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The neural systems that afford our ability to evaluate rewards and punishments are

impacted by a variety of external factors. Here, we demonstrate that increased cognitive
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load reduces the functional efficacy of a reward processing system within the human

medial–frontal cortex. In our paradigm, two groups of participants used performance

feedback to estimate the exact duration of one second while electroencephalographic

(EEG) data was recorded. Prior to performing the time estimation task, both groups were

instructed to keep their eyes still and avoid blinking in line with well established EEG

protocol. However, during performance of the time-estimation task, one of the two groups

was provided with trial-to-trial-feedback about their performance on the time-estimation

task and their eye movements to induce a higher level of cognitive load relative to

participants in the other group who were solely provided with feedback about the accuracy

of their temporal estimates. In line with previous work, we found that the higher level of

cognitive load reduced the amplitude of the feedback-related negativity, a component of the

human event-related brain potential associated with reward evaluation within the medial–

frontal cortex. Importantly, our results provide further support that increased cognitive load

reduces the functional efficacy of a neural system associated with reward processing.

& 2015 Elsevier B.V. All rights reserved.
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1. Introduction

When we learn, we do not learn in isolation. Typically, the

neural systems that underpin human learning are forced to

evaluate performance outcomes in complex environments

that require several actions to be performed simultaneously.

For example, the dangers brought about by talking on a

cellphone while driving are well known (Horrey et al., 2006;

Pickrell and Ye, 2013; Singh, 2010). Multi-tasking while we
drive, or while we do any other activity in which we wish

performance to be optimal, is well known to result in

behavioral performance decrements for both tasks (Heenan

et al., 2014; Kahneman, 1973; Ishigami and Klein, 2009; Ma

and Kaber, 2005; McCarley et al., 2004; Strayer et al., 2003;

Wickens, 1981). Here, we extend previous work (Krigolson

et al., 2012) examining the impact of increased cognitive load

on the neural systems that subserve human learning and

demonstrate that the increased cognitive load brought about
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by multi-tasking reduces the functional efficacy of an error
evaluation system within the medial–frontal cortex.

The impact of cognitive load on performance in general is a
well studied phenomenon (Andersson et al., 2002; Broadbent,
1958; Kahneman, 1973; Knowles, 1963; Park et al., 2011;
Sweller, 1994). In dual-task paradigms, cognitive load is
induced by having people perform two tasks simultaneously
that compete for cognitive resources (e.g., Wickens, 1981), for
example, performing a visual stimulus-response task while at
the same time having to listen for auditory cues. While
typically the performance decrements associated with dual-
task conditions are explained in terms of attention (c.f.,
Wickens, 1992), one can also simply think of a dual or multi-
task condition in terms of cognitive load. In other words, in a
dual-task condition a participant experiences greater cognitive
load relative to a single-task condition and it is the increased
cognitive load that leads to performance decrements. Of
course, this is a moot point and one could also explain the
performance decrement in terms of attention – the point,
however, is simple – people perform worse in dual task
conditions. Here, we are interested in how increased cognitive
load impacts the function of neural systems other than
attentional processes. For instance, a growing body of evi-
dence suggests that human learning is principally driven by a
reinforcement learning system within the human medial–
frontal cortex that utilizes performance feedback to optimize
behavior (Holroyd and Coles, 2002; Holroyd et al., 2005). Only
recently has the impact of cognitive load on reward processing
within the medial–frontal cortex been examined.

