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Learning of stimulus-response—outcome associations is driven by outcome prediction errors (PEs).
Previous studies have shown larger PE-dependent activity in the striatum for learning from own as
compared to observed actions and the following outcomes despite comparable learning rates.
We hypothesised that this finding relates primarily to a stronger integration of action and outcome
information in active learners. Using functional magnetic resonance imaging, we investigated brain
activations related to action-dependent PEs, reflecting the deviation between action values and obtained
outcomes, and action-independent PEs, reflecting the deviation between subjective values of response-
preceding cues and obtained outcomes. To this end, 16 active and 15 observational learners engaged in a
probabilistic learning card-guessing paradigm. On each trial, active learners saw one out of five cues and
pressed either a left or right response button to receive feedback (monetary win or loss). Each
observational learner observed exactly those cues, responses and outcomes of one active learner.
Learning performance was assessed in active test trials without feedback and did not differ between
groups. For both types of PEs, activations were found in the globus pallidus, putamen, cerebellum, and
insula in active learners. However, only for action-dependent PEs, activations in these structures and the
anterior cingulate were increased in active relative to observational learners. Thus, PE-related activity in
the reward system is not generally enhanced in active relative to observational learning but only for
action-dependent PEs. For the cerebellum, additional activations were found across groups for cue-
related uncertainty, thereby emphasising the cerebellum's role in stimulus-outcome learning.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

repetition of the preceding action. Animal and human studies have
revealed neural correlates of these so-called prediction errors (PEs):

One of the most important principles of evolution is the selection
of traits (of a species or an individual) which fit best in the current
environmental conditions. Accordingly, organisms seek to select
behaviour which fits best in the current situation, that is, behaviour
which is followed by the most positive outcome. In order to maintain
a high proportion of positive outcomes in an ever-changing environ-
ment, the ability to adapt behaviour is crucial. This adaptive process
is reflected in an increase and decrease of the probability of
behaviour followed by positive and negative outcomes, respectively,
suggesting a preceding learning process: for example, the extent to
which an outcome is worse than predicted may serve as a ‘teaching
signal’ to select an alternative action in the future. Conversely, an
outcome better than predicted may elicit a signal which reinforces

* Corresponding author. Tel.: +49 234 32 23119; fax: +49 234 32 14622.
E-mail addresses: stefan.kobza@ruhr-uni-bochum.de (S. Kobza),
christian.bellebaum@hhu.de (C. Bellebaum).

http://dx.doi.org/10.1016/j.neuropsychologia.2014.10.036
0028-3932/© 2014 Elsevier Ltd. All rights reserved.

Dopamine (DA) neurons in the monkey fire at higher frequency
following unexpected reward, whereas the firing rate drops
below baseline when expected reward is omitted (Schultz, 1997,
1998a, 1998b; Schultz et al, 1997). A similar pattern was found
via microelectrode recordings in Parkinson's Disease (PD) patients
during deep brain surgery (Zaghloul et al., 2009). Further evidence in
humans stems from functional magnetic resonance imaging (fMRI)
studies showing outcome-related activations also in brain regions
receiving projections from midbrain DA neurons (Haber and Fudge,
1997), most prominently the basal ganglia (BG; Delgado, 2007;
Pagnoni et al., 2002) and the medial prefrontal cortex (mPFC)
(O'Doherty et al., 2001; Rolls et al., 2008), particularly the anterior
cingulate cortex (ACC; Holroyd et al., 2004; for a review, see Knutson
and Cooper, 2005). These structures constitute the so-called reward
system. Outcome-related activations have, however, also been found
in other structures such as the insula (Clark et al., 2009; Delgado
et al., 2000) and the hippocampus (Dickerson et al., 2011). Further-
more, a study on patients with cerebellar lesions suggests that the
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cerebellum is also involved in reward-based reversal learning
(Thoma et al., 2008), which is in line with anatomical connections
between the cerebellar dentate nucleus and the striatum (Hoshi
et al, 2005). Consequently, the cerebellum may also play an
important role in non-motor (stimulus-outcome) learning.

Importantly, reinforcement-learning is not necessarily
restricted to processing of action—outcome related PEs: an action
may result in different outcomes depending on the context or, in
experimental terms, a preceding informative ‘cue’. Notably, one
can thus differentiate between two outcome PEs. An action-
independent PE reflects the difference between the received
outcome and the subjective value (SV) of the cue, which, just as
the action value (AV, i.e. subjective value of the chosen action),
changes based on outcome history. An action-dependent PE, on
the other hand, reflects the difference between the received
outcome and the AV. Both PEs appear to be differentially processed
in the brain. O'Doherty et al. (2004) showed that the ventral
striatum is involved both when outcomes did and did not depend
on a preceding action, whereas the dorsal striatum codes action-
dependent PEs. It is thus conceivable that especially the dorsal
striatum facilitates learning of associations between (own) actions
and their consequences. In line with this assumption, Bellebaum
et al. (2008) reported disrupted feedback-based reversal learning
in BG patients especially when the dorsal striatum was affected.

Stimulus—action-outcome associations can also be learned via
observation of another person's actions and the feedback he or she
receives. On the one hand, observational learning is characterised
by an additional PE which relates to observed actions and which is
coded in the dorsolateral PFC (Burke et al., 2010). Furthermore,
Monfardini et al. (2013) found activations for observed but not own
incorrect outcomes in the posterior medial frontal cortex, the
anterior insula, and the posterior superior temporal sulcus. On the
other hand, many brain regions are involved in processing of
outcome PEs for both active and observational learning, with
decreased activity of parts of the ‘classical’ reward system in
observational as compared to active learning (Bellebaum et al.,
2010, 2012; Yu and Zhou, 2006). In an fMRI study by Bellebaum
et al. (2012), PE-dependent activations in the right putamen were
found in both types of learning, with stronger activations in the
right anterior caudate nucleus for active learners, suggesting that
the processing of PEs is generally reduced in observational learning
from feedback. On the other hand, these studies showed that
action-outcome associations are learned similarly well in active
and observational learning, thereby demonstrating that action-
outcome associations can be acquired by observation. We hypothe-
sised, however, that parts of the reward system are dedicated to
integrating own (rather than observed) actions with outcomes, and
we examined this by differentiating between PEs depending and
not depending on the preceding (own or observed) action.

Based on our recent fMRI findings (Bellebaum et al., 2012) and
evidence we obtained in PD patients (Kobza et al., 2012), we
expected that the BG integrate own actions with outcome infor-
mation during outcome evaluation in active learning, which would
lead to differences between active and observational learning with
respect to action-dependent PE processing. We further hypothe-
sised that neural coding of outcome PEs in the reward system is
not enhanced in active relative to observational learners if PEs are
independent from actions.

