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Feedback processing is enhanced following exploration in 
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A B S T R A C T   

Decision-making is typically studied by presenting participants with a small set of options. However, real-world 
behaviour, like foraging, often occurs in continuous environments. The degree to which human decision-making 
in discrete tasks generalizes to continuous tasks is questionable. For example, successful foraging comprises both 
exploration (learning about the environment) and exploitation (taking advantage of what is known). Although 
progress has been made in understanding the neural processes related to this trade-off in discrete tasks, it is 
currently unclear how, or whether, the same processes are involved in continuous tasks. To address this, we 
recorded electroencephalographic data while participants “dug for gold” by selecting locations on a map. Par
ticipants were cued beforehand that the map contained either a single patch of gold, or many patches of gold. We 
then used a computational model to classify participant responses as either exploitations, which were driven by 
previous reward locations and amounts, or explorations. Our participants were able to adjust their strategy based 
on reward distribution, exploring more in multi-patch environments and less in single-patch environments. We 
observed an enhancement of the feedback-locked P300, a neural signal previously linked to exploration in 
discrete tasks, which suggests the presence of a general neural system for managing the explore-exploit trade-off. 
Furthermore, the P300 was accompanied by an exploration-related enhancement of the late positive potential 
that was greatest in the multi-patch environment, suggesting a role for motivational processes during 
exploration.   

1. Introduction 

There is a growing body of literature on how animals – including 
humans – manage the trade-off between exploiting prior experience and 
exploring new options. The explore-exploit trade-off is affected by 
several factors, including environmental volatility (Behrens et al., 
2007), stress (Lenow et al., 2017), the total number of remaining de
cisions (Wilson et al., 2014), and reward distribution (Constantino and 
Daw, 2015). The effect of reward distribution on exploration rate is of 
particular interest because it cuts across multiple species. For instance, 
snail communities are affected by the patchiness, or spatial clustering, of 
available food (Chase et al., 2001). Highly patchy environments, which 
are more heterogenous, are dominated by snail species that tend to 
explore (“grazers”). Conversely, less patchy environments, which are 
more homogenous, are dominated by snail species that tend to exploit 
(“diggers”). 

Unlike snails, which can only be grazers or diggers, humans can 
flexibly adjust their exploration rate. For example, Constantino and Daw 

(2015) observed that individuals will tailor their patch-leaving decisions 
to the current reward distribution; thus, our decision-making is adapt
able to the environment. However, individual factors also play a role. 
For instance, patch-leaving strategies in a simulated fishing game show 
considerable inter-subject variability (Hutchinson et al., 2008). There, 
participants were asked to make a series of decisions – to either fish or 
switch ponds – and were told that the number of fish in each pond might 
vary. Due to response variability, and contrary to the authors’ pre
dictions, patch-leaving decisions were unaffected by reward distribution 
(Hutchinson et al., 2008). It is therefore unclear in what way humans are 
able to use reward distribution knowledge, if at all. 

The brain presumably plays a role in our ability to adjust how often 
we explore. The neural basis of exploration has been studied using a 
variety of neuroimaging techniques, including electroencephalography 
(EEG). Early work suggests that a machine learning classifier can use the 
EEG at frontal and parietal sites to accurately predict whether an indi
vidual will explore or exploit (Bourdaud et al., 2008; Tzovara et al., 
2012). Similarly, we identified a parietal component of the event-related 
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potential (ERP) called the P300 that is associated with decisions to 
explore (Hassall et al., 2013, 2019). In Hassall et al. (2013) participants 
pressed a button to simultaneously inflate a balloon and increase a pot of 
money (the Balloon Analogue Risk Task, or BART: Lejuez et al., 2002). If 
the balloon burst, the accumulated money for that round was lost. 
Participants learned, through trial-and-error, how much a balloon could 
be safely inflated before a burst became likely. Exploration in the BART 
has been defined as a decision to continue pumping the balloon 
following a long pause, while exploitations are fast and automatic 
(Pleskac and Wershbale, 2014). We observed that the 
feedback/response-locked P300 was enhanced prior to explorations. 

Because feedback and response (i.e., balloon pump) occur simulta
neously in the BART, it was unclear in Hassall et al. (2013) which event – 
feedback or response – drove the exploration-related P300. To address 
this, in Hassall et al. (2019) we used a very different kind of task in 
which participants had to learn which of two options yielded a greater 
average reward (a “two-armed bandit”). Explorations were identified 
using a reinforcement-learning (RL) model fit to our participants’ data. 
Importantly, response and feedback were separated temporally. Again, 
the feedback-locked P300 amplitude was greater before exploration 
than exploitation. This suggested that the exploration-related P300 
generalizes across tasks and is driven by feedback, not the motor 
response. 

In both experiments, we interpreted the P300 as indicative of a 
phasic release of the neuromodulator norepinephrine from locus 
coeruleus (the LC-NE P300 or LC-P3 hypothesis: Nieuwenhuis et al., 
2005). According to the LC-P3 hypothesis, phasic NE activity (and the 
associated P300 deflection in the ERP) results from processing salient 
events. This account integrates previous P300 results by considering the 
motivational significance of the eliciting event (stimulus or feedback). 
For example, P300 effects are driven by stimulus frequency, novelty, and 
task relevance (Nieuwenhuis et al., 2005; Polich, 2007). Additionally, 
the feedback-locked P300 is modulated by reward magnitude (enhanced 
for large rewards compared to small rewards; Yeung and Sanfey, 2004) 
and decision type (enhanced for exploratory feedback; Hassall et al., 
2013, 2019). 