In a previous experiment (Krigolson et al., 2012) we sought
to do just this – examine the impact of cognitive load on
reward-processing within the human medial–frontal cortex. In
our experiment, we had participants perform a simple time
estimation task (c.f., Miltner et al., 1997) during which they
learned to accurately guess the duration of one second via a
trial and error feedback driven shaping process. The experi-
ment was split into two separate counter-balanced experi-
mental blocks, and within each the feedback provided to
participants varied in terms of cognitive load – one feedback
condition was considered to be “low-load” whereas the other
was considered to be “high-load”. In the low-load condition
the feedback provided to participants simply consisted of a
check mark that indicated a correct temporal estimate or a
cross mark that indicated an incorrect temporal estimate. In
the high-load condition the feedback following a participant's
guess consisted of two integers – the participants mentally
summed the numbers and an even sum indicated a correct
temporal estimate whereas an odd sum indicated an incorrect
temporal estimate. Not surprisingly, in terms of behavioral
performance participants performed worse in the high-load
condition relative to the low-load condition. Of principle
interest however was the finding that the amplitude of the
feedback-related negativity (FRN) – the difference in the event-
related brain potentials (ERPs) evoked by positive and negative
outcomes 200–300 ms following feedback delivery – was also
reduced in the high-load condition relative to the low-load
condition. In other words, increasing the cognitive load of the
feedback stimulus reduced the functional efficacy of the
medial–frontal learning system (Holroyd and Coles, 2002) – a
result that suggests people may not learn as effectively in high
cognitive load conditions because the neural system respon-
sible for learning is impaired.

In the present experiment, we sought to extend our original
work (Krigolson et al., 2012) by examining the impact of
cognitive load induced by multi-tasking on reward processing
within the medial–frontal cortex. In the present experiment, we
had two groups of participants complete a time estimation task
similar to the one we employed in our previous work while we
recorded both ocular and EEG data. To induce a higher level of
cognitive load on one of the groups of participants we added a
second task to their paradigm that they performed concurrently
with the time estimation task. More specifically, while we
instructed both groups of participants to try and keep their
eye movements to a minimum and avoid blinking, we also told
participants in the high-cognitive load group (HCL) that we
would be tracking their eye movements and providing them
with feedback in order to train them to not move their eyes
while they performed the time estimation task. Our logic here
was simple: while both groups of participants were given the
same instruction to not move their eyes, we believed that
because of the feedback induced training for HCL participants
they would be performing two tasks simultaneously and thus
would experience a higher level of cognitive load.

Given our previous results (Krigolson et al., 2012), we
predicted that behavioral performance and the amplitude of
the FRN would be impacted by increased cognitive load. More
specifically, we predicted that behavioral performance and
FRN amplitude would be reduced for HCL participants relative
to LCL participants.
2. Results

2.1. Behavioral data

Given our performance based manipulation on the size of the
response window (see Section 5 for more detail), mean accuracy
did not differ between the LCL (49% [48% 50%]) and HCL (49%
[48% 50%]) conditions (p40.05). We also examined the mean
window size for both the LCL (139ms [109ms 165ms]) and the
HCL groups (163ms [102ms 224ms]) and found that this did not
differ, t(13)¼0.40, p40.05. In line with our previous work we
examined the percent change in participants' estimates follow-
ing correct and error feedback. Not surprisingly, we found a large
effect of feedback valence – participants made larger changes to
their temporal estimates following error feedback (25.6% [20.0%
31.1%]) as opposed to correct feedback (13.8% [11.0% 16.6%])
(F(1,26)¼50.31, po0.001, partial η2¼0.66). However, we observed
no effect of cognitive load on the change on participants'
estimates following error (LCL 251ms [176ms 326ms] versus
HCL 261ms [173ms 349ms]) or correct (LCL 140ms [95ms
183ms] versus HCL 136ms [99ms 174ms]) feedback (p40.05).

2.2. Ocular data

To examine the effect of eye movement feedback on eye
movements, we calculated each participant's overall propor-
tion of trials in which an eye movement occurred either 400–
600 ms before feedback or while the time estimation feedback
was displayed for 1000 ms. Not surprisingly, participants that



Fig. 1 – Grand average event-related brain potential waveforms time locked to the onset of the feedback stimulus at channels
FCz, CPz, and POz for participants in the low-load group (a) and high-load group (b). Note, negative voltages are plotted
upwards by convention.
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received eye movement feedback (the HCL group) made fewer

eye movements compared to participants who did not receive

eye movement feedback (18% [6% 30%] of trials versus 40%

[21% 60%] of trials) (t(13)¼2.21, po0.05).
1Readers may want to know that we also analyzed the FRN
after implementing an ocular correction algorithm (Gratton and
Coles) during pre-processing. The results of this analysis mir-
rored the results reported here, the FRN was smaller for HCL
participants (�5.9 uV [�4.6 uV �7.4 uV]) than for LCL partici-
pants (�7.8 uV [�6.3 uV �9.3 uV]), po0.05.
2.3. Electroencephalographic data

In line with our previous work, we found that increased

cognitive load decreased FRN amplitude (see Figs. 1 and 2).