For both SVs and AVs, activations have been found in parts of the
reward system, such as the orbitofrontal cortex (FitzGerald et al.,
2009), the dorsal ACC (Camille et al., 2011), the PFC (Glascher et al.,
2009), the supplementary motor cortex (Wunderlich et al., 2009),
and the putamen during active learning (FitzGerald et al., 2012).
Activations reflecting reward expectation have so far not been
investigated in observational learning. Furthermore, activity related
to uncertainty has been reported for the amygdala in fMRI studies on

aversive conditioning (Buchel et al., 1998; Labar et al., 1998) but also
reward learning (Prevost et al., 2011). Uncertainty reflects the extent
to which expectations of future reward vary over the course of the
task (for the computational definition, see Section 2.4.4): Prior to
learning, outcomes are completely unknown, so that uncertainty is at
its maximum. Over the course of learning, outcome predictions
become more accurate, so that uncertainty decreases. Consequently,
uncertainty can be regarded as an inverse indicator of stimulus—
outcome learning such as in classical conditioning, which has been
shown to depend on the cerebellum (Daum et al., 1993). Thus, the
present study also aimed to explore similarities and differences
between active and observational learning with respect to the neural
representation of SVs, AVs, and uncertainty signals preceding the
outcome phase.

2. Material and methods
2.1. Subjects

33 healthy, right-handed adult volunteers participated in the study. Two
participants were excluded due to data acquisition problems. Out of the remaining
31 subjects (age range 20-34 years), one group of 16 subjects (6 female; mean [M]
age=25.1 years; standard deviation [SD]=3.7 years) engaged in an active feedback
learning task, whereas the 15 subjects (9 female; M=23.9 years; SD=4.5 years) of a
second group learned by observing the choices and following feedback in another
person (see Section 2.2 for details of the learning tasks). The mean age did not differ
between groups (p=.45). The current IQ as estimated via the Multiple Choice
Vocabulary Test (Mehrfachwahl-Wortschatz-Test, MWT, version B; Lehrl, 2005) was
also comparable (p=.48) between groups who learned actively (M=116.3; SD=13.9)
or by observation (M=119.8; SD=14.0). All participants had normal or corrected-to-
normal vision. Apart from standard exclusion criteria applied in fMRI studies - such
as artificial cardiac pacemakers, metallic implants, diagnosed or reported claustro-
phobia - a history of neurological or psychiatric disease and regular medication
affecting the central nervous system led to exclusion from the study. Prior to
participation, subjects gave written informed consent. The study conforms to the
Declaration of Helsinki and received ethical clearance by the Ethics Board of the
Faculty of Psychology of the Ruhr University Bochum, Germany.

2.2. The learning tasks

In the present study, two feedback learning tasks were used: one in which
subjects learned from own choices and the following outcomes, and one in which
subjects learned from choices of another subject and the following outcomes. Both
tasks are based on a probabilistic learning card-guessing paradigm introduced by
Delgado et al. (2005). As in our previous studies on differences between active and
observational learning (Bellebaum et al., 2010; Kobza et al., 2012), we applied a
between-subjects design. This design rules out carry-over effects, which may occur
in within-subject designs, in which learning from own choices in one phase may
influence behaviour and/or neural coding of learning by observation in another
phase of the experiment and vice versa.

Recording of participants' responses and timing of stimuli - presented via MRI
video goggles (Resonance Technology, Inc.; http://www.mrivideo.com) - was
controlled by Presentation Software (Neurobehavioral Systems, Inc.; http://www.
neurobs.com).

2.2.1. Active feedback learning task

The subjects of the first group learned from their own choices. Each active learning
trial started with the presentation of a fixation cross with a duration of 4000, 8000, and
12000 ms on 58.3%, 29.2%, and 12.5% of trials, respectively. Then one out of five
different ‘cards’ (represented by frames including a circle, triangle, square, star, or
hexagon) was presented as cue. Subjects were instructed that on the back of each card
a number would be printed. After another fixation cross, subjects were asked to guess
whether the number was lower or higher than the number 5, i.e. between 1 and 4 or
between 6 and 9, by selecting a downward-directed arrow (presented on the left) or an
upward-directed arrow (presented on the right) using the left or right button of a
response box via index or middle finger of the right hand, respectively. Following the
response, the chosen arrow was surrounded by a red circle. If subjects did not respond
within 2000 ms, they were prompted to respond faster. Otherwise, after another
presentation of a fixation cross, positive (‘4+-50c’ in green characters, indicating a
monetary win of 50 cents) or negative (‘—50c’ in red characters, indicating a monetary
loss of 50 cents) feedback was given for a correct or an incorrect guess, respectively (see
Fig. 1A for the sequence of events in one learning trial and for the duration of stimulus
presentation).
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Fig. 1. The active and observational learning task. (A) Sequence of events in one (active or observational) learning trial and durations of stimuli. Subjects were presented one
‘card’ out of five and had to either make (active learning task) or observe (observational learning task) a guess on whether a digit on the back of the card was lower or higher
than 5 as indicated by a red circle surrounding the left or right arrow, respectively. Shortly after, positive or negative monetary feedback was given. (B) Time course of events
in one test trial. Test trials were identical for both groups, and no feedback was given. (C) ‘Card’ stimuli and associated reward (‘+ 50c’) probabilities following each choice.
Note that both choices were equally correct or incorrect for the ‘card’ associated with 50% reward probability, because irrespective of choice, wins and losses occurred equally

often for this ‘card’.

Participants were told that they could improve their guesses and thus
maximise their monetary gain over the course of the experiment by learning from
previous choices and associated outcomes separately for each card. Unbeknownst
to the subjects, the reward probabilities of the five cards were 83% (two cards:
correct guess high or low), 67% (two cards: correct guess high or low) or 50% (one
card: equal frequencies of positive and negative feedback irrespective from
guesses). For incorrect responses, reward probabilities are reversed, e.g. for cues
which lead to positive feedback in 83% following correct guesses, wrong guesses
lead to positive feedback in the remaining 17%. Thus, on each trial, one guess led to
positive feedback, while the other guess led to negative feedback (see Fig. 1C for
choices and reward probabilities associated with each card).

The paradigm also involved test trials, which were identical with the learning
trials except that no feedback was given following guesses, and the duration of
fixation crosses before and after card presentation was shortened to 1000 ms each.
Test trials served to provide a comparable assessment of learning in the active and
observational (see Section 2.2.2) learning tasks. Subjects were asked to use the
knowledge previously gained in learning trials to make optimal guesses on test trials.
€20 was guaranteed as compensation for volunteering, and subjects were informed
that they could receive a monetary bonus for outstanding performance on both
learning and test trials (see Fig. 1B for the sequence of events in one test trial and for
the duration of stimulus presentation).

Each of two blocks of 60 learning trials was followed by a block of 60 test trials,
resulting in four blocks in alternating order. In every block, each card was
presented twelve times.

2.2.2. Observational feedback learning task

In the observational learning task, each subject had to learn by observing the
guesses of and outcomes for another subject who previously performed in the
active learning task. In order to create a realistic observation scenario, each
observer drew an ID from a box to determine the active subject to be observed.
It was emphasised that observed guesses and outcomes were not simulated or
generated by a computer but recorded from the corresponding subject.