To summarize our previous work: we observed an exploration- 
related P300 in two different decision-making tasks, the BART and a 
two-armed bandit. A potential confound in both experiments was that 
exploitation was the more frequent strategy (exploration rate was 3% in 
the BART and 20% in the two-armed bandit: Hassall et al., 2013, 2019). 
Other work has shown that the frequency of a decision type can affect 
subsequent feedback processing. For example, the risk-related P300 
(enhanced feedback processing following risky decisions) is modulated 
by rate of risk taking. When risk-taking is rare, the risk-related P300 is 
enhanced (Zheng et al., 2015; Zheng and Liu, 2015). Thus, it was unclear 
from our previous work whether the enhanced neural feedback pro
cessing associated with exploration was due to exploration per se, or to 
the fact that exploration was rare. To test whether the 
exploration-related P300 reflects the switch from a frequent to a rare 
mode of decision-making, as we originally argued, we designed a task in 
which exploration would be the dominant strategy. We had participants 
search for sparse but spatially-correlated rewards on a continuous 
two-dimensional map. By “sparse” we mean that the majority of possible 
responses resulted in little or no reward; our hope in designing the task 
this way was to encourage more exploration than exploitation. If the 
exploration-dependent P300 enhancement we observed previously was 
due to the relative infrequency of exploration, then we ought to observe 
an exploitation-dependent P300 enhancement in the current study. On 
the other hand, if our previous results replicate, we would conclude that 
the effect is not due to frequency, but rather to some other property of 
exploration. 

Another issue with our previous studies was that our analyses 
focused on the effect of upcoming trial type on the feedback-locked P300. 
Our motivation for this choice came from previous machine learning 
work showing that it was possible to predict whether someone would 

explore or exploit on the next trial by examining the pre-response EEG 
(Bourdaud et al., 2008; Tzovara et al., 2012). We had not considered the 
possibility of an effect of current trial type (i.e., whether the participant 
had just explored or exploited), nor had we considered the possibility of 
an interaction between current-trial type and next-trial type. In other 
words, is feedback processing driven more by what we just did, or what 
we will do? To answer this secondary research question, we decided to 
examine the effect of current/next trial type on the feedback-locked 
P300 in the present study. 

Additionally, we manipulated the distribution of rewards across 
blocks. Participants were cued that they would encounter either many 
reward patches (a multi-patch environment) or one reward patch only (a 
single-patch environment). The purpose of this manipulation was to 
further test the hypothesis that the exploration-dependent P300 effect is 
due to the frequency of exploration relative to exploitation. Stimulus 
frequency is known to modulate P300 amplitude such that the more 
infrequent a stimulus is, the larger the P300 that is elicited (Duncan-
Johnson and Donchin, 1977). Our hope was that, like snails, our par
ticipants would explore more in highly patchy environments, and 
exploit more in less patchy environments. If a greater 
exploration-dependent P300 was observed when exploration was less 
frequent (i.e., in the single-patch environment), this would lend support 
to a frequency hypothesis. Cues were used to help encourage these be
haviours, since previous research on our ability to adapt to different 
reward distributions is mixed (Constantino and Daw, 2015; Hutchinson 
et al., 2008). 

Finally, our P300 analysis suggested a more sustained difference 
between exploratory and exploitative feedback compared to previous 
work (Hassall et al., 2013, 2019). Based on an exploration of our data, 
we identified a difference in the time range of the late positive potential 
(LPP), a P300-like ERP component that is also linked to motivational 
significance (Olofsson et al., 2008; Schupp et al., 2000). This is perhaps 
unsurprising, given that the P300 is thought to be a major subcompo
nent of the LPP (Foti et al., 2009; Hajcak and Foti, 2020; MacNamara 
et al., 2009; Weinberg and Hajcak, 2011). Previously, enhanced LPPs 
have been seen for emotional compared to neutral images (Schupp et al., 
2000), for monetary gains compared to monetary losses (Broyd et al., 
2012), for large rewards compared to small rewards (Meadows et al., 
2016), and for unambiguous compared to ambiguous decisions (Sun 
et al., 2017). Later, we will discuss post hoc explanations for our LPP 
result in light of this previous work. 

2. Material and methods 

2.1. Participants 

Twenty-four university-aged participants (3 male, all right-handed, 
Mage ¼ 21.00, 95% CI [19.30, 22.70] with no known neurological im
pairments and with normal or corrected-to-normal vision took part in 
the experiment. All of the participants received credit in an under
graduate course for their participation. Additionally, participants were 
paid a performance-dependent bonus of up, Mbonus ¼ $10.11, 95% CI 
[8.89, 11.35]. The participants provided informed consent approved by 
the Human Research Ethics Board at the University of Victoria. 

2.2. Apparatus and procedure 

Participants were seated 60 cm in front of a 22-inch LCD display (75 
Hz, 2 ms response rate, 1680 by 1050 pixels, LG W2242TQ-GF, Seoul, 
South Korea). Visual stimuli were presented using the Psychophysics 
Toolbox Extension (Brainard, 1997; Pelli, 1997) for MATLAB (Version 
8.3, Mathworks, Natick, USA). Participants were given written and 
verbal instructions to minimize head and eye movements throughout the 
experiment. 

Participants played 40 rounds of “gold rush”, a mining simulator in 
which the goal was to find as much gold as possible. Each round 
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consisted of 20 trials. In each trial, participants used a mouse to select a 
map location at which to dig for gold. Participants were then shown a 
point total from 1 to 100, representing the amount of gold they had 
found. The total amount of gold found was tracked for each round, and 
at the end of the experiment the participant was paid for their best round 
at a conversion rate of $0.01 per point. 