Specifically, we found the amplitude of the FRN in the HCL

condition (�7.4 uV [�5.2 uV �9.4 uV]) was less negative than

the FRN in the LCL condition (�11.0 uV [�9.1 uV �12.9 uV]) (t

(26)¼2.65, p¼0.01) (Cohen's d¼1.006; a large effect). The FRN

in both conditions passed the test of existence – the single

sample t-test of the FRN difference score against zero to
determine whether a FRN was present or not (LCL: t(13)¼�
11.4, po0.001; HCL: t(13)¼�7.3, po0.001).

Further examination of the FRN in both the LCL and HCL

conditions revealed that the component did not differ in latency

between the two conditions (HCL: 279ms [264ms 294ms]; LCL:

273 ms [259ms 286ms]), t(13)¼0.51, p¼0.671. Also, a topogra-

phical examination of component amplitude was in line with

previous accounts of the FRN as the components in both the

HCL and LCL conditions were maximal over medial–frontal



Fig. 2 – Grand average difference waveforms time locked to the onset of the feedback stimulus for participants in the low-load
group and high-load groups (a). Also shown are the mean FRN scores for the low-load and high-load groups in addition to the
effect (i.e., the difference in the group means). All error bars reflect the appropriate 95% confidence intervals.

Fig. 3 – Scalp topographies for the feedback-related negativity taken at the time point of the maximal difference in the
difference waveforms for the low-load group and the high-load group. Also presented are the scalp topographies for the
conditional waveforms (correct, incorrect) at the time point of the maximal component amplitude.
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cortex (see Fig. 3). An examination of component amplitude at
each channel supported this and revealed that in both the HCL
and LCL conditions the FRN was maximal at electrode FCz – a
finding that, as stated above, is in line with previous accounts
(Holroyd and Coles, 2002; Holroyd and Krigolson, 2007;
Krigolson et al., 2009, 2012, 2014; Miltner et al., 1997).
3. Discussion

In the present study, we examined how cognitive load induced
by a dual-task paradigm impacted reward processing within
the medial–frontal cortex. In line with our previous work
(Krigolson et al., 2012), here we again found that increased
cognitive load resulted in a reduction in the amplitude of the
feedback related negativity – an event-related potential (ERP)
component thought to reflect a reinforcement learning pre-
diction error generated within the anterior cingulate cortex
(Holroyd and Coles, 2002; Holroyd et al., 2005; Krigolson et al.,
2009, 2014). Recall that in our previous work we increased
cognitive load for participants by increasing the complexity of
the feedback stimulus participants relied upon while perform-
ing a time-estimation task, whereas in the current study we
increased cognitive load by having participants perform a
secondary task concurrent with their performance of a time-
estimation task. Thus, in two studies now, we have seen a
reduction of the amplitude of the feedback related negativity
when participants experience increased cognitive load.

So why does cognitive load impact reward processing within
the medial–frontal cortex? In our previous work we found
evidence that increasing cognitive load increased the variability
of feedback stimulus processing as evidenced by an increase in
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the variability in the timing of the latency of the P300 ERP
component (Krigolson et al., 2012; see also Duncan-Johnson
(1981)). In that study, we proposed that an observed increase in
variability of the latency of the P300 component in the high-
cognitive load condition reflected an overall increase in the
variability of the neural processes in general, and specifically in
that experiment reward processing, when there is high cogni-
tive load. The proposed result of the increased variability in
reward processing was reduced functional efficacy of the
medial–frontal system as seen in that study by the decrease
in FRN amplitude. However, in the present study we found no
evidence that there was increased variability in the timing of
reward processes. Further, unlike our previous work, in the
present study we did not observe a decrement in behavioral
performance associated with increased cognitive load. As such,
another explanation is needed to account for the findings of the
present research in addition to potentially our previous work.