In blocks of learning trials, each subject observed all stimuli exactly as
presented to the observed subject (see Fig. 1A), leading to matched experimental
variables in pairs of subjects who learned actively or by observation. To match the
motor requirements of the active learning task, after each presentation of arrows,
observers had to press a button in order to see the observed subject's choice, as

subsequently indicated by a red circle surrounding the chosen arrow, and the
outcome the observed subject received for his or her choice. To exclude mis-
matches between the sides of the pressed button and the observed choice,
observers had to press the same button on each learning trial, which was different
from the two buttons used by the active learners. If observers did not press the
button within 2000 ms, they were prompted to respond faster.

As in the active learning task, each of two blocks of 60 learning trials was
followed by a block of 60 test trials (see Fig. 1B). The blocks of test trials were
identical for both learning tasks, that is, observers also had to make active choices
in test trials to allow between-group comparison of learning. To exclude learning
from outcomes of own choices, no feedback was given in test trials.

Importantly, to ensure that the significance of outcomes was comparable
between groups, observers were told that the amount of money paid out at the
end of the experiment depended both on observed performance in learning trials
and own performance in test trials. €20 was guaranteed as compensation for
volunteering.

2.3. Procedure

Subjects were informed that the study purpose was the investigation of brain
mechanisms of active and observational learning from feedback. After exclusion
criteria had been ruled out and written consent had been given, subjects were placed
in the MRI scanner, and either the active or the observational learning task was
started. Following the learning task, compensation for volunteering was paid out.

2.4. Data analysis

2.4.1. Behavioural data analysis

Choice accuracy was analysed by means of repeated-measures ANOVAs. Choices
were classified as correct if the associated reward probability was higher as
compared to the alternative choices. For the cue which yielded equal frequencies
of wins and losses of 50 cent independent from guesses (reward probability of 50%),
we deliberately defined guesses of numbers higher than 5 as correct responses.

In active learners, an ANOVA involving the within-subjects factors BLOCK (1 vs.
2) and PROBABILITY (83% vs. 67% vs. 50%) was performed on accuracy during
learning trials. Between-group comparisons were based on choices in test trials.
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Performance was analysed by means of an ANOVA with BLOCK and PROBABILITY as
within-subjects factors and GROUP (active vs. observation) as between-subjects
factor.

As all subjects were instructed to learn from feedback, observers were expected
not to imitate active learners' choices but to learn from feedback to observed choices.
For learning from feedback, observers' test performance was expected to show only
weak correlations with active learners' performance observed in the preceding
learning block: a high-performing observer would learn from feedback to both
correct and incorrect choices of a low-performing active learner, leading to higher
performance of the observer in test blocks as compared to the observed active
learner's performance in learning blocks. In turn, a low-performing observer would
show poor learning from feedback to both correct and incorrect choices of a high-
performing active learner, leading to lower performance of the observer in test
blocks as compared to the observed active learner's performance in learning blocks.
In contrast to observers, active learners were expected to show high correlations
between learning and test block performance, because their performance was
expected to be high or low throughout the task for both learning and test blocks,
that is, active learners would carry over high and low performance in active learning
blocks to high and low performance in subsequent test blocks, respectively.

Taken together, correlations between mean (own or observed) performance on
learning blocks and performance on test blocks were calculated, separately for each
group and for the first and second half of the task, to (1) verify that performance in
test blocks was a valid measure of learning, as would be indicated by significant
correlations for the group of active learners, and (2) rule out that observers merely
imitated the choice behaviour of the observed subjects, which would lead to
significant correlations for the group of observational learners (note, however, that
significant correlations would not necessarily indicate imitation learning, e.g. if
performance in learning from feedback is comparable in pairs of active and
observational learners). Consequently, we expected significant correlations between
performance in learning and test blocks for active learners only, and significantly
lower correlations in observers. As learning was only possible for the 67% and the
83% conditions, data from the 50% condition did not enter correlational analyses on
performance.

The level of significance was set to p <.05 (two-tailed) for all behavioural data
analyses; in correlation analyses, Bonferroni corrections were applied. When the
sphericity assumption was violated, the Greenhouse-Geisser correction to adjust the
degrees of freedom was applied. To resolve interactions whenever necessary, post-
hoc t tests (two-tailed) were performed. PASW Statistics 18 (SPSS Inc., Chicago, IL,
USA) was used for all behavioural analyses.

2.4.2. fMRI data acquisition

MR Images were acquired on a 3T MRI scanner (Achieva, Philips Healthcare,
Einthoven, The Netherlands) with a 32-channel SENSE head coil. First, a high
resolution 3D T1-weighted structural scan was acquired for each subject (echo time
(TE) 3.8 ms, flip angle 8°, FOV 240 mm x 240 mm, 220 slices, 1 mm x 1 mm x 1 mm
voxel size). Separately for each of the two learning blocks, a sequence of echo-planar
images (EPI) with a TE of 35 ms and a repetition time (TR) of 2400 ms was acquired,
with 34 slices (no gap, slice thickness=4 mm, in-plane resolution 2 mm x 2 mm, for
reconstructed voxels: 1.65 mm x 1.65mm) per whole brain volume and 400 whole
brain volumes per block, yielding a total of 800 volumes per subject. Five additional
dummy volumes at the beginning of each sequence were discarded to allow for BOLD
signal stabilisation.

In order to gain whole brain volumes including the cerebellum completely, no
additional tilt was applied for EPI scans.

2.4.3. fMRI data analysis

SPM8 (Statistical Parametric Mapping, Wellcome Department of Imaging Neu-
roscience, London, UK) was used for pre-processing and statistical analysis of fMRI data.
EPI were slice-time corrected and realigned relative to the first acquisition sequence.
Following realignment, EPI were unwarped (Andersson et al.,, 2001), co-registered with
the same subject’s structural images, spatially normalised to the Montreal Neurological
Institute (MNI) standard space, resampled to 2 mm x 2 mm x 2 mm voxel size, and
smoothed by a 6 mm full-width at half-maximum (FWHM) Gaussian kernel. Then,
General Linear Model statistical analysis was used (Friston et al, 2002). A two-stage
random-effects approach was adopted to ensure generalisability of the results at the
population level (Penny and Holmes, 2003). The time series of each participant were
high-pass filtered at 128 s. No global normalisation was performed.

The analysis aimed at identifying those brain regions which were significantly
modulated by (1) the SV of a cue (card), (2) the uncertainty associated with a cue,
the AV following (3) cue presentation and (4) response, the outcome-related PE
depending on (5) the SV of the cue and (6) the response-related AV. For this
purpose, for all (learning) trials across the two sequences of fMRI data acquisition,
fMRI data of each subject were modelled with three cue regressors (comprising the
5 card stimuli), where the size of the SV, the uncertainty, and the difference
between the two AVs (AV g —AVies), as suggested by FitzGerald et al. (2012), in
each individual trial were used as parametric modulators. Furthermore, one
response regressor corresponded to the guesses (number lower or higher than
5), with the AV difference being used as parametric modulator. Additionally, two
regressors relating to the outcome (win or loss of 50 cent) were introduced, one of

which was parametrically modulated by the PE depending on SV of the cue, and the
other depending on the AV of the performed or observed response. Finally,
regressors of no interest, referring to the onsets of fixation crosses and arrows,
were added to the model.