Prior to beginning the experiment, participants were shown on- 
screen instructions indicating that the distribution of gold was 
spatially correlated. The distribution of gold was fixed within a round 
but changed between rounds. Two types of reward distribution were 
possible: single-patch, and multi-patch. In single-patch maps, rewards 
were concentrated at one map location. Multi-patch maps contained 
rewards concentrated at between four and six “peaks”. Participants were 
unaware of the total number of peaks in the multi-patch maps, only that 
there was more than one. The maximum reward at each peak was 
randomly chosen from a uniform distribution from 50 to 100 points. 
Thus, each map for each environment had a mean maximum reward of 
75 points. Peak locations were also randomly chosen (uniform distri
bution). Participants were unaware of the maximum reward available 
within each map, only that there was always a “best” location to dig. The 
distribution of rewards around each peak was Gaussian, computed using 
the MATLAB function mvnpdf (Statistics and Machine Learning 
Toolbox, Release 2014a, Mathworks, Natick). The Gaussian reward 
distributions were circular (i.e., identity covariance matrix). See Sup
plementary Material for participant instructions, and for examples of 
each map type. 

Prior to each round, participants were shown a cue indicating 
whether the upcoming map was single-patch or multi-patch. The 
meaning of these cues was explained in the on-screen instructions 
(Supplementary Material). Participants completed two practice rounds – 
one for each reward distribution type. On each trial, participants were 
shown the outline of the map (the dig boundary), a centrally-presented 
fixation cross, and an ‘x’ at each previous dig location. After each 
practice round, participants were shown the underlying reward distri
bution, with their choices overlaid. During the experiment, participants 
were never shown the underlying reward distribution. See Fig. 1 for a 
block/trial overview. 

2.3. Data collection 

Sixty-three channels of EEG data, referenced to channel AFz, were 
recorded using Brain Vision Recorder (Version 1.20, Brain Products 
GmbH, Munich, Germany). Sixty-one electrodes were placed in a fitted 
cap according to the 10–20 system. Additionally, two electrodes were 
attached to the left and right mastoids. Conductive gel was used to 
ensure that electrode impedances were below 20 kΩ prior to recording, 
and the EEG data were sampled at 500 Hz and amplified (actiCHamp, 
Brain Products GmbH, Munich, Germany) with a 245 Hz antialiasing 

low-pass filter. 

2.4. Computational models 

Several computational models were implemented in MATLAB and 
evaluated based on how well they accounted for our participants’ cho
sen dig locations. The goal of this modelling was to classify trials as 
either exploitations or explorations. In general, exploitations were 
defined as trials for which a participant responded in a value- 
maximizing way, e.g. choosing the location with the best-known 
reward. All other responses were explorations. Although several 
models were tested, only the best-fitting model was used to classify trials 
for our ERP analysis. 

Participant decisions were classified as either exploitations or ex
plorations using computational models. Several models were evaluated 
for their ability to account for our participants’ decisions. First, each 
model was fit to each participant’s data using the MATLAB function 
fmincon (Optimization Toolbox, Release 2018a, Mathworks, Natick). 
This function works by searching for parameters that minimize a spec
ified objective function. In our case, the objective function was the 
negative log-likelihood of a participant’s responses, given a particular 
model. Specifically, each model maintained a probability Pt associated 
with every possible action a on trial t (i.e., each location on the map). In 
practice, to reduce the computational complexity of our model-fitting 
procedure, we further discretized our 800 by 800 pixel maps to an 80 
by 80 grid (6400 possible actions). 

A good fit meant that the model was assigning high probabilities to a 
participant’s actions (i.e., the chosen map locations). The trial-to-trial 
probabilities were combined according to the log-likelihood function: 

� LL¼ �
X

t
logðPtðasÞ

!

where as was the selected action. We then computed the mean -LL across 
participants; the best-fitting model, defined as the one the one with the 
smallest mean –LL, was later used to classify trials as exploitations or 
explorations. 

All of our models generated a probability associated with each map 
location. For all but one of our models (the win-stay, lose-shift model) 
this was done by first generating a value for each map location. The 
values v were then converted to action probabilities for each ai and trial t 
according to the softmax equation: 

PtðaiÞ¼
evtðiÞ=τ
P

je
vtðjÞ=τ  

where i was the index of the chosen action, j indexed over all possible 
actions, and τ (temperature) determined the degree of bias towards 
choosing high-valued locations. Next, we will describe how the values 
were computed for each function-approximation model. 

2.4.1. Nearest-neighbours 
This model computed a value for each map location using the 

nearest-neighbours approach (i.e., the value at a point was equal to the 
value of the closest previously-chosen point). The values were updated 
following feedback. In particular, we used MATLAB’s griddata function 
with the “nearest” method. See Fig. 2 for an illustration of how action 
probabilities were represented after sampling from an example reward 
distribution. 

2.4.2. Inverse euclidean distance 
Here, the value associated with each map location was defined as the 

inverse Euclidean distance from the previously-chosen location (i.e., a 
bias towards making the same action as before). 

Fig. 1. Task with timing details. Blocks started with a cue indicating the type of 
reward distribution (single-patch or multi-patch). Participants chose a dig 
location and were rewarded with an amount of gold from 1 to 100. Previous dig 
locations were marked on the map and were shown until the participant 
responded (clicked on the desired dig location). 
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2.4.3. Spline interpolation 
This model attempted to estimate the underlying reward distribution 

using the history of feedback. We again used MATLAB’s griddata func
tion, but with the “V4” method. 

2.4.4. Inverse distance weighting 
This model was similar to the inverse Euclidean distance model; 

action values were determined based on the inverse distance to each 
previously-chosen reward, weighted by the values of the previously- 
chosen rewards. 

2.4.5. Natural neighbours 
This model estimated the underlying reward distribution using the 

natural-neighbours method (MATLAB’s griddata function with the 
“nearest” option), which provides a smoother interpolation compared to 
nearest-neighbours. 