It has been apparent for quite some time that increased
system “load” disrupts various neural processes. Indeed, in
seminal work, Cherry (1953) reported that increased attentional
load brought about by having participants listen to two tones
bi-aurally resulted in a decrement in performance – a result that
triggered a long series of studies on this issue (e.g., Broadbent,
1958; Moray, 1959; Treisman, 1963). Handy and Mangun (2000)
provided a more recent extension to this work (amongst others)
by using the ERP technique to show that increased perceptual
load resulted in a disruption of attentional processing. In terms
of the impact of cognitive load, less work has been done – but in
a recent paper Nagamatsu et al. (2011) demonstrated that
seniors performing a virtual reality street crossing task in high
cognitive load conditions made more errors than when the
same task was performed in low cognitive load conditions.
Perhaps the best possible explanation for our work, and the
other research mentioned here, stems from the resource theory
as originally proposed by Wickens (1981).

Resource theory, as posited by Wickens (1981), proposed
that when two tasks competed for and shared the same
resources (e.g., attention) the tasks had the potential to disrupt
each other if there were simply not enough resources to go
around. Going back to an example we utilized at the start of
this paper – resource theory explains why more accidents are
observed when people talk on their cellphones while driving.
In this example, we do not have enough attentional resources
to be able to talk on the phone and drive with each task getting
the full amount of needed resources. As such, one or both
tasks has less resources than needed for full performance and
as a result a performance decrement is observed – an accident
in other words. Resource theory provides an explanation for
the results of the current experiment. Recall again that we had
participants perform a time-estimation task while they were
also concurrently told to monitor and restrict their eye move-
ments. We propose that both of these tasks competed for the
same cognitive resources and that the sum resource require-
ment of both task was greater than the total available
cognitive resources. As a result, we observed a reduction in
the amplitude of the feedback related negativity in the high
cognitive load group, and thus we suggest that the lack of
available cognitive resources reduced the functional efficacy of
the medial–frontal reward system. Interestingly, although
increased cognitive load in the present experiment was
sufficient to impact the processes that underlie the FRN,
behavioral performance was not impacted. As such, our data
suggest that the reduction in the amplitude of the FRN was
due to a paucity of cognitive resource availability even though
the load manipulation did not have a significant effect on
primary task performance. A final note we add here is that
while we have framed our results and the relevant discussion
around the FRN and with a difference waveform approach to
analysis our results also support recent accounts investigating
the reward positivity (see Holroyd et al. (2008) and Proudfit
(2015) for review). Over the past 10 years of research investi-
gating human reward processing with EEG it has become
increasing apparent that the FRN is most likely a modulation
of the positive as opposed to negative conditional waveform –

hence a reward positivity as opposed to a feedback related
negativity. With regard to the current paper, a close examina-
tion of Fig. 1 suggests that the specific impact of increased
cognitive load is to reduce the amplitude of the correct as
opposed to incorrect conditional waveform.

The results of the present study have implications for EEG
research in general. Specifically, a key instruction in the vast
majority of studies using EEG is typically something along the
lines of “keep your eyes on the fixation point and avoid blinking”
(Luck, 2014). As such, with the results of the present experiment
in mind, participants in the vast majority of studies using EEG
are experiencing higher than normal levels of cognitive load
when they are performing their experimental tasks (see Klein
(2014), for an interesting commentary on this very issue). While
this will impact and reduce behavioral performance, perhaps
more importantly, the higher than normal levels of cognitive
load brought about by performing two tasks simultaneously –