Linear contrasts were brought to the group level for all parametric modulators
separately by means of one-sample t tests. For each parametric modulator, a
factorial design including the between-subject factor GROUP (active vs. observa-
tional learners) was specified on the group level based on the first level t contrasts.
This analysis served to explore activations related to the parametric modulators
both separately for each group and in between-group difference analyses.

All reported statistics refer to whole brain analyses. Statistical maps were
thresholded at p=.01, corrected for multiple comparisons using cluster-size
thresholding based on Monte Carlo simulation (10000 runs; Slotnick et al.,
2003), with a threshold of p=.001 for single voxels, yielding an extent threshold
of 25 contiguous voxels. This approach was chosen to reduce the type II error, i.e.
missing true effects, while keeping the type I error, i.e. false alarms, at a reasonably
low level, as was suggested by Lieberman and Cunningham (2009). Activation foci
coordinates are reported in MNI space and were transformed to Talairach space
(see http://imaging.mrc-cbu.cam.ac.uk/downloads/MNI2tal/mni2tal.m) via non-
linear transformation for anatomical labelling using the stereotaxic atlas of
Talairach and Tournoux (1988). We were particularly interested in modulations
of activity in regions previously reported to be involved in outcome or error
processing (see Section 1). These regions of interest (ROIs) consisted bilaterally of
the putamen, the caudate nucleus, the globus pallidus, the ACC, the hippocampus
including parahippocampal gyrus, the cerebellum, and the PFC.

2.4.4. Calculation of parametric modulators

In accordance with a model introduced by Prevost et al. (2011), the SV of the
cue V was updated on each trial ¢, separately for each subject and cue s (cards 1-5),
as expressed by the following equation:

Vs(t+1) = Vs(D+5 x /U®)/UQ) x (R()—=Vs(b)) M

R(t)—V(t) represents a PE, i.e. the deviation between SV V; and outcome R, with
R=1 for win and R= —1 for loss of 50 cent, on trial t. The update on trial t+1 is
performed by weighting the PE with the learning rate 6. The trial-by-trial
uncertainty U(t) (see Eq. (2)), representing the variation of reward expectation
over time, was used to adjust the learning rate, with 6 =0.2, in an approximately
optimal manner (Prevost et al., 2011). Apart from the adjustment of learning rate
for SVs, uncertainty U(t) also served as the second cue-related parametric
modulator. In accordance with Prevost et al. (2011), a reinforcement learning-
based approximation of a Kalman filter was adopted to compute U(t), which served
as a model-based prediction of uncertainty and decreased over the course of
learning as variance of outcome predictions decreased. U(t) was updated according
to

Ut+1)=U®)+8 x (Vs(t+1)— (Vs(£)> —U(D) )

As was pointed out by Prevost et al. (2011), the trial-by-trial uncertainty U(t) is
updated by a weighted difference between the squared deviation between the
previous and the current SV and the previous uncertainty value.

To estimate the learning rates for AVs and outcome PEs (see below), we first
assumed a subjective value Q of 0 cent for each cue at the beginning of the
experiment, i.e. Q at trial 1=Q(1)=0 cent. Next, we calculated Q separately for each
subject, cue, and end of learning block by means of analysing the choices in the
subsequent test block both for active and observational learners to provide
comparable AV and PE calculations in the two groups. For each cue, Q was
calculated as the sum of the proportion of correct responses times +50 cent and
proportion of incorrect responses times — 50 cent, e.g. after the first learning block,
a rate of 100% correct or incorrect responses in the following test block indicated Q
at trial 60=Q(60)=+50 cent (100% +50 cent outcomes plus 0% —50 cent
outcomes) or Q(60)=—50 cent (0% +50 cent outcomes plus 100% —50 cent
outcomes), respectively, with a linear relation between test block accuracy and SV.

As was done by Bellebaum et al. (2012), learning rates were determined for
each subject, block, and cue separately, so that

Qs(t+1) = Qs(O)+as x (R(H)—Qs(D)). 3)

a simple delta rule learning model (Gluck and Bower, 1988), fit the known subjective
values at the beginning and end (Q(1), Q(60), and Q(120)) of each learning block in
an optimal manner. If, for example, Q(60)=15 cent increased to Q(120)=35 cent,
then the learning rate was chosen such that the sequence of positive and negative
feedback following that cue resulted in this increase by 20 cent.

By means of a, we calculated the AVs according to a fictive reinforcement
learning model (Fudenberg and Levine, 1998; Myung and Busemeyer, 1992; note
that reinforcement learning models based on feedback to own choices and, thus,
comparisons regarding model fits could not be considered in the present study, as
only active learners received feedback to own choices). In contrast to simple and
decay reinforcement learning models, the fictive model accounts for the reversal
structure of outcomes available on each trial of the present learning tasks: every
monetary win or loss following a performed or observed action implies that the
inverse outcome, i.e. a monetary loss or win, respectively, would have followed the
alternative action. Consequently, the AVs for both selected and unselected actions
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were updated on each learning trial t according to the following equation, in which
Q represents the value of action j, separately for each block, subject, and cue s:

Qsj(t+1) = Qg;(H)+as x (R(H)—Qy(D)) 4)

If j is the selected (performed or observed) action, R(t) is the outcome (50 for win
and —50 for loss of 50 cent) received on the current trial. If j is the unselected
action, R(t) is the inverse of the received outcome, with —50 for win and 50 for loss
of 50 cent. The AV of the selected or unselected action at trial t+1 is the sum of the
AV and, weighted by the learning rate as, the PE between received or inverse
outcome R and AV at the previous trial of the same cue.

Notably, different outcome-related PEs were modelled in the last two equa-
tions. R(t)— Q,(t) represents the deviation between the subjective value Q of a cue
and the outcome R obtained on a particular trial ¢, independent from an action.
R(t)—Q,;(t), however, is an action-dependent PE, referring to the deviation
between the value Q of action j and outcome R. Both of the PEs served as separate
outcome-related parametric modulators, with the action-dependent PE only
referring to selected actions.

