern is a temporal sequence rather than 
a stable state as in Figure E–5.

In this hypothetical example the strong connec-
tions all point in the same direction, so that the interac-
tions in the network are asymmetric. The network is 
unable to generate the same sequence in the opposite 
order because of the asymmetry. This is consistent with 
the fact that many well-practiced motor sequences are 
difficult to carry out in reverse order.

It seems plausible that symmetric and asymmet-
ric connections could be important for storing differ-
ent types of associations. The memory of a telephone 
number is sequential and asymmetric; remembering 
it forward is much easier than trying to remember it 
backward. But other types of associations are more 
symmetric: A face may evoke a name as easily as a 
name evokes a face.

In associative memory networks long-term mem-
ories are stored through modifications of synaptic 
strengths that last for long times. But such Hebbian 
style long-term potentiation is just one type of modi-
fication of biological synapses (see Chapter 67). The 
strengths of biological synapses can change more tran-
siently. Diverse types of transient modification—short-
term facilitation, short-term depression, augmentation, 
and so on—have been classified by their time scales 
and other properties. It is natural to speculate that 
these different forms of synaptic alteration could be 
used by the brain for a whole spectrum of memory 
processes with different time scales. In this view a firm 
distinction between short-term and long-term memory 
is too simplistic.

Previously we explained that a cell assembly sup-
ports both short-term and long-term memories. Does 
this mean that one can only maintain short-term memo-
ries of items that have already been stored as long-term 
memories? Everyday experience suggests that one can 
briefly maintain a short-term memory of a telephone 
number that has never been encountered before, for 
which no long-term memory exists. This issue could 
perhaps be solved if, as suggested above, the sharp 
distinction between short-term and long-term memory 
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were replaced by a spectrum of memory processes 
with different time scales.

As noted in the introduction, the idea that persist-
ent activity is maintained by cell assemblies, or more 
generally by synaptic loops, dates back to Hebb and 
Lorente de Nó. Many researchers have developed 
detailed and realistic simulations based on this idea, 
simulations that are more convincing than the simple 
one shown in Figure E–5. But demonstrating empiri-
cally that a specific example of persistent activity in 
the brain is caused by synaptic loops has been difficult. 
Persistent activity could also arise as an intrinsic prop-
erty of the biophysics of single neurons, rather than an 
emergent property of networks. Hence the biological 
mechanisms of persistent activity are still controversial.

An Overall View

Perceptrons and associative memory networks are 
two historic types of neural network models still in 
use today. A perceptron is a layered network with no 
synaptic loops. Its layers represent sequential steps 
of a computation, where each layer can be regarded 
as many operations performed in parallel. The visual 
system has been modeled as a perceptron in which 
neurons are feature detectors and are hierarchically 
organized. According to this hierarchical perceptron 
model, visual recognition of an object is a sequential 
process in which each step consists of many feature 
detection events executed in parallel.

Because perceptrons lack synaptic loops, their 
dynamical behaviors are relatively simple. But the 
dynamics of the brain can evolve in ways that are dis-
sociated from immediate sensory stimuli or motor 
actions. These rich intrinsic dynamics are likely to 
depend on loops in the synaptic connectivity of the 
brain. Hebbian plasticity is thought to create cell 
assemblies, which contain synaptic loops. These loops 
can endow a neural network with the property of 
multistability, and also lead to persistent activity pat-
terns resembling those observed in neurophysiology 
experiments on short-term memory. Finally, symmet-
ric neural networks, which contain synaptic loops, 
have been used to solve optimization problems and 
could therefore be viewed as a general class of compu-
tational devices.

Although decades have passed since perceptrons 
and associative memory networks were invented, it is 
still unclear how well these models explain visual per-
ception and the storage and recall of memories.  Given 
that these are some of the deepest and most complex 
issues in neuroscience, perhaps it is not surprising 

that testing the models experimentally is difficult. But 
given today’s rapid progress in developing new exper-
imental methods, one could imagine that neural net-
work models will eventually come to play as central a 
role in systems neuroscience as the Hodgkin-Huxley 
model of the action potential plays in cellular neuro-
physiology.

Sebastian Seung 
Rafael Yuste
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