2.4.6. Win-stay, lose-shift 
As mentioned, we also tested a win-stay, lose-shift model. Generally 

speaking, these models implement a simple heuristic that tends to repeat 
an action following a win but switch to a different action following a 
loss. Our win-stay, lose-shift model assigned a single action probability ε 
to a radius r around the best-chosen option (the win-stay probability), 
and 1- ε to the rest of the map (Wu et al., 2018). See Fig. 2. 

2.5. Data analysis 

2.5.1. Modelling data 
All of our function-approximation models had a single tunable 

parameter: the softmax temperature, τ. The win-stay, lose-shift model 
had two tunable parameters: the win-stay probability, ε, and the affected 
radius, r. The model-fitting procedure described earlier (minimization 
via MATLAB’s fmincon) yielded, for each participant and model, final 
–LL values, and final model parameters. 

2.5.1.1. Trial classification. Previously, we classified a trial as an 
exploitation if the participant’s choice matched the model’s value- 
driven choice – i.e., the most likely action, according to the model. All 
other actions were considered to be explorations. Here, however, the 
action space was quite large (an 800 by 800 grid), so rather than focus on 
single actions we expanded our definition of exploitation to include a 
range of likely actions. This was possible because the model-generated 
action probabilities were continuous. For each participant and block 
patch type (single/multi) we computed the mean action probability. 
Trials with greater-than-average action probabilities were defined as 
exploitations; all other trials were explorations. 

2.5.2. Behavioural data 
For each participant and environment (single-patch/multi-patch) we 

computed the mean number of trials of each decision type (exploit/ 
explore). This was also done on a trial-by-trial basis (i.e., for trial 2, 3, … 
20). We then computed, for each participant, environment (single- 
patch/multi-patch), and decision type (exploit/explore) the mean 
response time, displacement from previous response, and reward. 

2.5.3. Electroencephalographic data 
EEG data were downsampled to 250 Hz, filtered through a (0.1 

Hz–30 Hz pass band) phase shift-free Butterworth filter (60 Hz notch), 
and re-referenced to the average of the two mastoid channels. Next, 
ocular artifacts were removed using independent component analysis 
(ICA). In particular, ICA was used to identify components associated 
with eye movements. These components were then removed when the 
data were subsequently reconstructed. Subsequent to this, 1300 ms 
epochs of EEG data were constructed from 200 ms prior to 1100 ms 
following feedback onset. All trials were then baseline corrected using a 
200 ms pre-feedback window. Finally, trials in which the change in 
voltage in any channel exceeded 10 μV per sampling point or the change 
in voltage across the epoch was greater than 100 μV were discarded. On 
average, we removed 28% of epochs (95% CI [23, 34]). 

2.5.3.1. Examination of the grand-grand waveform. To avoid biasing our 
analysis in favour of a statistically-significant difference between our 
conditions of interest, we defined the P300 by first examining the 
“grand-grand” average waveform (Kappenman and Luck, 2016). For 
each participant, we averaged across all EEG epochs (regardless of 
condition), then averaged across participants. Next, we identified the 
time/locations at which the most positive-going deflection occurred 
(388 ms post-stimulus at electrode P4). To capture the apparent P300 
deflection, we then identified the times at which 75% of the maximum 
voltage was reached (288 to 544 ms post feedback), which formed our 
analysis window. Although right-lateralized P300s have been observed 
(Alexander et al., 1996; Amaral et al., 2015; Cacioppo et al., 1996), they 
are not the norm. We therefore repeated our main P300 analysis at 
typical P300 locations along the midline (Fz, Cz, Pz: see Supplemental 
Material). 

2.5.3.2. Effect of current/next trial decision. Previously, we analyzed the 
effect of the upcoming decision type (exploit/explore) on the P300 and 
reported an exploration-related enhancement (Hassall et al., 2013, 
2019). Here, we were interested in the possibility that this neural signal 
may be affected by both the current and the upcoming trial type. We 
therefore binned trials based on the current and next trial type: 
exploit-exploit, exploit-explore, explore-exploit, and explore-explore. 
Transitions between different trial types were infrequent (e.g., 
explore-exploit – see trial counts in Fig. 4a) so we chose to combine trials 
across the different environments (single-patch/multi-patch) to improve 
the signal-to-noise ratio of the resulting waveforms. We then examined 

Fig. 2. Sample responses and model representations. The patchiness of the underlying reward distribution was high in this case (left). The participant’s responses are 
shown as white dots. Participant responses were modelled several ways – the final action probabilities are shown on the right (lighter areas were more likely to be 
chosen, according to the model). 
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the effect of current/next trial decision on the P300, defined in the same 
way as in our main analysis (the mean voltage from 288 to 544 ms post 
feedback at electrode P4). Four trial groupings (and four waveforms) 
were created for each participant based the current and next trial type. 
We then conducted a 2 (current trial type: explore/exploit) by 2 (next 
trial type: explore/exploit) repeated measures ANOVA. The P300 effect 
here appeared to be driven more by the current trial type than the next 
trial type (see Results). For our main analysis, described below, we 
therefore decided to focus on the current-trial decision instead of the 
next-trial decision. 

2.5.3.3. Feedback-locked P300. Conditional waveforms were created by 
averaging the feedback-locked EEG for each participant, environment 
(single-patch/multi-patch), and current-trial decision type (exploit/ 
explore). Finally, a P300 was computed as the mean voltage within our 
analysis window (288 to 544 ms post feedback) at electrode P4, for each 
participant, block patch type (single/multi), and decision type (exploit/ 
explore). See Fig. 5 for the resulting waveforms and scalp topographies. 