3. Results
3.1. Behavioural data

Active learners' mean accuracies for each probability and learning
block as well as learning curves over the course of trials are depicted in
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Fig. 2A. ANOVA on accuracy in learning trials yielded a significant main
effect of PROBABILITY (F5, 30,=3.682; p=.037), reflecting higher
accuracy for cues with a reward probability of 83% as compared to
67% and 50%, and a near-significant main effect of BLOCK (F,
151=4.241; p=.057), with higher accuracy in the second as compared
to the first block. The interaction between PROBABILITY and BLOCK
did not reach significance (p=.252). Active learners' performance
significantly differed from chance level, that is, 50% correct choices,
for cues with a reward probability of 83% in the first ({{15)=5.146;
p <.001) and second (t(15)=5.724; p <.001) learning block. For cues
with a reward probability of 67%, a trend in the first learning block (t
(15)=1.804; p=.091) was followed by a significant difference from
chance level in the second learning block ({{15)=2.245; p=.040). For
cues with a reward probability of 50%, active learners made signifi-
cantly more right-choices than expected from chance level, that is, 50%
left- and 50% right-choices, both in the first (t(15)=2.158; p=.048)
and second (t(15)=4.388; p=.001) learning block. For the 67% and the
83% conditions, over the course of learning and test blocks, active
learners' performance was above chance level both for cards asso-
ciated with correct left (6(15)=5.307; p <.001) and correct right (t
(15)=3.831; p=.002) choices, both of which did not differ in
frequency (p=.333).
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Fig. 2. Learning performance for each probability. (A) Active learners' performance in learning trials including feedback. Left: mean performance in blocks 1 and 2. Right:
mean accumulated number of correct responses over the course of learning trials. Numbers in brackets refer to 50% probability condition, for which each block included 12
instead of 24 trials. The end of the first and second learning block is indicated by vertical dotted lines at trial number 24 (12) and 48 (24), respectively. The dotted curve
indicates chance performance. (B) Mean performance of active (left) and observational (right) learners in blocks of test trials without feedback. (C) Estimation uncertainty
averaged across all subjects and learning blocks. Left: uncertainties averaged across cues with reward probabilities of 67% and 83% (non-chance; uncertainty curves did not
visually differ between separate cues). Right: uncertainties separately for the cue with reward probability of 50% (chance). Note that curves show an approximately
exponential decay over non-contiguous trials, because trial types were interleaved. Error bars indicate standard errors of the mean.
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Fig. 3. Sample learning trial performances of active learners and test trial performances of observers. (A) Subject 16_OBSERVER shows higher performance in test trials than
16_ACTIVE in learning trials (67% and 83% probability). (B) Subject 13_OBSERVER shows lower performance in test trials than 13_ACTIVE in learning trials (except for 67%

probability in block 2).

In the ANOVA on accuracy in test trials, a significant main effect
of BLOCK emerged (Fj1, 29i=6.452; p=.017), resembling the pat-
tern in active learning trials (see above), that is, higher accuracy in
the second as compared to the first block. Furthermore, a sig-
nificant main effect of PROBABILITY was found (Fj», 53=8.358;
p=.002): Accuracy was higher for cues with a reward probability
of 83% as compared to 67% (t(30)=2.629; p=.013) and 50%
(t(30)=3.723; p=.001). A significant interaction between PROB-
ABILITY and GROUP (F,, 55=4.346; p=.028) was driven by more
right- than left-choices for 50% reward probability in active as
compared to observational learners, whereas the opposite pattern
was found for 67% and 83%. The corresponding t tests, however,
did not yield significant differences (all p >.104). In the ANOVA, no
further main effects or interactions emerged (all p > .237). For cues
with a reward probability of 83%, performance differed signifi-
cantly from chance level for active learners in the first (£(15)=2.885;
p=.011) and second (t(15)=7.166; p <.001) test block and also for
observational learners in the first (£(14)=4.684; p < .001) and second
(t(14)=9.853; p <.001) test block. Along similar lines, performance
was higher than chance level for cues with a reward probability of
67% in active learners' first (t(15)=2.641; p=.019) and second
(t(15)=2.132; p=.050) test block and in observational learners' first
(t(14)=3.557; p=.003) and second (t(14)=5.506; p <.001) test
block. For cues with a reward probability of 50%, active learners did
not make significantly more right-choices than expected from chance
level in the first (p=.260) but in the second (t(15)=3.233; p=.006)
test block, whereas in observational learners, comparisons against
chance level yielded no significant differences in either of the two
test blocks for this cue (both p > .41). Fig. 2B illustrates mean
accuracies on test blocks separately for each group, probability, and
block. Uncertainties over the course of learning trials are depicted in
Fig. 2C.

In active learners, performance correlated significantly between
the first learning and test block, and between the second learning
and test block (r=.721; p=.002, and r=.783; p < .001, respectively).
In observational learners, however, both the correlation between
observed performance in the first and second learning block, and

active performance in the first and second test block, respectively,
were not significant (both p >.615). Following a Fisher z transfor-
mation, between-group comparisons revealed significant differ-
ences in the strength of the correlations: the correlation between
(active or observed) performance in learning and active test trials
was higher for active learners as compared to observers both in the
first (z=1.99; p=.023) and the second (z=2.28; p=.011) half of the
task. Sample performances of high- and low-performing observers
and low- and high-performing observed active learners, respec-
tively, are shown in Fig. 3.

In order to address potential multicollinearity between the
terms derived from the learning model, we also calculated
variance inflation factors (VIF) separately for each parametric
modulator. The highest VIF emerged for the action-independent
PE (VIF=3.024; all remaining VIF < 1.02), which is acceptably low
(Myers, 1990; Menard, 1995).

3.2. fMRI data

3.2.1. Parametric modulation of activity by SV of the cue

For active learners, a significant modulation was found in the
right medial frontal gyrus. Further analyses separately in observa-
tional learners and between-group comparisons (active > obser-
vational or observational > active) yielded activations only in
clusters out of ROIs (Supplementary Table 1 lists all activations
related to the SV of the cue).

3.2.2. Parametric modulation of activity by uncertainty associated
with the cue

With respect to cue-related uncertainty, large clusters emerged
bilaterally in the cerebellum (declive) for observational learners
only. Additional modulations were found in the right cerebellar
culmen, and in the left and right middle frontal gyrus, the latter of
which showed stronger modulation in observational as compared
to active learners. In the opposite contrast, i.e. for active as
compared to observational learners, larger modulations were
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Fig. 4. Uncertainty-related activations in active and observational learners. For observational learners (blue), activations were found in the right (A) and left (B) cerebellum
(see Supplementary Table 2 for coordinates of local activation peaks). (C) Activity in the middle frontal gyrus was significantly modulated in observational learners (peak
activations left hemisphere: x= —36, y=30, z=30; Z=4.16; right hemisphere: x=42, y=36, z=26; Z=3.96) and stronger as compared to active learners (white) in the right
middle frontal gyrus (x=36, y=36, z=26; Z=4.65), exceeding (pink) the area activated in observational learners only. The opposite pattern, that is, stronger activity in active
than observational learners (red), emerged for the right medial frontal gyrus (x=4; y=50; z=28; Z=3.80; see Supplementary Table 2 for activations out of the ROIs).
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Fig. 5. Activations related to action-independent outcome PEs in active and observational learners. Separately for active learners (green), activity emerged for (A) the left
putamen (peak activity at x=—18, y=38, z=0; Z=4.58), extending to the nucleus accumbens, (B) the left globus pallidus (x=—26, y=—16, z=4; Z=4.51), (C) the right
cerebellum®, and (D) the left middle* and inferior (x= —44, y=42, z=12; Z=4.06) frontal gyrus. For both observational (blue); (B) and active (C and D) learners, activations
emerged bilaterally in the insula* (see Supplementary Table 5 for activations out of the ROIs). Note that slices in (B) and (C) were selected to simultaneously visualise
multiple clusters of activations, thereby showing globus pallidus and insula activations, respectively, extending to the white matter. Importantly, these activations peak in the

grey matter. (* See Supplementary Table 5 for coordinates of local activation peaks).

observed in the right medial frontal gyrus (see Fig. 4 and
Supplementary Table 2). No modulations were found in ROIs when
active learners were considered separately. Thus, whereas the cere-
bellar culmen and declive, and the middle frontal gyri play a role in
observational learners only, the right medial frontal gyrus was more
strongly involved in active learners.