the base experimental task and the eye monitoring task induced
by the experimental instructions – will reduce the functional
efficacy of the neural processes that the experimenters hope to
observe and will potentially reduce, wipe-out, or perhaps even
reverse the effects the researchers hope to observe in the ERP
waveforms. We cannot hope to offer a solution for this issue
here – all that we can really say on this issue is that it suggests
that researchers who use EEG will want to keep this potential
confound in mind and perhaps think of ways to control for the
eye monitoring induced cognitive load experimentally. It is
worth pointing out that this issue was a confound in the present
study – both groups of participants were given instructions to
maintain a visual focus on a fixation point and to avoid blinking
– we just emphasized this issue to a greater extent to partici-
pants in the high cognitive load group.
4. Conclusions

In the present study we demonstrated that increasing cogni-
tive load by placing participants in a dual-task performance
situation decreased the amplitude of the FRN – a component
of the human event-related brain potential associated with
reward processing (Holroyd and Coles, 2002; Holroyd et al.,
2005; Krigolson et al., 2009, 2012, 2014). Importantly, this result
extends our previous work (Krigolson et al., 2012) and provides
more evidence that increased cognitive load disrupts reward
processing within the human medial–frontal cortex. Our
results are also of importance to researchers who utilize EEG
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as they suggest that the typical instructions to “not move your
eyes” and to “avoid blinking” by default put participants in a
dual-task condition that disrupts or inhibits cognitive pro-
cesses such as reward evaluation.
5. Experimental procedures

5.1. Participants

Thirty undergraduate students (16 male, 14 female; aged 18–29
years) with no known neurological impairments and with
normal or corrected-to-normal vision participated in the experi-
ment. All of the participants were volunteers who received
extra-credit in undergraduate psychology courses at Dalhousie
University as payment for their participation. The participants
provided informed consent approved by Research Services at
Dalhousie University and the study was conducted in accor-
dance with the ethical standards prescribed in the original
Declaration of Helsinki (1964) and all subsequent revisions.

5.2. Apparatus and procedure

Participants were seated comfortably in front of a computer
display (�75 cm distant) with their chin on a chin-rest affixed
to the table the display rested on. Participants provided
responses via a standard USB keyboard connected to an
experimental computer in another room. For both of our
experimental groups (see below), participants' eye movements
were monitored and recorded via a desk mounted SR Research
Eyelink 1000 eye tracking unit centered in front of and below
the computer display. EEG data was recorded from 59 active
electrodes attached to an EEG cap and 5 skin affixed active
electrodes connected to a Brain Vision QuickAmp system (see
below for all equipment and technical details).

During the experiment, participants performed a time
estimation task (c.f., Holroyd and Krigolson, 2007; Krigolson
et al., 2012; Miltner et al., 1997). In the time estimation
paradigm participants performed a computer based task in
which they learned to accurately guess the duration of one
second via a trial and error shaping process. Each experi-
mental trial began with the presentation of a centrally
positioned fixation cross that remained onscreen for the
duration of the trial. Participants were instructed to keep
their eyes on the fixation cross at all times and to try and
avoid blinking. A brief duration (500–700 ms) after the fixation
cross was presented before participants heard an auditory
cue (3000 Hz, 65 dB, 50 ms duration). Following the cue,
participants waited until they thought one second had
elapsed and then responded by depressing a response key
on the keyboard. A feedback stimulus (either a “þ” or “o”; see
below) indicating the accuracy of the participant's estimate
appeared 400–600 ms following a participant's response and
remained onscreen for 1000 ms. Following the offset of the
feedback stimulus, a blank screen was presented for either
1400, 1500, or 1600 ms (equivalent probability of each).