Our behavioural results revealed that exploitation was more 
rewarding than exploration. The reason why this is relevant to our P300 
analysis is that the feedback-locked P300 is known to scale with reward 
magnitude, e.g. larger for high-magnitude wins compared to low- 
magnitude wins (Sato et al., 2005; Wu and Zhou, 2009; Yeung and 
Sanfey, 2004). Thus, the effect of decision type (exploit/explore) is 
likely confounded here by reward magnitude (low/high) such that our 
exploration-related P300 is weaker than it otherwise would have been. 
To investigate the role of reward magnitude in our experiment, we 
constructed low- and high-reward waveforms for each decision type 
(exploit/explore) by performing a median split (low/high reward) on all 
feedback-locked EEG trials. For all four waveforms (low-exploit, 
high-exploit, low-explore, high-explore) we then computed P300 scores 
at the same electrode and in the same time window as described above. 
This was done to confirm the presence of a reward-magnitude effect that 
diminished (not enhanced) our exploration-related P300. 

2.5.3.4. Feedback-locked LPP. Upon examining the feedback-locked 
waveforms (Fig. 5), we noted that the effect of decision type (exploit/ 
explore) on feedback processing was sustained well beyond the usual 
P300 time range. The difference appeared to be in the LPP time range 
(Olofsson et al., 2008; Schupp et al., 2000). To investigate this differ
ence, we averaged our waveforms across environment (single-
patch/multi-patch) and constructed a difference wave (explore minus 
exploit) to define a second analysis window. The grand-grand-average 
approach was not used here because, unlike our P300 analysis, no 
peaks were apparent in the conditional waveforms at this later time.1 As 
before, we located the time/location of the maximum voltage – of the 
difference wave, this time – and computed the interval within which 
75% of this value was reached. This yielded a later time range, at a more 
central location: 440–804 ms post feedback at electrode POz. 

2.5.4. Inferential statistics 
The effect of environment (single-patch/multi-patch) on exploration 

rate was determined using a paired-samples t-test. Cohen’s d was 
computed according to: 

d¼
Mdiff

sdiff  

where Mdiff was the difference score mean and sdiff was the difference 
score standard deviation (Cumming, 2014). To determine whether 
exploration rate changed within a block, a linear model relating 

exploration rate to trial number (2, 3, … 20) was fit to each participant’s 
data using the MATLAB function polyfit. The effect of trial number on 
the model slopes was assessed using a single-sample t-test (and Cohen’s 
d computed by dividing the slope mean by the slope standard deviation). 
Next, our behavioural scores (mean response time, mean displacement, 
and mean reward) and ERP scores (P300, late potential) were subjected 
to a 2 (decision: exploit, explore) by 2 (environment: single-patch, 
multi-patch) repeated-measures ANOVA. Two different effect-size 
measures were computed: ηp

2 and ηg
2 (Olejnik and Algina, 2003). To 

help illustrate how our effects of interest (decision, environment) 
changed over time, we computed ηp

2 for each on a 200 ms sliding win
dow. Post hoc, we computed observed power using G*Power 3.1 (Faul 
et al., 2007). 

3. Results 

3.1. Modelling data 

A comparison of the mean –LL scores revealed that the natural- 
neighbours method provided the best fit for our participants’ data, 
regardless of block type (Fig. 3a). This was the model we used to classify 
trials as exploitations or explorations for our EEG analysis. Although 
model fit varied across blocks and participants, we chose to focus on a 
single model for our EEG analysis to have a consistent definition of 
explore/exploit. 

Participants explored slightly more in the multi-patch environment 
(69.0%, 95% CI [67.1, 70.9]) compared to the single-patch environment 
(66.2%, 95% CI [64.2, 68.3]), t(23) ¼ 3.13, p ¼ .005, Cohen’s d ¼ 0.64, 
observed power ¼ 0.85. We also noted that participants tended to 
explore less as they discovered the location of the rewards – the slope of 
the relationship between exploration rate and trial number was non-zero 
in both the single-patch environment, t(23) ¼ -29.27, p < .001, Cohen’s 
d ¼ -5.97, observed power ¼ 1.00, and the multi-patch environment, t 
(23) ¼ -13.53, p < .001, Cohen’s d ¼ -4.06, observed power ¼ 1.00. See 
Fig. 4. 

3.2. Behavioural data 

3.2.1. Effect of current/next trial decision 
After collapsing across task to examine the effect of current/next trial 

type on trial counts, we observed no effect of current-trial type, F(1,23) 
¼ 0.6, p ¼ .5, ηp

2 ¼ 0.02, ηg
2 ¼ 0.00, observed power ¼ 0.10 or next-trial 

type, F(1,23) ¼ 3.3, p ¼ .08, ηp
2 ¼ 0.12, ηg

2 ¼ 0.01, observed power ¼
0.41. There was also no current-trial by next-trial interaction, F(1,23) ¼
0.8, p ¼ .4, ηp

2 ¼ 0.03, ηg
2 ¼ 0.00, observed power ¼ 0.13. We also 

examined the effect of current/next trial type on reward and found an 
effect of both current-trial type (larger rewards for exploitations), F 
(1,23) ¼ 328, p < .001, ηp

2 ¼ 0.93, ηg
2 ¼ 0.79, observed power ¼ 1.00, 

and next-trial type (larger for exploitations), F(1,23) ¼ 179, p < .001, 
ηp

2 ¼ 0.88, ηg
2 ¼ 0.70, observed power ¼ 1.00. There was an interaction 

effect between current-trial type and next-trial type – it appeared to take 
less of a points difference to switch from exploitation to exploration than 
it took to switch from exploration to exploitation, F(1,23) ¼ 109, p <
.001, ηp

2 ¼ 0.83, ηg
2 ¼ 0.34, observed power ¼ 1.00. See Table 1 for 

exact values, and Fig. 4. 