3.2.3. Parametric modulation of activity by AV following cue
presentation

For activity related to the AV following cue presentation, between-
group comparisons showed no clusters of significant modulation.
Along similar lines, the separate analysis for observational learners
yielded no suprathreshold activation clusters. For active learners,
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Fig. 6. Activations related to action-dependent outcome PEs in active and observational learners. For observational learners (blue), no activations in ROIs were found. For
active learners (green), however, activations emerged (A) bilaterally for the putamen®, extending to the nucleus accumbens and the ventral anterior cingulate, (B) the left
inferior frontal gyrus (peak activity at x=—30, y=34, z=—10; Z=3.72), the right parahippocampal gyrus*, (C) the right insula (x=38, y=2, z=12; Z=4.89), and
(D) bilaterally for the cerebellum*. Furthermore, activity in (A) the right ventral anterior cingulate (x=6, y=8, z= —10; Z=4.15), (B) the right putamen (x=16, y=6, z= —12;
Z=3.95), extending to the caudate head, (C) the right medial globus pallidus (x=12, y=2, z= —4; Z=4.40), the right insula*, and (D) bilaterally in the cerebellum (left
hemisphere: x=-6, y=-60, z=—28; Z=3.60; right hemisphere: x=0, y=—66, z=—24; Z=3.90) show (also; yellow) stronger modulations (red) as compared to
observational learners (see Supplementary Table 6 for activations out of the ROIs). Note that the slice in (B) was selected to simultaneously visualise multiple clusters of
activations, thereby showing globus pallidus/putamen activations extending to the white matter. Importantly, these activations peak in the grey matter. (* See

Supplementary Table 6 for coordinates of local activation peaks).

however, significant modulations emerged in the left middle frontal
gyrus and insula (see Supplementary Table 3).

3.2.4. Parametric modulation of activity by AV following response

In contrast to AV-related modulations following cue presenta-
tion, significant modulations following responses were found in
the left putamen for active learners (see Supplementary Table 4).
Whereas the absence of this modulation in observers suggests that
the left putamen is more strongly involved in active learners,
between-group comparisons yielded no suprathreshold activation
clusters.

3.2.5. Parametric modulation of activity by outcome-related PE
depending on SV of the cue

In active learners, significant modulations emerged for the left
BG (putamen and lateral globus pallidus), middle and inferior
frontal gyrus, bilaterally for the insula, and for the right cerebel-
lum (pyramis, declive, and uvula). In observational learners,
modulations were found bilaterally in the insula (see Fig. 5 and
Supplementary Table 5). Between-group comparisons yielded no
suprathreshold activation clusters for either direction.

3.2.6. Parametric modulation of activity by outcome-related PE
depending on response-related AV

Separate analyses revealed that, whereas no modulations in ROIs
were found for observational learners, significant modulations
emerged for the right parahippocampal gyrus, the left middle,
inferior and medial frontal gyri, and, in large clusters, bilaterally
for the cerebellum (bilaterally declive, left culmen and anterior
lobe), the putamen, the right caudate head and insula in active
learners. The between-group comparisons confirmed that the right
BG (medial globus pallidus and putamen), anterior cingulate, insula,
and bilaterally the cerebellum (right declive and left fastigium)
show significantly stronger modulations in active as compared to
observational learners (see Fig. 6 and Supplementary Table 6),
whereas no stronger modulations emerged for observational as
compared to active learners.

4. Discussion

The present study aimed to explore the neural correlates of
active as compared to observational learning from feedback, focus-
ing on stimulus-outcome and stimulus-action-outcome learning.
To this end, we applied a task that involved learning of stimulus—
response—outcome associations in a between-subjects design: for
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each cue stimulus, subjects of both groups could learn which of two
actions was more likely to be followed by a monetary gain. Whereas
one group learned from feedback to own actions, the second group
learned from feedback to observed actions. Importantly, the separa-
tion of the cue and the action allowed us to analyse cue- and action-
related activations independently, and, consequently, activations
related to a cue-dependent (action-independent) and an action-
dependent outcome PE.

4.1. The reward system and processing of action-dependent
and action-independent PEs

In contrast to previous studies, the main focus of the present
study was on processing of two different outcome PEs, an action-
dependent PE referring to the difference between AVs and out-
comes, driving (stimulus-)action—outcome learning as in instru-
mental conditioning, and an action-independent PE referring to the
difference between SVs and outcomes, driving stimulus-outcome
learning as in classical conditioning. For both PE types, active
learners showed modulations peaking in the dorsal but also
extending to the ventral striatum, in which PE activity is most
consistently found (e.g. O'Doherty et al., 2004; Niv et al., 2007). Only
for action-dependent PEs, however, striatal activation was stronger
in active as compared to observational learners. In line with these
results, Bellebaum et al. (2012) demonstrated in a recent study that
the dorsal striatum is more involved in the coding of PEs in active as
compared to observational learners. This finding was linked to a
stronger involvement of the dorsal striatum in instrumental con-
ditioning, in which actions are required to obtain an outcome, in
contrast to classical conditioning (O'Doherty et al., 2004). The
present study goes beyond this finding by demonstrating that
differences in striatal activation are not caused by the learning type
(active vs. observation) per se but rather by the strength of the link
between outcome and (own) action: whereas activations in the
dorsal striatum, particularly the right putamen and globus pallidus,
were stronger for action-dependent PEs in active learners, no
differences between groups were found for action-independent
PEs. At first sight, these findings contradict a report on observers'
goal-directed (response-outcome) learning depending on the dor-
sal anterior caudate more than the posterior caudate, which was
more active in habitual (cue-response) learning (Liljeholm et al.;
2012). Note, however, that decreased striatal activity for action-
dependent PEs in the present study refers to a comparison with
active learners rather than another type of learning. Taken together,
the functional dissociation between ventral and dorsal striatum
seems comparable in active and observational learning, but striatal
involvement is still reduced for action-dependent PEs in observa-
tional relative to active learning. The present study also adds to a
previous study on coding of action and outcome PEs in observers'
dorsolateral and ventromedial PFC, respectively (Burke et al., 2010),
by demonstrating that the coding of outcome PEs is further
influenced by the degree to which the outcome depended on an
(own) action.