A participant's temporal estimate was considered correct if
the participant's response was within a time window of
7100 ms centered on 1000ms. Thus, a participant's estimate
on the first trial was correct if their response occurred 900–
1100ms after the auditory cue and incorrect if their response
was outside this window. Following each correct trial the size
of the time window decreased by 10ms and following each
incorrect trial the size of the time window increased by 10.
This manipulation adjusted the time window to a participant's
performance and thus ensured that over the course of the
experiment a participant's accuracy was approximately 50%.
Importantly, adjusting the window in this manner and roughly
equating correct and incorrect trials helps to avoid contam-
ination of the amplitude of the FRN by stimulus frequency
effects (i.e., modulation of the N200 and P300, c.f., Holroyd and
Krigolson, 2007; Holroyd et al., 2008; Krigolson et al., 2012). As
noted above, the feedback stimuli were a “þ” and a “o” that
were randomly counter-balanced in meaning across partici-
pants. In other words, a “þ” was correct and a “o” was
incorrect for Participant One whereas a “o” was correct and a
“þ” was incorrect for Participant Two, and so on.

Two groups of participants performed the time-estimation
experiment – one group in a “low” cognitive load condition (LCL)
and the other in a “high” cognitive load condition (HCL). In the
LCL condition, participants performed the time estimation task
as outlined above and were given the “typical” EEG experiment
instructions to keep their eyes on the fixation cross and try and
blink as little as possible. In the HCL condition, participants
performed the time estimation task and were given the same
instructions to keep their eyes on the fixation cross and blink as
little as possible – but HCL participants were also explicitly told
that their eye movements would be monitored on each trial via
the eye-tracking system. Further, HCL participants were told that
in addition to performing the time estimation task they had a
secondary goal which was to minimize eye movements and that
the experimental program would indicate to them when they
had moved their eyes. Specifically, on trials in which HCL
participants moved their eyes following the standard feedback
stimuli (i.e., a “þ” or a “o”) they saw an “X” that indicated they
had moved their eyes. Thus, in the HCL condition, participants
were performing two tasks which we believed would require
more cognitive effort and thus place a higher load on the system
than would be experienced by participants in the LCL group.
Participants in both groups completed ten blocks of 20 trials. We
treated the first two experimental blocks as practice sessions and
removed these blocks from post-experiment analysis to discard
task task related learning effects. Participants relaxed during self-
paced rest periods between each block.

5.2.1. Behavioral data acquisition
The time estimation task was programmed in and ran in the
MATLAB software environment (Version 2012B, Mathworks,
Natick, USA) with the Psychophysics Toolbox extension
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). The experi-
mental program recorded participant accuracy (correct, incor-
rect) and the magnitude of each temporal estimate (ms) for
each trial as behavioral measures of performance.

5.2.2. Ocular data acquisition
Eye position was monitored throughout the experiment using
a desk-mounted eye tracking system sampling at 250 Hz
(EyeLink 1000, SR Research, Ottawa, Ontario, Canada). We
employed the eye tracker to detect whether or not blinks or
saccades more than three degrees from a central fixation
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point had occurred at any point throughout the experimental
trial – and if they did, the blinks/saccades were then recorded
and utilized by the experimental program.

5.2.3. Electroencephalographic data acquisition
EEG data were sampled at 512 Hz, amplified via 64 active
electrodes attached to a QuickAmp amplifier (Brain Products,
GmbH, Munich, Germany), and recorded with Brain Vision
Recorder software (Version 1.20, Brain Products, GmbH, Munich,
Germany). The electrodes were mounted in a fitted cap with a
standard 10–20 layout – see www.neuroeconlab.com for an
exact montage. During recording, the amplifier applied a built
in average reference to the EEG that was subsequently re-
referenced post-experiment. The vertical and horizontal elec-
trooculograms were recorded from electrodes placed above and
below the right eye and on the outer canthi of the left and right
eyes, respectively. Electrode impedances were kept below 20 kΩ
at all times throughout data collection.

5.2.4. Behavioral data analysis
We calculated mean accuracy (%) and mean size of the
response window (ms) for correct and error trials for each
experimental condition and participant as measures of task
performance (c.f., Holroyd and Krigolson, 2007; Krigolson
et al., 2012). We also calculated the percent change in the
estimate for the trial following error feedback (%) for each
experimental condition and participant, the logic with this
measure being that we anticipated participants would make
changes to their estimate following error feedback to improve
subsequent performance (c.f., Holroyd and Krigolson, 2007).