3.2.2. Response time 
Response times were affected by decision type, F(1,23) ¼ 12.68, p ¼

.002, ηp
2 ¼ 0.36, ηg

2 ¼ 0.04, observed power ¼ 0.94. There was no effect 
of environment, F(1,23) ¼ 0.66, p ¼ .4, ηp

2 ¼ 0.03, ηg
2 ¼ 0.00, observed 

power ¼ 0.13, and no decision by environment interaction, F(1,23) ¼
1.12, p ¼ .3, ηp

2 ¼ 0.05, ηg
2 ¼ 0.00, observed power ¼ 0.19. See Table 2 

1 LPP analysis windows are often identified using either previous literature 
(Stevens et al., 2019) or the difference-wave approach (Brown et al., 2012, 
2012; Hajcak et al., 2009). 

2 The interaction between current-trial type and next-trial type was unex
pected and a potentially interesting area of future study. 
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and Fig. 6 for mean response times. 

3.2.3. Displacement 
Decision type also affected displacement from previous choice – 

explorations covered a greater distance, F(1,23) ¼ 379.13, p < .001, ηp
2 

¼ 0.94, ηg
2 ¼ 0.82, observed power ¼ 1.00. There was a smaller effect of 

environment (greater displacements in the multi-patch environment), F 
(1,23) ¼ 6.06, p ¼ .02, ηp

2 ¼ 0.21, ηg
2 ¼ 0.04, observed power ¼ 0.68. 

No interaction was detected, F(1,23) ¼ 0.16, p ¼ .69, ηp
2 ¼ 0.01, ηg

2 ¼

0.00, observed power ¼ 0.08. See Table 1 and Fig. 6 for mean 
displacements. 

3.2.4. Reward 
Exploitations resulted in greater point gains, on average, compared 

to explorations, F(1,23) ¼ 1077.00, p < .001, ηp
2 ¼ 0.98, ηg

2 ¼ 0.93, 
observed power ¼ 1.00. The single-patch environment yielded more 
rewards compared to the multi-patch environment, F(1,23) ¼ 53.38, p 
< .001, ηp

2 ¼ 0.70, ηg
2 ¼ 0.37, observed power ¼ 1.00. Finally, there was 

an interaction between decision and environment on reward; the points- 
advantage of exploiting over exploring appeared to be greatest in the 
single-patch environment, F(1,23) ¼ 7.49, p ¼ .01, ηp

2 ¼ 0.25, ηg
2 ¼

0.05, observed power ¼ 0.77. See Table 2 and Fig. 6. 

3.3. Electroencephalographic data 

3.3.1. Effect of current/next trial decision 
There was an effect of current-trial type (F(1,23) ¼ 7.51, p ¼ .01, ηp

2 

¼ 0.25, ηg
2 ¼ 0.07, observed power ¼ 0.76), but not next-trial type (F 

(1,23) ¼ 0.00, p ¼ .95, ηp
2 ¼ 0.00, ηg

2 ¼ 0.00, observed power ¼ 0.05). 
There was a current-trial by next-trial interaction, F(1,23) ¼ 11.58, p ¼
.002, ηp

2 ¼ 0.33, ηg
2 ¼ 0.13, observed power ¼ 0.91. Specifically, the 

effect of exploring on the current trial appeared to be modulated by 
next-trial decision type (greater when the next trial was an exploita
tion).2 See Table 1 and Fig. 4. 

3.3.2. P300 
There was an effect of decision type on the feedback-locked P300 

(enhanced for explorations), F(1,23) ¼ 25.18, p < .001, ηp
2 ¼ 0.52, ηg

2 ¼

0.05, observed power ¼ 1.00. There was no effect of environment, F 
(1,23) ¼ 0.19, p ¼ .7, ηp

2 ¼ 0.01, ηg
2 ¼ 0.00, observed power ¼ 0.07, and 

no interaction, F(1,23) ¼ 0.80, p ¼ .4, ηp
2 ¼ 0.03, ηg

2 ¼ 0.00, observed 
power ¼ 0.14. See Table 3 for condition means, and Fig. 7. 

3.3.3. Effect of reward magnitude 
There was an effect of reward magnitude (low/high) on the 

feedback-locked P300 for exploitations, t(23) ¼ 3.23, p ¼ .004, Cohen’s 

Fig. 3. Model fit results. Most models maintained a value associated with each map location: nearest-neighbours, inverse Euclidean distance: IED, spline interpo
lation (V4), inverse distance weighting: IDW, and natural neighbours. The win-stay, lose-shift model (WSLS) tended to choose map locations close to the location of 
greatest previous reward. (a) The models provided comparable fits (lower is better). The natural-neighbours model provided the best mean fit in each environment. 
(b) Softmax probabilities – these are the model-generated likelihoods for each trial (all participants). Models that yielded better fits tended to generate greater trial- 
by-trial likelihoods. 

Fig. 4. Trial classification.(a) Overall, participants explored more in the multi-patch environment. (b) The exploration rate decreased throughout a block as par
ticipants learned the reward locations. Error bars/shaded regions show 95% confidence intervals. 
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d ¼ 0.66, observed power ¼ 0.87. A similar effect was seen for explo
rations, t(23) ¼ 2.45, p ¼ .02, Cohen’s d ¼ 0.50, observed power ¼ 0.65. 
Both effects were positive (enhanced for high rewards compared to low 
rewards). Furthermore, when we compared the high-explore P300 with 
the low-exploit P300, which had comparable point totals (Table 4), we 
still observed a large exploration-related P300 enhancement, t(23) ¼
7.75, p < .001, Cohen’s d ¼ 1.58, observed power ¼ 1.00. See Table 4 for 
mean point amounts in each median split and resulting P300 scores. 