Action-dependent and action-independent PEs seem related to
‘actor’ and ‘critic’, respectively, in actor—critic models (e.g. Houk et al.,
1995). Such models propose that a ‘critic’ updates predictions of
future reward based on temporal difference PEs for stimulus-reward
learning such as in classical conditioning, whereas the ‘actor’ uses a
similar signal for stimulus-response(-reward) learning such as in
instrumental conditioning (for a comparison on actor—critic models
and a discussion on their plausibility in basal ganglia integration, see
Joel et al., 2002). At first sight, stronger activations in active learners
suggest that action-dependent PEs are an entity of the ‘actor’,
because active learners had to make choices during learning trials,
whereas observers merely saw active learners' choices and outcomes.
Importantly, however, both groups had to learn associations between

stimuli, (active or observed) responses and outcomes during learning
trials. Therefore, between-group differences in activations related to
action-dependent PEs do not necessarily indicate that they are an
entity of the ‘actor’. Along similar lines, at first sight, comparable
activations among groups suggest that action-independent PEs are
an entity of the ‘critic’, because the ‘critic’ is independent from
actions. Note, however, that each learning trial included (active or
observed) choices, so that action-independent PEs in the present
study are not necessarily an entity of the ‘critic’.

Note that low and high performers of both groups could not
account for differences in the fMRI results for two reasons. First,
the paradigm of our study allowed us to calculate learning rates
based on test trial performance separately for each subject, block,
and cue. This way, individual low and high learning rates entered
the learning model for low- and high-performers, respectively, to
yield an optimal calculation of PEs separately for each subject,
block, and cue. Second, between-group differences in PE-related
activity cannot be explained by between-group differences in
performance per se, as subjects of both groups learned associa-
tions between cues, actions, and outcomes equally well, as was
indicated by performance on test trials without feedback. The fact
that the dorsal striatum showed stronger modulation by action-
dependent PEs in active learning can thus not be related to
between-group differences in prediction accuracy. In line with
this finding, recent studies suggest that activity in the dorsal
striatum relates to action execution rather than learning of action-
outcome associations (Guitart-Masip et al., 2012; Shiner et al,,
2012). The presence or absence of actions per se, however, cannot
account for the differences between groups in the present study:
motor requirements were identical for both groups, that is, all
subjects were required to press a button in order to see the
selected choice and following outcome. Therefore, the present
findings rather suggest that the integration of action- and
feedback-related information in the dorsal striatum requires the
feedback to depend on own choices.

Recent studies suggest that activity of the dorsal striatum in
feedback-based learning tasks is related to the execution rather
than learning of goal-directed actions (Shiner et al, 2012;
Smittenaar et al,, 2012). In another recent fMRI study, Guitart-
Masip et al. (2012) showed that activity in anticipation of action
execution (go) as contrasted to action inhibition (no-go) differed in
the SN, VTA, and dorsal striatum. Furthermore, for anticipation of
reward, treatment with levodopa led to even increased activity in
these structures for the go > no-go contrast, while reaction times
decreased (Guitart-Masip et al., 2012). Taken together, stronger
modulation of dorsal striatal activity for action-dependent PEs in
active learners most likely refers to differences between groups
with respect to action representations, probably modulated by the
DA level. Consequently, a reduction in DA as in unmedicated PD
patients affects active but not observational learning from feed-
back (Kobza et al., 2012), where the dorsal striatum plays a minor
role (Bellebaum et al., 2012).

Learning from errors can be predicted from activity of the
medial frontal cortex, as was shown both in an fMRI study (Hester
et al., 2008) and as suggested by a study on the Feedback-related
Negativity (van der Helden et al., 2010), which is an event-related
potential component following negative feedback, and whose
neural generator has been localised in the ACC (Gehring and
Willoughby, 2002). With respect to the present study, higher
anterior cingulate activity in active as compared to observational
learners for action-dependent but not action-independent PEs
may be related to previous findings of co-activation of the striatum
and the ACC (Ridderinkhof et al., 2004; Rogers et al., 2004). Along
similar lines, the ACC has not only been shown to play a role in
error detection and correction (Casey et al., 1997; Garavan et al.,
2002; Ullsperger and von Cramon, 2003) but also in action-related
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learning, which is impaired in patients with ACC lesions (Camille
et al., 2011). Note, however, that the lesions of ACC patients in the
study by Camille et al. (2011) were located in a more dorsal region
of the ACC as compared to a more ventral peak activation in the
present study. Interestingly, whereas increased activity of the ACC
has been suggested for negative PEs (Holroyd and Coles, 2002),
activity of the anterior ACC in the present study was positively
correlated with PEs, i.e. outcomes better than expected led to
enhanced activity of this ACC region. Rogers et al. (2004) reported
increased BOLD signals in the subcallosal ACC following good
outcomes, which may suggest a dissociation between different
ACC regions in evaluating the valence of events.

In the present study, activations related to the action-independent
PE also emerged bilaterally in the insula in both groups. For the
action-dependent PE, however, the right insula was activated only in
active learners, in which the modulation was also stronger as
compared to observational learners, resembling the pattern for the
dorsal striatum and the anterior cingulate (see above). Increased
insular activity for erroneous action outcomes has previously been
reported (Ullsperger et al, 2010). Interestingly, this finding is
independent from agency (own vs. observed actions) when out-
comes have low emotional impact as in correct vs. incorrect feedback
(De Bruijn et al., 2009), but insular activity is stronger for own actions
resulting in pain (Koban et al., 2013). This interaction is in line with
the present findings of stronger modulations in active learners' insula
activity for action-dependent monetary outcome PEs, which may be
associated with stronger emotional responses as compared to correct
vs. incorrect feedback.

Notably, a bias to significantly more right- than left-choices was
present in the chance condition for active learners only. This bias may
have resulted from the right-handedness of all subjects in the present
study, as right-handers tend to associate the rightward space with
positive concepts (Casasanto, 2009). This, in turn, may have triggered
right-choices when left-choices did not differ in value, as was the case
in the study by Casasanto (2009) and in the chance condition of the
present study (for choice alternatives differing in value, as was the case
for the 67% and 83% conditions, subjects did not show a right-bias but
learned from feedback to make choices based on these values).
Casasanto (2009, 2011) explained this bias by people's mental
simulation of action execution, with right-handers' simulation of
right-hand actions being more fluent, thereby leading to a preference
of the rightward space, as this is usually affected by right-hand actions.
Importantly, whereas active learners could mentally simulate their left
or right button press prior to action execution, observational learners
always had to press the same button in order to observe an active
learner's choice in the learning blocks of the present study. Therefore,
only active but not observational learners could experience more
fluent mental simulations and, thus, a preference of right-choices in
the learning blocks. In test blocks, where both groups could mentally
simulate the execution of their own choices, the right-hand bias
acquired in the learning trials may have been transferred by active
learners, explaining the between-group difference in the bias. Inter-
estingly, a numerical increase of right-choices from the first to the
second test block is also seen in observers.

Considering that the bias to more right-choices was less pro-
nounced in observational learners, it is necessary to discuss,
whether this between-group difference in behaviour may account
for the main finding of the present study, that is, between-group
differences in neural processing of action-dependent but not action-
independent PEs. If the bias towards more right- than left-choices in
active learners corresponded to higher subjective values of the
chance-condition cue and/or chance-condition right-choice, the
deviation between model-based and real subjective values would
be higher in active learners as compared to observers. Consequently,
the learning model would have yielded a less accurate fit for active
learners, which - assuming that active learners and observers did

not differ regarding neural processing of PEs — would have led to a
reduced detection of PE-related neural activity in active learners.
Importantly, however, the opposite pattern, i.e. increased activity in
ROIs related to processing of action-dependent PEs, was found in
active learners relative to observers. It thus seems that the more
fluent simulation of right-hand actions in the active learners (see
above) provides an explanation of the right-bias, which is, however,
unlikely to account for between-group differences in neural proces-
sing of PEs as reported in the present study.