5.2.5. Ocular data analysis
Based on the data recorded by the Eyelink 1000, for each
participant we calculated the proportion (%) of trials in which
they moved their eyes or blinked prior to or during time
estimation feedback. We then computed the mean propor-
tion of eye movement-contaminated trials for each experi-
mental condition (LCL/HCL).

5.2.6. Electroencephalographic data analysis
The EEG analysis was done as follows for both experimental
groups (LCL, HCL). First, the EEG data were filtered offline
through a (0.1–30 Hz passband) phase shift free Butterworth
filter and re-referenced to an average mastoid reference. Next,
epochs for each feedback valence (correct, incorrect) were
extracted from the continuous EEG (200ms before feedback
stimulus onset to 800 ms after feedback stimulus onset).
Epochs were then baseline corrected using the mean voltage
for the 200 ms preceding feedback stimulus onset. Subsequent
to this, epochs were then examined for artifacts and removed
from the data set if any data point within an epoch exceeded
775 uV. For the LCL group, 28% [15.1% 40.1%] of the data were
discarded per participant on average, for the HCL group, 16%
[5.7% 26.4%] (note, artifact percentages were high as we did not
employ an ocular correction algorithm before artifact rejection
– see below). For interest, we directly compared the number of
artifact trials that were rejected for the LCL and HCL and found
that they did not differ, t(13)¼1.97, p40.05. One participant
from the HCL group was removed from further analysis due to
an excessive number of artifacts in their EEG data (88%). One
participant from the LCL group was removed due to missing

data (EEG markers were not recorded). Further, unlike a

standard ERP analysis we did not employ ocular correction

during data pre-processing (e.g., ICA, Gratton and Coles) as we

were intentionally manipulating eye blinks via the experi-

mental instructions and feedback in the HCL group.
After preprocessing, ERP waveforms were created by aver-

aging the EEG epochs for each feedback valence (correct,

incorrect) for each participant for both experimental groups.

Next, difference waveforms were created by subtracting the

correct ERP waveform from the incorrect ERP waveform for

each participant (Holroyd and Krigolson, 2007; Holroyd et al.,

2008; Luck, 2014). The FRN was quantified as the most negative

deflection on the difference waveform between 200 and

400 ms following feedback stimulus onset at channel FCz.

We focused our analysis on channel FCz given previous work

(Holroyd and Krigolson, 2007; Holroyd et al., 2005, 2008;

Krigolson et al., 2008, 2009, 2012) and an examination of the

FRN topographies that supported our decision (see Fig. 3). The

logic of our difference waveform quantification of the FRN was

as follows – if the processing of correct and incorrect feedback

did not differ cognitively, at least in terms of effects observable

in the ERP data, then the peak analysis of the difference

waveforms would not statistically differ from zero. Extending

from this, if cognitive load did not impact FRN amplitude, then

the comparison of FRN amplitude would not differ between

the two experimental groups (LCL, HCL). For a final visual

comparison, we also computed the difference waveform of the

two difference waveforms (LCL minus HCL). On this difference

waveform we plotted the 95% confidence intervals for each

time point to allow a simple visual examination and inter-

pretation of our data (see Cumming (2013), for full details on

the validity and logic of this approach). EEG analyses were

done with Brain Vision Analyzer (Version 2.0.4, Brain Products,

GmbH, Munich, Germany) and custom code written in the

Matlab programming environment.
5.3. Statistical analyses

Single sample t-tests were used to test for FRN existence (see

above) and between subjects t-tests were used to to examine

accuracy, percent changes in participants' estimates, and

FRN amplitude differences between groups. The percent

change in temporal estimate was tested via a 2 (group: LCL,

HCL) by 2 (feedback valence: correct, error) mixed analysis of

variance. An alpha level of 0.05 was assumed for all statistical

tests. Error measures for descriptive statistics and in figures

reflect 95% confidence intervals (Cumming, 2013).
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