3.3.4. LPP 
The LPP was affected by decision type, F(1,23) ¼ 25.28, p < .001, ηp

2 

¼ 0.52, ηg
2 ¼ 0.08, observed power ¼ 1.00. There was also a small effect 

of environment, F(1,23) ¼ 5.37, p ¼ .03, ηp
2 ¼ 0.19 ηg

2 ¼ 0.01, observed 
power ¼ 0.62. No interaction was detected, F(1,23) ¼ 0.78, p ¼ .4, ηp

2 ¼

0.03, ηg
2 ¼ 0.00, observed power ¼ 0.14. See Table 3 and Fig. 8. 

Fig. 5. Behavioural and EEG data by current/next trial type.(a) Participants were more likely to exploit following exploitations, and more likely to explore following 
explorations. (b) Mean reward by current/next trial. (c) Feedback-locked waveforms for each current/next trial type. The shaded area shows the region of analysis. 
(d) P300 scores by current/next trial type. 

Table 1 
Effects of current/next trial decision.   

Measure 
Exploit (current) Explore (current) 

Exploit (next) Explore (next) Exploit (next) Explore (next) 

M 95% CI M 95% CI M 95% CI M 95% CI 

Trial count 115.5 [103.4, 127.6] 37.8 [32.8, 42.9] 54.2 [48.7, 59.7] 276.7 [252.6, 300.8] 
Reward (points) 72.2 [69.5, 74.9] 63.8 [62.1, 65.5] 59.3 [57.1, 61.4] 35.3 [32.8, 37.8] 
P300 (μV) 6.6 [5.3, 8.0] 6.9 [5.3, 8.5] 9.0 [7.4, 10.6] 8.0 [6.8, 9.3]  

Table 2 
Behavioural means, with 95% confidence intervals.   

Single-patch Multi-patch 

Exploit Explore Exploit Explore 

Measure M 95% CI M 95% CI M 95% CI M 95% CI 

Response time (ms) 426.4 [377.2, 475.6] 482.4 [429.3, 535.5] 427.0 [378.4, 475.5] 468.4 [408.7, 528.1] 
Displacement (mm) 6.9 [5.5, 8.3] 47.8 [43.4, 52.2] 10.3 [8.5, 12.1] 52.2 [45.4, 59.0] 
Reward (points) 75.3 [74.2, 76.4] 40.9 [38.4, 43.5] 66.4 [64.4, 68.3] 36.0 [34.0, 38.0]  
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4. Discussion 

In this experiment, we observed an enhanced P300 for feedback 
following decisions to explore, a result previously observed when 
exploration was rare compared to exploitation (Hassall et al., 2013, 
2019). Here we showed that exploration enhances the feedback-locked 
P300 even when exploration is frequent. Furthermore, the 
exploration-related P300 appears to be unaffected by reward distribu
tion knowledge, even though such knowledge affects exploration rate 
and choice behaviour. 

We began by testing how well several models could account for our 
participants’ trial-to-trial decisions. Although model comparison was 

not our main goal, the model-fitting procedure itself was important 
because this was how we classified trials as exploitations or explora
tions. By choosing the best of several models, we gained confidence in 
our trial classification. We discovered that a model that approximated 
the underlying value function provided the best fit for our data (in 
particular, using the natural-neighbours approach). This discovery is in 
line with work by Wu et al. (2018) who, after comparing many different 
models, found evidence that humans rely on function approximation to 
find spatially correlated rewards in a large decision space (an 11-by-11 
grid). We have shown here that this finding holds true in a more 
continuous space (an 800-by-800 grid). 

After classifying participant decisions as exploitations or explora
tions, we confirmed two critical features of our experiment. First, and in 
contrast to earlier work, explorations were more common than exploi
tations — a feature that allowed us to test whether or not frequent 
exploration would elicit a P300 enhancement (discussed below). Sec
ond, we verified that our between-block manipulation had worked; 
participants explored more when they were shown a multi-patch cue 
compared to when they were shown a single-patch cue.3 In other words, 

Fig. 6. Behavioural results.Explorations were (a) slower and (b) farther from the previous choice. (c) Exploitation resulted in a greater average point gain.  

Table 3 
ERP scores, with 95% confidence intervals.   

Measure 
Single-patch Multi-patch 

Exploit Explore Exploit Explore 

M 95% CI M 95% CI M 95% CI M 95% CI 

P300 
(μV) 

6.8 [5.2, 
8.4] 

8.2 [6.7, 
9.8] 

6.8 [5.2, 
8.3] 

8.5 [7.1, 
10.0] 

LPP (μV) 3.9 [2.5, 
5.3] 

5.6 [4.2, 
7.1] 

4.3 [2.9, 
5.7] 

6.4 [4.8, 
8.0]  

Fig. 7. Feedback-locked P300 waveforms (left) and scalp topographies (right).  

Table 4 
Reward magnitude and P300 scores, with 95% confidence intervals.  

Measure Explore Exploit 

Low Reward High Reward Low Reward High Reward 

M 95% CI M 95% CI M 95% CI M 95% CI 

Reward (points) 17.5 [15.1, 19.9] 58.8 [56.9, 60.1] 57.3 [54.0, 60.1] 82.1 [80.5, 83.8] 
P300 (μV) 7.9 [6.4, 9.4] 8.7 [7.3, 10.2] 5.9 [4.4, 7.5] 7.3 [5.7, 8.8]  

3 Though significant, this effect was small, and we noted considerable inter- 
participant variability in exploration rate (Fig. 4a). 
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our participants’ decisions to explore were influenced by the reward 
distribution. This observation is in line with some (Constantino and 
Daw, 2015), but not all previous work (Hutchinson et al., 2008). 
Furthermore, explorations were slower compared to exploitations, in 
line with other studies (Beharelle et al., 2015; Hassall et al., 2013). This 
is somewhat unsurprising here, given that explorations covered a 
greater distance than exploitations. Unlike these previous studies, our 
participants were told the upcoming reward distribution, and adjusted 
their strategy accordingly. It remains to be seen whether our task would 
elicit these adaptations if the nature of the reward distribution was 
initially unknown. Others (Wu et al., 2018) have found that humans 
assume smooth, spatially-correlated reward distributions (which ours 
are). But would naïve participants assume the presence of one reward 
patch or many reward patches? 