4.2. Processing of PEs in the cerebellum and its connection
with the PFC

The function of the cerebellum has classically been linked to
motor control, and later studies (e.g. Gao et al., 1996; Inoue et al.,
1998; Jueptner et al., 1997; for a review, see Blakemore and Sirigu,
2003) suggest that the cerebellum fulfils this function by perform-
ing calculations to predict the sensory consequences of actions in
order to improve motor responses. In line with this view, the
cerebellum was found to encode sensory PEs (Schlerf et al., 2012).
Importantly, cerebellar neurons also code outcome PEs (Schultz
and Dickinson, 2000), with activity changes in the vermis espe-
cially for unexpected rewards (Ramnani et al., 2004). Furthermore,
a recent study shows increased activation of the lateral cerebellum
in the outcome phase if the outcome was preceded by a cue of
high predictive value (Lam et al., 2013). The present study adds to
these findings by showing strong cerebellar activations both for
action-independent and action-dependent outcome PEs, which,
however, emerged only for active learners in separate analyses.
Additionally, cerebellar activity was more strongly modulated by
action-dependent PEs in active as compared to observational
learners. This pattern is similar to stronger activations of the
reward system for action-dependent PEs in active learners (see
Section 4.1), indicating comparable PE coding in the reward
system and the cerebellum. Interestingly, cerebellar PE coding
may not depend on the reward system: whereas impaired learning
from positive feedback in PD patients was suggested to result from
reduced reward-related activity of the BG (Frank et al.,, 2004),
cerebellar reward-related activity was still prominent in PD
patients (Kunig et al.,, 2000). Accordingly, it is conceivable that
outcome PE processing serving action selection is based on reward
value more in the BG than in the cerebellum, which may be more
generally involved in the prediction of events to support beha-
vioural adaptation. This view is further supported by cerebellar
loops with the PFC (Kelly and Strick, 2003), which is also involved
in generating predictions (e.g. Alexander and Brown, 2011; Rogers
et al., 2004).

In addition to processing of outcome PEs, activity of the
cerebellum also depended on the cue-related uncertainty in
observational learners, which is in line with uncertainty-related
cerebellar activations in previous (Blackwood et al., 2004; Keri
et al., 2004) studies.

Interestingly, uncertainty-related cerebellar activations were
found only in observational learners. The explanation for this
finding may consist of at least two aspects: first, cerebellar
function has been associated with shifts of attention (Courchesne
and Allen, 1997; Le et al., 1998). Second, uncertainty is regarded as
the extent to which attention should be paid to the cue (Prevost et
al., 2011). Accordingly, observational learners' attention may be
more focused on the cue, presumably leading to increased mod-
ulation of cerebellar activity by uncertainty. Active learners, on the
other hand, may focus more on cue-dependent action selection
and preparation, which is not necessary in observational learning
at the time of cue presentation.

In the present study, uncertainty-related activations were also
found in a part of the right medial frontal cortex, which belongs to
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the PFC. The role of the PFC has been associated with decision-
making under both risk and uncertainty (e.g. Bechara et al., 1999;
Fellows and Farah, 2005; Hsu et al., 2005; Sanfey et al., 2003). The
present study shows that especially uncertainty-related activa-
tions in the PFC are larger for active than observational learners.
Taken together, the PFC may not process uncertainty per se but
rather when it serves decision-making as necessary in active but
not observational learners.

4.3. The processing of SVs and AVs in the reward system and frontal
cortex

Action-independent outcome PEs involve updating SVs, that is,
they increase and decrease with positive and negative outcomes,
respectively. Importantly, the SV is independent from the action
that led to a positive or negative outcome. Similar to the SV, the AV
increases and decreases with positive and negative outcomes,
respectively, whereas the value of the unselected action changes
inversely (see Section 2.4.4 for details).

As AVs and SVs may be associated with processes of action
preparation, outcome expectation, or both, we also explored in
which brain regions activity was modulated by these parameters
at the time of cue presentation. Furthermore, as outcome expecta-
tions may also or alternatively arise following an action, AV-related
activity following (active or observed) choices was also analysed.

Notably, whereas previous studies have shown activity related
to SVs in the striatum and anterior regions of the PFC (e.g. Kable
and Glimcher, 2007; Peters and Buchel, 2009; Pine et al., 2009),
the present study revealed significant modulations only in the
medial frontal cortex. At least two factors may account for the
absence of modulations in the striatum and anterior PFC regions.
On the one hand, in order to include the cerebellum completely,
EPIs were not tilted - presumably at the cost of sensitivity
especially for OFC regions, which was shown to improve by
application of a tilt (Deichmann et al., 2003). On the other hand,
the absence of SV-related activity in the anterior PFC and the
striatum may result from a ‘distribution’ of the reward value across
two events, that is, presentation of a cue and a subsequent choice
between different stimuli (arrows), with neither of these events
alone indicating reward (see Section 4.1). Consequently, activity in
the PFC and striatum may be more closely linked to the reward
value associated with a combination of SVs and AVs than SVs
alone, the latter of which indicate only potential rewards which
require a further event such as the selection of an action. In line
with this view, AV-related activations, which have previously been
reported in parts of the reward system, such as in the PFC and the
putamen (FitzGerald et al., 2012), emerged in the left putamen of
active learners following responses but not cues in the present
study. A possible explanation for the absence of this effect in
observational learners refers to stronger striatal activations for
links between own as compared to observed actions and expected
outcomes (Bellebaum et al., 2012), which is also in line with the
results of the present study on differences between active and
observational learners' processing of action-dependent but not
action-independent PEs (see Section 4.1).

5. Conclusions

The present study demonstrates that processing of outcome
PEs in the striatum, the anterior cingulate, the insula, and the
cerebellum is stronger in active than observational learning only
for outcome PEs which depend on the preceding action, but not
for those which depend on the initial cue. Consequently, proces-
sing of outcome PEs depends less on the learning type (active vs.
observation) than the link to (own) actions. Importantly, learning

of stimulus—action-outcome associations does not depend on
action-independent but on action-dependent PEs, which is a
prerequisite for (stimulus-)response-outcome learning both in
active and observational learning. Despite stronger striatal and
cerebellar modulations in active learners, learning performance
was comparable in observational learners and was most likely
achieved by recruitment of brain structures beyond the reward
system (Monfardini et al., 2013). Furthermore, learning strategies
regarding e.g. memorising stimulus-response-outcome associa-
tions may differ between groups. Both of these aspects need to be
addressed further in future research.

The present study did not yield a clear picture concerning the
role of the medial temporal lobe in active and observational
learning from feedback. In particular, we did not find regions
being more strongly involved in action-dependent PE coding in
observational than active learning. This question requires further
investigation in the future.
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