In line with previous work (Hassall et al., 2013, 2019), our exami
nation of the neural response to feedback revealed an 
exploration-related P300. In particular, the feedback-locked P300 was 
greater following exploration than following exploitation. Although a 
reward-magnitude confound was present – exploitative feedback was 
more rewarding than exploratory feedback – this confound likely 
diminished the exploration-related effect since lower-magnitude re
wards resulted in a reduced P300 (Sato et al., 2005; Wu and Zhou, 2009; 
Yeung and Sanfey, 2004). Future studies may be able to control for 
reward magnitude by making exploration more or less rewarding, e.g. 
by making the environment non-stationary or stationary. 

This presence of an exploration-related P300 here is noteworthy 
because, unlike previous work examining the exploration-related P300, 
exploration in our experiment was the more common decision type. 
Thus, these results rule out the possibility that the exploration-related 
P300 is driven entirely by the frequency of exploration relative to 
exploitation. Furthermore, an exploratory analysis identified that the 
observed exploration-related effect likely peaked around 600 ms post 
feedback – later than what is usually associated with the P300, but not 
unheard-of (Polich, 2007). Consistent with previous work, we have 
labelled this component the LPP (sometimes called the late positive 
component, or LPC). However, the distinction between the P300 and the 
LPP may be subtle or event nonexistent (the P300 is thought to be a 
major contributor to the LPP: Foti et al., 2009; Hajcak and Foti, 2020; 
MacNamara et al., 2009; Weinberg and Hajcak, 2011). Thus, a simple 
explanation for our LPP result is that it reflects a delayed P300 effect. 
One factor affecting P300 latency is cognitive load (Duncan-Johnson, 
1981; Krigolson et al., 2012), potentially relevant here because the gold 
rush task has a much larger action space compared to our previous tasks 
(Hassall et al., 2013, 2019). The hypothesis that cognitive load shifts the 
latency of the exploration-related P300 could be tested in future work 
by, for example, manipulating the size of the action space. 

Alternatively, we could consider factors known to affect the ampli
tude of the LPP. The LPP is thought to reflect the engagement of a 
general motivational system in the brain – general because it is sensitive 
not only to emotional images, but also to task-relevant features (Bradley, 
2009). For example, the LPP is enhanced if participants are asked to 
count emotional but not neutral images (Ferrari et al., 2008). Relevant 
here, the LPP is still present after repeated viewings of the same stimulus 
(Codispoti et al., 2007). In decision-making contexts, an enhanced LPP is 
seen for gains versus losses (Broyd et al., 2012) and for larger rewards 
(Meadows et al., 2016). We can probably rule out a “reward magnitude” 
explanation since exploratory feedback was less rewarding than 
exploitative feedback in our experiment. A “motivation” explanation is 
possible, provided that exploratory feedback in this task had more 
motivational significance than exploitative feedback (a significance that 
was further enhanced in the multi-patch environment). Although we did 
not manipulate or test for level of motivation here, this approach might 
prove promising in the future as previous research has shown a link 
between overall task involvement and the feedback-locked P300 (Yeung 
et al., 2005). 

We suggested previously that the exploration-related P300 may be 
linked to a neural interrupt signal (Hassall et al., 2013, 2019). We 
speculated that such a mechanism would be useful in suppressing a 
default strategy (e.g., exploration) in favour of trying something new (e. 
g., exploitation). In those studies, we interpreted “default” as “more 
frequent”, an interpretation that does not apply to the current results. 
Here, participants exploited less often than they explored, yet explora
tion still yielded the greater P300. To maintain a neural-interrupt 
explanation for our results, we would no longer define as default 
whichever decision type (exploit/explore) was more frequent. Instead, 
we would conclude that exploration may be the default strategy 
generally (i.e., regardless of task). This is a difficult claim to test because 
it is not clear what exploration and exploitation mean outside of a lab
oratory or task context. However, it has been suggested that 
mind-wandering may be a form of exploration, and goal-directed 
thinking a form of exploitation (Sripada, 2018). Interestingly, 
mind-wandering is thought to be related to the brain’s default state (the 
default mode network, or DMN: Raichle, 2015). Thus, there are theo
retical reasons to suspect that switching from exploration to exploitation 
always requires neural interruption, regardless of rate of exploration.4 

Here we have shown that exploration in continuous environments is 

Fig. 8. Feedback-locked LPP (left) and scalp topography of the explore-minus-exploit difference scores (right). The grey lines show the decision/environment effect 
sizes computed on a 200-ms sliding window. 

4 Estimates of mind-wandering rates vary from a third (Kane et al., 2007) to 
half of our daily lives (Killingsworth and Gilbert, 2010). It is therefore unclear 
whether mind-wandering or goal-directed thought is the more common mental 
state. 
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followed by enhanced feedback processing, even when exploration is the 
dominant strategy. We suggest that this effect is driven mainly by the 
neural processes required to switch from exploration to exploitation (a 
neural interrupt signal). These neural processes are general; they oper
ate across different task types (discrete and continuous) and exploration 
rates (rare and common). 
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